Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdlemg2klem | Structured version Visualization version GIF version |
Description: cdleme42keg 38237 with simpler hypotheses. TODO: FIX COMMENT. (Contributed by NM, 22-Apr-2013.) |
Ref | Expression |
---|---|
cdlemg2.b | ⊢ 𝐵 = (Base‘𝐾) |
cdlemg2.l | ⊢ ≤ = (le‘𝐾) |
cdlemg2.j | ⊢ ∨ = (join‘𝐾) |
cdlemg2.m | ⊢ ∧ = (meet‘𝐾) |
cdlemg2.a | ⊢ 𝐴 = (Atoms‘𝐾) |
cdlemg2.h | ⊢ 𝐻 = (LHyp‘𝐾) |
cdlemg2.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
cdlemg2ex.u | ⊢ 𝑈 = ((𝑝 ∨ 𝑞) ∧ 𝑊) |
cdlemg2ex.d | ⊢ 𝐷 = ((𝑡 ∨ 𝑈) ∧ (𝑞 ∨ ((𝑝 ∨ 𝑡) ∧ 𝑊))) |
cdlemg2ex.e | ⊢ 𝐸 = ((𝑝 ∨ 𝑞) ∧ (𝐷 ∨ ((𝑠 ∨ 𝑡) ∧ 𝑊))) |
cdlemg2ex.g | ⊢ 𝐺 = (𝑥 ∈ 𝐵 ↦ if((𝑝 ≠ 𝑞 ∧ ¬ 𝑥 ≤ 𝑊), (℩𝑧 ∈ 𝐵 ∀𝑠 ∈ 𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑥 ∧ 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 ≤ (𝑝 ∨ 𝑞), (℩𝑦 ∈ 𝐵 ∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑝 ∨ 𝑞)) → 𝑦 = 𝐸)), ⦋𝑠 / 𝑡⦌𝐷) ∨ (𝑥 ∧ 𝑊)))), 𝑥)) |
cdlemg2klem.v | ⊢ 𝑉 = ((𝑃 ∨ 𝑄) ∧ 𝑊) |
Ref | Expression |
---|---|
cdlemg2klem | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝐹 ∈ 𝑇) → ((𝐹‘𝑃) ∨ (𝐹‘𝑄)) = ((𝐹‘𝑃) ∨ 𝑉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdlemg2.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
2 | cdlemg2.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
3 | cdlemg2.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
4 | cdlemg2.m | . . 3 ⊢ ∧ = (meet‘𝐾) | |
5 | cdlemg2.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
6 | cdlemg2.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
7 | cdlemg2.t | . . 3 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
8 | cdlemg2ex.u | . . 3 ⊢ 𝑈 = ((𝑝 ∨ 𝑞) ∧ 𝑊) | |
9 | cdlemg2ex.d | . . 3 ⊢ 𝐷 = ((𝑡 ∨ 𝑈) ∧ (𝑞 ∨ ((𝑝 ∨ 𝑡) ∧ 𝑊))) | |
10 | cdlemg2ex.e | . . 3 ⊢ 𝐸 = ((𝑝 ∨ 𝑞) ∧ (𝐷 ∨ ((𝑠 ∨ 𝑡) ∧ 𝑊))) | |
11 | cdlemg2ex.g | . . 3 ⊢ 𝐺 = (𝑥 ∈ 𝐵 ↦ if((𝑝 ≠ 𝑞 ∧ ¬ 𝑥 ≤ 𝑊), (℩𝑧 ∈ 𝐵 ∀𝑠 ∈ 𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑥 ∧ 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 ≤ (𝑝 ∨ 𝑞), (℩𝑦 ∈ 𝐵 ∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑝 ∨ 𝑞)) → 𝑦 = 𝐸)), ⦋𝑠 / 𝑡⦌𝐷) ∨ (𝑥 ∧ 𝑊)))), 𝑥)) | |
12 | fveq1 6716 | . . . . 5 ⊢ (𝐹 = 𝐺 → (𝐹‘𝑃) = (𝐺‘𝑃)) | |
13 | fveq1 6716 | . . . . 5 ⊢ (𝐹 = 𝐺 → (𝐹‘𝑄) = (𝐺‘𝑄)) | |
14 | 12, 13 | oveq12d 7231 | . . . 4 ⊢ (𝐹 = 𝐺 → ((𝐹‘𝑃) ∨ (𝐹‘𝑄)) = ((𝐺‘𝑃) ∨ (𝐺‘𝑄))) |
15 | 12 | oveq1d 7228 | . . . 4 ⊢ (𝐹 = 𝐺 → ((𝐹‘𝑃) ∨ 𝑉) = ((𝐺‘𝑃) ∨ 𝑉)) |
16 | 14, 15 | eqeq12d 2753 | . . 3 ⊢ (𝐹 = 𝐺 → (((𝐹‘𝑃) ∨ (𝐹‘𝑄)) = ((𝐹‘𝑃) ∨ 𝑉) ↔ ((𝐺‘𝑃) ∨ (𝐺‘𝑄)) = ((𝐺‘𝑃) ∨ 𝑉))) |
17 | vex 3412 | . . . . 5 ⊢ 𝑠 ∈ V | |
18 | eqid 2737 | . . . . . 6 ⊢ ((𝑠 ∨ 𝑈) ∧ (𝑞 ∨ ((𝑝 ∨ 𝑠) ∧ 𝑊))) = ((𝑠 ∨ 𝑈) ∧ (𝑞 ∨ ((𝑝 ∨ 𝑠) ∧ 𝑊))) | |
19 | 9, 18 | cdleme31sc 38135 | . . . . 5 ⊢ (𝑠 ∈ V → ⦋𝑠 / 𝑡⦌𝐷 = ((𝑠 ∨ 𝑈) ∧ (𝑞 ∨ ((𝑝 ∨ 𝑠) ∧ 𝑊)))) |
