Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  grlicer Structured version   Visualization version   GIF version

Theorem grlicer 47542
Description: Local isomorphism is an equivalence relation on hypergraphs. (Contributed by AV, 11-Jun-2025.)
Assertion
Ref Expression
grlicer ( ≃𝑙𝑔𝑟 ∩ (UHGraph × UHGraph)) Er UHGraph

Proof of Theorem grlicer
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 grlicref 47538 . 2 (𝑓 ∈ UHGraph → 𝑓𝑙𝑔𝑟 𝑓)
2 grlicsym 47539 . 2 (𝑓 ∈ UHGraph → (𝑓𝑙𝑔𝑟 𝑔𝑔𝑙𝑔𝑟 𝑓))
3 grlictr 47541 . . 3 ((𝑓𝑙𝑔𝑟 𝑔𝑔𝑙𝑔𝑟 ) → 𝑓𝑙𝑔𝑟 )
43a1i 11 . 2 (𝑓 ∈ UHGraph → ((𝑓𝑙𝑔𝑟 𝑔𝑔𝑙𝑔𝑟 ) → 𝑓𝑙𝑔𝑟 ))
51, 2, 4brinxper 8755 1 ( ≃𝑙𝑔𝑟 ∩ (UHGraph × UHGraph)) Er UHGraph
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  wcel 2099  cin 3945   class class class wbr 5145   × cxp 5672   Er wer 8723  UHGraphcuhgr 28989  𝑙𝑔𝑟 cgrlic 47519
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5282  ax-sep 5296  ax-nul 5303  ax-pow 5361  ax-pr 5425  ax-un 7738
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-nul 4323  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4906  df-iun 4995  df-br 5146  df-opab 5208  df-mpt 5229  df-id 5572  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-suc 6374  df-iota 6498  df-fun 6548  df-fn 6549  df-f 6550  df-f1 6551  df-fo 6552  df-f1o 6553  df-fv 6554  df-ov 7419  df-oprab 7420  df-mpo 7421  df-1st 7995  df-2nd 7996  df-1o 8488  df-er 8726  df-map 8849  df-vtx 28931  df-iedg 28932  df-uhgr 28991  df-clnbgr 47427  df-isubgr 47464  df-grim 47479  df-gric 47482  df-grlim 47520  df-grlic 47523
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator