Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg2klem Structured version   Visualization version   GIF version

Theorem cdlemg2klem 40531
Description: cdleme42keg 40422 with simpler hypotheses. TODO: FIX COMMENT. (Contributed by NM, 22-Apr-2013.)
Hypotheses
Ref Expression
cdlemg2.b 𝐵 = (Base‘𝐾)
cdlemg2.l = (le‘𝐾)
cdlemg2.j = (join‘𝐾)
cdlemg2.m = (meet‘𝐾)
cdlemg2.a 𝐴 = (Atoms‘𝐾)
cdlemg2.h 𝐻 = (LHyp‘𝐾)
cdlemg2.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemg2ex.u 𝑈 = ((𝑝 𝑞) 𝑊)
cdlemg2ex.d 𝐷 = ((𝑡 𝑈) (𝑞 ((𝑝 𝑡) 𝑊)))
cdlemg2ex.e 𝐸 = ((𝑝 𝑞) (𝐷 ((𝑠 𝑡) 𝑊)))
cdlemg2ex.g 𝐺 = (𝑥𝐵 ↦ if((𝑝𝑞 ∧ ¬ 𝑥 𝑊), (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 (𝑝 𝑞), (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑝 𝑞)) → 𝑦 = 𝐸)), 𝑠 / 𝑡𝐷) (𝑥 𝑊)))), 𝑥))
cdlemg2klem.v 𝑉 = ((𝑃 𝑄) 𝑊)
Assertion
Ref Expression
cdlemg2klem (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝐹𝑇) → ((𝐹𝑃) (𝐹𝑄)) = ((𝐹𝑃) 𝑉))
Distinct variable groups:   ,𝑠,𝑡,𝑥,𝑦,𝑧   𝐾,𝑠,𝑡,𝑥,𝑦,𝑧   𝑈,𝑠,𝑡,𝑥,𝑦,𝑧   𝑊,𝑠,𝑡,𝑥,𝑦,𝑧   ,𝑠,𝑡,𝑥,𝑦,𝑧   𝐵,𝑠,𝑡,𝑥,𝑦,𝑧   𝐴,𝑠,𝑡,𝑥,𝑦,𝑧   ,𝑠,𝑡,𝑥,𝑦,𝑧   𝐻,𝑠,𝑡,𝑥,𝑦,𝑧   𝑥,𝐸,𝑦,𝑧   𝑃,𝑠,𝑡,𝑥,𝑦,𝑧   𝐷,𝑠,𝑥,𝑦,𝑧   𝑄,𝑠,𝑡,𝑥,𝑦,𝑧   𝑞,𝑝,𝐴   𝐹,𝑝,𝑞   𝐻,𝑝,𝑞   𝐾,𝑝,𝑞   ,𝑝,𝑞   𝑇,𝑝,𝑞   𝑊,𝑝,𝑞,𝑠,𝑡,𝑥,𝑦,𝑧   ,𝑝,𝑞   𝑃,𝑝,𝑞   𝑄,𝑝,𝑞   𝐵,𝑝,𝑞   ,𝑝,𝑞   𝑉,𝑝,𝑞,𝑠,𝑡,𝑥,𝑧
Allowed substitution hints:   𝐷(𝑡,𝑞,𝑝)   𝑇(𝑥,𝑦,𝑧,𝑡,𝑠)   𝑈(𝑞,𝑝)   𝐸(𝑡,𝑠,𝑞,𝑝)   𝐹(𝑥,𝑦,𝑧,𝑡,𝑠)   𝐺(𝑥,𝑦,𝑧,𝑡,𝑠,𝑞,𝑝)   𝑉(𝑦)

Proof of Theorem cdlemg2klem
StepHypRef Expression
1 cdlemg2.b . . 3 𝐵 = (Base‘𝐾)
2 cdlemg2.l . . 3 = (le‘𝐾)
3 cdlemg2.j . . 3 = (join‘𝐾)
4 cdlemg2.m . . 3 = (meet‘𝐾)
5 cdlemg2.a . . 3 𝐴 = (Atoms‘𝐾)
6 cdlemg2.h . . 3 𝐻 = (LHyp‘𝐾)
7 cdlemg2.t . . 3 𝑇 = ((LTrn‘𝐾)‘𝑊)
8 cdlemg2ex.u . . 3 𝑈 = ((𝑝 𝑞) 𝑊)
9 cdlemg2ex.d . . 3 𝐷 = ((𝑡 𝑈) (𝑞 ((𝑝 𝑡) 𝑊)))
10 cdlemg2ex.e . . 3 𝐸 = ((𝑝 𝑞) (𝐷 ((𝑠 𝑡) 𝑊)))
11 cdlemg2ex.g . . 3 𝐺 = (𝑥𝐵 ↦ if((𝑝𝑞 ∧ ¬ 𝑥 𝑊), (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 (𝑝 𝑞), (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑝 𝑞)) → 𝑦 = 𝐸)), 𝑠 / 𝑡𝐷) (𝑥 𝑊)))), 𝑥))
12 fveq1 6884 . . . . 5 (𝐹 = 𝐺 → (𝐹𝑃) = (𝐺𝑃))
13 fveq1 6884 . . . . 5 (𝐹 = 𝐺 → (𝐹𝑄) = (𝐺𝑄))
1412, 13oveq12d 7430 . . . 4 (𝐹 = 𝐺 → ((𝐹𝑃) (𝐹𝑄)) = ((𝐺𝑃) (𝐺𝑄)))
1512oveq1d 7427 . . . 4 (𝐹 = 𝐺 → ((𝐹𝑃) 𝑉) = ((𝐺𝑃) 𝑉))
1614, 15eqeq12d 2750 . . 3 (𝐹 = 𝐺 → (((𝐹𝑃) (𝐹𝑄)) = ((𝐹𝑃) 𝑉) ↔ ((𝐺𝑃) (𝐺𝑄)) = ((𝐺𝑃) 𝑉)))
17 vex 3467 . . . . 5 𝑠 ∈ V
18 eqid 2734 . . . . . 6 ((𝑠 𝑈) (𝑞 ((𝑝 𝑠) 𝑊))) = ((𝑠 𝑈) (𝑞 ((𝑝 𝑠) 𝑊)))
199, 18cdleme31sc 40320 . . . . 5 (𝑠 ∈ V → 𝑠 / 𝑡𝐷 = ((𝑠 𝑈) (𝑞 ((𝑝 𝑠) 𝑊))))
2017, 19ax-mp 5 . . . 4 𝑠 / 𝑡𝐷 = ((𝑠 𝑈) (𝑞 ((𝑝 𝑠) 𝑊)))