20 | 17, 19 | ax-mp 5 | . . . 4 ⊢ ⦋𝑠 / 𝑡⦌𝐷 = ((𝑠 ∨ 𝑈) ∧ (𝑞 ∨ ((𝑝 ∨ 𝑠) ∧ 𝑊))) |
21 | eqid 2737 | . . . 4 ⊢ (℩𝑦 ∈ 𝐵 ∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑝 ∨ 𝑞)) → 𝑦 = 𝐸)) = (℩𝑦 ∈ 𝐵 ∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑝 ∨ 𝑞)) → 𝑦 = 𝐸)) | |
22 | eqid 2737 | . . . 4 ⊢ if(𝑠 ≤ (𝑝 ∨ 𝑞), (℩𝑦 ∈ 𝐵 ∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑝 ∨ 𝑞)) → 𝑦 = 𝐸)), ⦋𝑠 / 𝑡⦌𝐷) = if(𝑠 ≤ (𝑝 ∨ 𝑞), (℩𝑦 ∈ 𝐵 ∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑝 ∨ 𝑞)) → 𝑦 = 𝐸)), ⦋𝑠 / 𝑡⦌𝐷) | |
23 | eqid 2737 | . . . 4 ⊢ (℩𝑧 ∈ 𝐵 ∀𝑠 ∈ 𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑥 ∧ 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 ≤ (𝑝 ∨ 𝑞), (℩𝑦 ∈ 𝐵 ∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑝 ∨ 𝑞)) → 𝑦 = 𝐸)), ⦋𝑠 / 𝑡⦌𝐷) ∨ (𝑥 ∧ 𝑊)))) = (℩𝑧 ∈ 𝐵 ∀𝑠 ∈ 𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑥 ∧ 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 ≤ (𝑝 ∨ 𝑞), (℩𝑦 ∈ 𝐵 ∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑝 ∨ 𝑞)) → 𝑦 = 𝐸)), ⦋𝑠 / 𝑡⦌𝐷) ∨ (𝑥 ∧ 𝑊)))) | |
24 | cdlemg2klem.v | . . . 4 ⊢ 𝑉 = ((𝑃 ∨ 𝑄) ∧ 𝑊) | |
25 | 1, 2, 3, 4, 5, 6, 8, 20, 9, 10, 21, 22, 23, 11, 24 | cdleme42keg 38237 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊) ∧ (𝑞 ∈ 𝐴 ∧ ¬ 𝑞 ≤ 𝑊)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊))) → ((𝐺‘𝑃) ∨ (𝐺‘𝑄)) = ((𝐺‘𝑃) ∨ 𝑉)) |
26 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 16, 25 | cdlemg2ce 38343 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊))) → ((𝐹‘𝑃) ∨ (𝐹‘𝑄)) = ((𝐹‘𝑃) ∨ 𝑉)) |
27 | 26 | 3com23 1128 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝐹 ∈ 𝑇) → ((𝐹‘𝑃) ∨ (𝐹‘𝑄)) = ((𝐹‘𝑃) ∨ 𝑉)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 399 ∧ w3a 1089 = wceq 1543 ∈ wcel 2110 ≠ wne 2940 ∀wral 3061 Vcvv 3408 ⦋csb 3811 ifcif 4439 class class class wbr 5053 ↦ cmpt 5135 ‘cfv 6380 ℩crio 7169 (class class class)co 7213 Basecbs 16760 lecple 16809 joincjn 17818 meetcmee 17819 Atomscatm 37014 HLchlt 37101 LHypclh 37735 LTrncltrn 37852 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-riotaBAD 36704 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-iun 4906 df-iin 4907 df-br 5054 df-opab 5116 df-mpt 5136 df-id 5455 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-1st 7761 df-2nd 7762 df-undef 8015 df-map 8510 df-proset 17802 df-poset 17820 df-plt 17836 df-lub 17852 df-glb 17853 df-join 17854 df-meet 17855 df-p0 17931 df-p1 17932 df-lat 17938 df-clat 18005 df-oposet 36927 df-ol 36929 df-oml 36930 df-covers 37017 df-ats 37018 df-atl 37049 df-cvlat 37073 df-hlat 37102 df-llines 37249 df-lplanes 37250 df-lvols 37251 df-lines 37252 df-psubsp 37254 df-pmap 37255 df-padd 37547 df-lhyp 37739 df-laut 37740 df-ldil 37855 df-ltrn 37856 df-trl 37910 |
This theorem is referenced by: cdlemg2k 38352 |
Copyright terms: Public domain | W3C validator |