![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > grlicer | Structured version Visualization version GIF version |
Description: Local isomorphism is an equivalence relation on hypergraphs. (Contributed by AV, 11-Jun-2025.) |
Ref | Expression |
---|---|
grlicer | ⊢ ( ≃𝑙𝑔𝑟 ∩ (UHGraph × UHGraph)) Er UHGraph |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grlicref 47938 | . 2 ⊢ (𝑓 ∈ UHGraph → 𝑓 ≃𝑙𝑔𝑟 𝑓) | |
2 | grlicsym 47939 | . 2 ⊢ (𝑓 ∈ UHGraph → (𝑓 ≃𝑙𝑔𝑟 𝑔 → 𝑔 ≃𝑙𝑔𝑟 𝑓)) | |
3 | grlictr 47941 | . . 3 ⊢ ((𝑓 ≃𝑙𝑔𝑟 𝑔 ∧ 𝑔 ≃𝑙𝑔𝑟 ℎ) → 𝑓 ≃𝑙𝑔𝑟 ℎ) | |
4 | 3 | a1i 11 | . 2 ⊢ (𝑓 ∈ UHGraph → ((𝑓 ≃𝑙𝑔𝑟 𝑔 ∧ 𝑔 ≃𝑙𝑔𝑟 ℎ) → 𝑓 ≃𝑙𝑔𝑟 ℎ)) |
5 | 1, 2, 4 | brinxper 8782 | 1 ⊢ ( ≃𝑙𝑔𝑟 ∩ (UHGraph × UHGraph)) Er UHGraph |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ∩ cin 3965 class class class wbr 5151 × cxp 5691 Er wer 8750 UHGraphcuhgr 29099 ≃𝑙𝑔𝑟 cgrlic 47910 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5288 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-id 5587 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-suc 6398 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-ov 7441 df-oprab 7442 df-mpo 7443 df-1st 8022 df-2nd 8023 df-1o 8514 df-er 8753 df-map 8876 df-vtx 29041 df-iedg 29042 df-uhgr 29101 df-clnbgr 47772 df-isubgr 47813 df-grim 47830 df-gric 47833 df-grlim 47911 df-grlic 47914 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |