Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemeg46fvcl Structured version   Visualization version   GIF version

Theorem cdlemeg46fvcl 40501
Description: TODO: fix comment. (Contributed by NM, 9-Apr-2013.)
Hypotheses
Ref Expression
cdlemef47.b 𝐵 = (Base‘𝐾)
cdlemef47.l = (le‘𝐾)
cdlemef47.j = (join‘𝐾)
cdlemef47.m = (meet‘𝐾)
cdlemef47.a 𝐴 = (Atoms‘𝐾)
cdlemef47.h 𝐻 = (LHyp‘𝐾)
cdlemef47.v 𝑉 = ((𝑄 𝑃) 𝑊)
cdlemef47.n 𝑁 = ((𝑣 𝑉) (𝑃 ((𝑄 𝑣) 𝑊)))
cdlemefs47.o 𝑂 = ((𝑄 𝑃) (𝑁 ((𝑢 𝑣) 𝑊)))
cdlemef47.g 𝐺 = (𝑎𝐵 ↦ if((𝑄𝑃 ∧ ¬ 𝑎 𝑊), (𝑐𝐵𝑢𝐴 ((¬ 𝑢 𝑊 ∧ (𝑢 (𝑎 𝑊)) = 𝑎) → 𝑐 = (if(𝑢 (𝑄 𝑃), (𝑏𝐵𝑣𝐴 ((¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑄 𝑃)) → 𝑏 = 𝑂)), 𝑢 / 𝑣𝑁) (𝑎 𝑊)))), 𝑎))
Assertion
Ref Expression
cdlemeg46fvcl ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑋𝐵) → (𝐺𝑋) ∈ 𝐵)
Distinct variable groups:   𝑎,𝑏,𝑐,𝑢,𝑣,𝐴   𝐵,𝑎,𝑏,𝑐,𝑢,𝑣   𝐻,𝑎,𝑏,𝑐,𝑢,𝑣   ,𝑎,𝑏,𝑐,𝑢,𝑣   𝐾,𝑎,𝑏,𝑐,𝑢,𝑣   ,𝑎,𝑏,𝑐,𝑢,𝑣   ,𝑎,𝑏,𝑐,𝑢,𝑣   𝑁,𝑎,𝑏,𝑐,𝑢   𝑂,𝑎,𝑏,𝑐   𝑃,𝑎,𝑏,𝑐,𝑢,𝑣   𝑄,𝑎,𝑏,𝑐,𝑢,𝑣   𝑉,𝑎,𝑏,𝑐,𝑢,𝑣   𝑊,𝑎,𝑏,𝑐,𝑢,𝑣   𝑋,𝑎,𝑐,𝑢,𝑣
Allowed substitution hints:   𝐺(𝑣,𝑢,𝑎,𝑏,𝑐)   𝑁(𝑣)   𝑂(𝑣,𝑢)   𝑋(𝑏)

Proof of Theorem cdlemeg46fvcl
StepHypRef Expression
1 simpl1 1191 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑋𝐵) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 simpl3 1193 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑋𝐵) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
3 simpl2 1192 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑋𝐵) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
4 simpr 484 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑋𝐵) → 𝑋𝐵)
5 cdlemef47.b . . 3 𝐵 = (Base‘𝐾)
6 cdlemef47.l . . 3 = (le‘𝐾)
7 cdlemef47.j . . 3 = (join‘𝐾)
8 cdlemef47.m . . 3 = (meet‘𝐾)
9 cdlemef47.a . . 3 𝐴 = (Atoms‘𝐾)
10 cdlemef47.h . . 3 𝐻 = (LHyp‘𝐾)
11 cdlemef47.v . . 3 𝑉 = ((𝑄 𝑃) 𝑊)
12 vex 3483 . . . 4 𝑢 ∈ V
13 cdlemef47.n . . . . 5 𝑁 = ((𝑣 𝑉) (𝑃 ((𝑄 𝑣) 𝑊)))
14 eqid 2736 . . . . 5 ((𝑢 𝑉) (𝑃 ((𝑄 𝑢) 𝑊))) = ((𝑢 𝑉) (𝑃 ((𝑄 𝑢) 𝑊)))
1513, 14cdleme31sc 40379 . . . 4 (𝑢 ∈ V → 𝑢 / 𝑣𝑁 = ((𝑢 𝑉) (𝑃 ((𝑄 𝑢) 𝑊))))
1612, 15ax-mp 5 . . 3 𝑢 / 𝑣𝑁 = ((𝑢 𝑉) (𝑃 ((𝑄 𝑢) 𝑊)))
17 cdlemefs47.o . . 3 𝑂 = ((𝑄 𝑃) (𝑁 ((𝑢 𝑣) 𝑊)))
18 eqid 2736 . . 3 (𝑏𝐵𝑣𝐴 ((¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑄 𝑃)) → 𝑏 = 𝑂)) = (𝑏𝐵𝑣𝐴 ((¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑄 𝑃)) → 𝑏 = 𝑂))
19 eqid 2736 . . 3 if(𝑢 (𝑄 𝑃), (𝑏𝐵𝑣𝐴 ((¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑄 𝑃)) → 𝑏 = 𝑂)), 𝑢 / 𝑣𝑁) = if(𝑢 (𝑄 𝑃), (𝑏𝐵𝑣𝐴 ((¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑄 𝑃)) → 𝑏 = 𝑂)), 𝑢 / 𝑣𝑁)
20 eqid 2736 . . 3 (𝑐𝐵𝑢𝐴 ((¬ 𝑢 𝑊 ∧ (𝑢 (𝑎 𝑊)) = 𝑎) → 𝑐 = (if(𝑢 (𝑄 𝑃), (𝑏𝐵𝑣𝐴 ((¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑄 𝑃)) → 𝑏 = 𝑂)), 𝑢 / 𝑣𝑁) (𝑎 𝑊)))) = (𝑐𝐵𝑢𝐴 ((¬ 𝑢 𝑊 ∧ (𝑢 (𝑎 𝑊)) = 𝑎) → 𝑐 = (if(𝑢 (𝑄 𝑃), (𝑏𝐵𝑣𝐴 ((¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑄 𝑃)) → 𝑏 = 𝑂)), 𝑢 / 𝑣𝑁) (𝑎 𝑊))))
21 cdlemef47.g . . 3 𝐺 = (𝑎𝐵 ↦ if((𝑄𝑃 ∧ ¬ 𝑎 𝑊), (𝑐𝐵𝑢𝐴 ((¬ 𝑢 𝑊 ∧ (𝑢 (𝑎 𝑊)) = 𝑎) → 𝑐 = (if(𝑢 (𝑄 𝑃), (𝑏𝐵𝑣𝐴 ((¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑄 𝑃)) → 𝑏 = 𝑂)), 𝑢 / 𝑣𝑁) (𝑎 𝑊)))), 𝑎))
225, 6, 7, 8, 9, 10, 11, 16, 13, 17, 18, 19, 20, 21cdleme32fvcl 40435 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ 𝑋𝐵) → (𝐺𝑋) ∈ 𝐵)
231, 2, 3, 4, 22syl31anc 1373 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑋𝐵) → (𝐺𝑋) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1538  wcel 2107  wne 2939  wral 3060  Vcvv 3479  csb 3909  ifcif 4532   class class class wbr 5149  cmpt 5232  cfv 6566  crio 7391  (class class class)co 7435  Basecbs 17251  lecple 17311  joincjn 18375  meetcmee 18376  Atomscatm 39257  HLchlt 39344  LHypclh 39979
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5286  ax-sep 5303  ax-nul 5313  ax-pow 5372  ax-pr 5439  ax-un 7758  ax-riotaBAD 38947
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1541  df-fal 1551  df-ex 1778  df-nf 1782  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3435  df-v 3481  df-sbc 3793  df-csb 3910  df-dif 3967  df-un 3969  df-in 3971  df-ss 3981  df-nul 4341  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4914  df-iun 4999  df-iin 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5584  df-xp 5696  df-rel 5697  df-cnv 5698  df-co 5699  df-dm 5700  df-rn 5701  df-res 5702  df-ima 5703  df-iota 6519  df-fun 6568  df-fn 6569  df-f 6570  df-f1 6571  df-fo 6572  df-f1o 6573  df-fv 6574  df-riota 7392  df-ov 7438  df-oprab 7439  df-mpo 7440  df-1st 8019  df-2nd 8020  df-undef 8303  df-proset 18358  df-poset 18377  df-plt 18394  df-lub 18410  df-glb 18411  df-join 18412  df-meet 18413  df-p0 18489  df-p1 18490  df-lat 18496  df-clat 18563  df-oposet 39170  df-ol 39172  df-oml 39173  df-covers 39260  df-ats 39261  df-atl 39292  df-cvlat 39316  df-hlat 39345  df-llines 39493  df-lplanes 39494  df-lvols 39495  df-lines 39496  df-psubsp 39498  df-pmap 39499  df-padd 39791  df-lhyp 39983
This theorem is referenced by:  cdleme50rnlem  40539  cdleme51finvfvN  40550
  Copyright terms: Public domain W3C validator