21 eqid 2734 . . . 4 (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑝 𝑞)) → 𝑦 = 𝐸)) = (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑝 𝑞)) → 𝑦 = 𝐸))
22 eqid 2734 . . . 4 if(𝑠 (𝑝 𝑞), (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑝 𝑞)) → 𝑦 = 𝐸)), 𝑠 / 𝑡𝐷) = if(𝑠 (𝑝 𝑞), (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑝 𝑞)) → 𝑦 = 𝐸)), 𝑠 / 𝑡𝐷)
23 eqid 2734 . . . 4 (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 (𝑝 𝑞), (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑝 𝑞)) → 𝑦 = 𝐸)), 𝑠 / 𝑡𝐷) (𝑥 𝑊)))) = (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 (𝑝 𝑞), (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑝 𝑞)) → 𝑦 = 𝐸)), 𝑠 / 𝑡𝐷) (𝑥 𝑊))))
24 cdlemg2klem.v . . . 4 𝑉 = ((𝑃 𝑄) 𝑊)
251, 2, 3, 4, 5, 6, 8, 20, 9, 10, 21, 22, 23, 11, 24cdleme42keg 40422 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝𝐴 ∧ ¬ 𝑝 𝑊) ∧ (𝑞𝐴 ∧ ¬ 𝑞 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊))) → ((𝐺𝑃) (𝐺𝑄)) = ((𝐺𝑃) 𝑉))
261, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 16, 25cdlemg2ce 40528 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊))) → ((𝐹𝑃) (𝐹𝑄)) = ((𝐹𝑃) 𝑉))
27263com23 1126 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝐹𝑇) → ((𝐹𝑃) (𝐹𝑄)) = ((𝐹𝑃) 𝑉))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1539  wcel 2107  wne 2931  wral 3050  Vcvv 3463  csb 3879  ifcif 4505   class class class wbr 5123  cmpt 5205  cfv 6540  crio 7368  (class class class)co 7412  Basecbs 17228  lecple 17279  joincjn 18326  meetcmee 18327  Atomscatm 39198  HLchlt 39285  LHypclh 39920  LTrncltrn 40037
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7736  ax-riotaBAD 38888
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-iin 4974  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-iota 6493  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7369  df-ov 7415  df-oprab 7416  df-mpo 7417  df-1st 7995  df-2nd 7996  df-undef 8279  df-map 8849  df-proset 18309  df-poset 18328  df-plt 18343  df-lub 18359  df-glb 18360  df-join 18361  df-meet 18362  df-p0 18438  df-p1 18439  df-lat 18445  df-clat 18512  df-oposet 39111  df-ol 39113  df-oml 39114  df-covers 39201  df-ats 39202  df-atl 39233  df-cvlat 39257  df-hlat 39286  df-llines 39434  df-lplanes 39435  df-lvols 39436  df-lines 39437  df-psubsp 39439  df-pmap 39440  df-padd 39732  df-lhyp 39924  df-laut 39925  df-ldil 40040  df-ltrn 40041  df-trl 40095
This theorem is referenced by:  cdlemg2k  40537
  Copyright terms: Public domain W3C validator