Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  grlicer Structured version   Visualization version   GIF version

Theorem grlicer 47942
Description: Local isomorphism is an equivalence relation on hypergraphs. (Contributed by AV, 11-Jun-2025.)
Assertion
Ref Expression
grlicer ( ≃𝑙𝑔𝑟 ∩ (UHGraph × UHGraph)) Er UHGraph

Proof of Theorem grlicer
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 grlicref 47938 . 2 (𝑓 ∈ UHGraph → 𝑓𝑙𝑔𝑟 𝑓)
2 grlicsym 47939 . 2 (𝑓 ∈ UHGraph → (𝑓𝑙𝑔𝑟 𝑔𝑔𝑙𝑔𝑟 𝑓))
3 grlictr 47941 . . 3 ((𝑓𝑙𝑔𝑟 𝑔𝑔𝑙𝑔𝑟 ) → 𝑓𝑙𝑔𝑟 )
43a1i 11 . 2 (𝑓 ∈ UHGraph → ((𝑓𝑙𝑔𝑟 𝑔𝑔𝑙𝑔𝑟 ) → 𝑓𝑙𝑔𝑟 ))
51, 2, 4brinxper 8782 1 ( ≃𝑙𝑔𝑟 ∩ (UHGraph × UHGraph)) Er UHGraph
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  cin 3965   class class class wbr 5151   × cxp 5691   Er wer 8750  UHGraphcuhgr 29099  𝑙𝑔𝑟 cgrlic 47910
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5288  ax-sep 5305  ax-nul 5315  ax-pow 5374  ax-pr 5441  ax-un 7761
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3483  df-sbc 3795  df-csb 3912  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-iun 5001  df-br 5152  df-opab 5214  df-mpt 5235  df-id 5587  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-suc 6398  df-iota 6522  df-fun 6571  df-fn 6572  df-f 6573  df-f1 6574  df-fo 6575  df-f1o 6576  df-fv 6577  df-ov 7441  df-oprab 7442  df-mpo 7443  df-1st 8022  df-2nd 8023  df-1o 8514  df-er 8753  df-map 8876  df-vtx 29041  df-iedg 29042  df-uhgr 29101  df-clnbgr 47772  df-isubgr 47813  df-grim 47830  df-gric 47833  df-grlim 47911  df-grlic 47914
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator