| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > grlicer | Structured version Visualization version GIF version | ||
| Description: Local isomorphism is an equivalence relation on hypergraphs. (Contributed by AV, 11-Jun-2025.) |
| Ref | Expression |
|---|---|
| grlicer | ⊢ ( ≃𝑙𝑔𝑟 ∩ (UHGraph × UHGraph)) Er UHGraph |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grlicref 48042 | . 2 ⊢ (𝑓 ∈ UHGraph → 𝑓 ≃𝑙𝑔𝑟 𝑓) | |
| 2 | grlicsym 48043 | . 2 ⊢ (𝑓 ∈ UHGraph → (𝑓 ≃𝑙𝑔𝑟 𝑔 → 𝑔 ≃𝑙𝑔𝑟 𝑓)) | |
| 3 | grlictr 48045 | . . 3 ⊢ ((𝑓 ≃𝑙𝑔𝑟 𝑔 ∧ 𝑔 ≃𝑙𝑔𝑟 ℎ) → 𝑓 ≃𝑙𝑔𝑟 ℎ) | |
| 4 | 3 | a1i 11 | . 2 ⊢ (𝑓 ∈ UHGraph → ((𝑓 ≃𝑙𝑔𝑟 𝑔 ∧ 𝑔 ≃𝑙𝑔𝑟 ℎ) → 𝑓 ≃𝑙𝑔𝑟 ℎ)) |
| 5 | 1, 2, 4 | brinxper 8651 | 1 ⊢ ( ≃𝑙𝑔𝑟 ∩ (UHGraph × UHGraph)) Er UHGraph |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2111 ∩ cin 3901 class class class wbr 5091 × cxp 5614 Er wer 8619 UHGraphcuhgr 29032 ≃𝑙𝑔𝑟 cgrlic 48007 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-1o 8385 df-er 8622 df-map 8752 df-vtx 28974 df-iedg 28975 df-uhgr 29034 df-clnbgr 47849 df-isubgr 47891 df-grim 47908 df-gric 47911 df-grlim 48008 df-grlic 48011 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |