Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme48d Structured version   Visualization version   GIF version

Theorem cdleme48d 38101
Description: TODO: fix comment. (Contributed by NM, 8-Apr-2013.)
Hypotheses
Ref Expression
cdlemef46g.b 𝐵 = (Base‘𝐾)
cdlemef46g.l = (le‘𝐾)
cdlemef46g.j = (join‘𝐾)
cdlemef46g.m = (meet‘𝐾)
cdlemef46g.a 𝐴 = (Atoms‘𝐾)
cdlemef46g.h 𝐻 = (LHyp‘𝐾)
cdlemef46g.u 𝑈 = ((𝑃 𝑄) 𝑊)
cdlemef46g.d 𝐷 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))
cdlemefs46g.e 𝐸 = ((𝑃 𝑄) (𝐷 ((𝑠 𝑡) 𝑊)))
cdlemef46g.f 𝐹 = (𝑥𝐵 ↦ if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 (𝑃 𝑄), (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐸)), 𝑠 / 𝑡𝐷) (𝑥 𝑊)))), 𝑥))
cdlemef46.v 𝑉 = ((𝑄 𝑃) 𝑊)
cdlemef46.n 𝑁 = ((𝑣 𝑉) (𝑃 ((𝑄 𝑣) 𝑊)))
cdlemefs46.o 𝑂 = ((𝑄 𝑃) (𝑁 ((𝑢 𝑣) 𝑊)))
cdlemef46.g 𝐺 = (𝑎𝐵 ↦ if((𝑄𝑃 ∧ ¬ 𝑎 𝑊), (𝑐𝐵𝑢𝐴 ((¬ 𝑢 𝑊 ∧ (𝑢 (𝑎 𝑊)) = 𝑎) → 𝑐 = (if(𝑢 (𝑄 𝑃), (𝑏𝐵𝑣𝐴 ((¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑄 𝑃)) → 𝑏 = 𝑂)), 𝑢 / 𝑣𝑁) (𝑎 𝑊)))), 𝑎))
Assertion
Ref Expression
cdleme48d ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑆 (𝑋 𝑊)) = 𝑋)) → (𝐺‘(𝐹𝑋)) = 𝑋)
Distinct variable groups:   𝑡,𝑠,𝑥,𝑦,𝑧,𝐴   𝐵,𝑠,𝑡,𝑥,𝑦,𝑧   𝐷,𝑠,𝑥,𝑦,𝑧   𝑥,𝐸,𝑦,𝑧   𝐻,𝑠,𝑡,𝑥,𝑦,𝑧   ,𝑠,𝑡,𝑥,𝑦,𝑧   𝐾,𝑠,𝑡,𝑥,𝑦,𝑧   ,𝑠,𝑡,𝑥,𝑦,𝑧   ,𝑠,𝑡,𝑥,𝑦,𝑧   𝑃,𝑠,𝑡,𝑥,𝑦,𝑧   𝑄,𝑠,𝑡,𝑥,𝑦,𝑧   𝑈,𝑠,𝑡,𝑥,𝑦,𝑧   𝑊,𝑠,𝑡,𝑥,𝑦,𝑧   𝑆,𝑠,𝑡,𝑥,𝑦,𝑧   𝑎,𝑏,𝑐,𝑢,𝑣,𝐴   𝐵,𝑎,𝑏,𝑐,𝑢,𝑣   𝑣,𝐷   𝐺,𝑠,𝑡,𝑥,𝑦,𝑧   𝐻,𝑎,𝑏,𝑐,𝑢,𝑣   ,𝑎,𝑏,𝑐,𝑢,𝑣   𝐾,𝑎,𝑏,𝑐,𝑢,𝑣   ,𝑎,𝑏,𝑐,𝑢,𝑣   ,𝑎,𝑏,𝑐,𝑢,𝑣   𝑁,𝑎,𝑏,𝑐   𝑂,𝑎,𝑏,𝑐   𝑃,𝑎,𝑏,𝑐,𝑢,𝑣   𝑄,𝑎,𝑏,𝑐,𝑢,𝑣   𝑆,𝑎,𝑏,𝑐,𝑢,𝑣   𝑉,𝑎,𝑏,𝑐   𝑊,𝑎,𝑏,𝑐,𝑢,𝑣,𝑥,𝑦,𝑧   𝑢,𝑁,𝑥,𝑦,𝑧   𝑥,𝑂,𝑦,𝑧   𝑣,𝑡   𝑢,𝑉   𝑥,𝑣,𝑦,𝑧,𝑉   𝐷,𝑎,𝑏,𝑐   𝐸,𝑎,𝑏,𝑐   𝐹,𝑎,𝑏,𝑐,𝑢,𝑣   𝑡,𝑁   𝑈,𝑎,𝑏,𝑐,𝑣   𝑡,𝑉   𝑠,𝑎,𝑡,𝑏,𝑐,𝑥,𝑦,𝑧,𝑢,𝑣   𝑋,𝑎,𝑐,𝑠,𝑡,𝑢,𝑣,𝑥,𝑧
Allowed substitution hints:   𝐷(𝑢,𝑡)   𝑈(𝑢)   𝐸(𝑣,𝑢,𝑡,𝑠)   𝐹(𝑥,𝑦,𝑧,𝑡,𝑠)   𝐺(𝑣,𝑢,𝑎,𝑏,𝑐)   𝑁(𝑣,𝑠)   𝑂(𝑣,𝑢,𝑡,𝑠)   𝑉(𝑠)   𝑋(𝑦,𝑏)

Proof of Theorem cdleme48d
StepHypRef Expression
1 simp1 1134 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑆 (𝑋 𝑊)) = 𝑋)) → ((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)))
2 simp2l 1197 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑆 (𝑋 𝑊)) = 𝑋)) → 𝑃𝑄)
3 simp2rl 1240 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑆 (𝑋 𝑊)) = 𝑋)) → 𝑋𝐵)
4 cdlemef46g.b . . . . . 6 𝐵 = (Base‘𝐾)
5 cdlemef46g.l . . . . . 6 = (le‘𝐾)
6 cdlemef46g.j . . . . . 6 = (join‘𝐾)
7 cdlemef46g.m . . . . . 6 = (meet‘𝐾)
8 cdlemef46g.a . . . . . 6 𝐴 = (Atoms‘𝐾)
9 cdlemef46g.h . . . . . 6 𝐻 = (LHyp‘𝐾)
10 cdlemef46g.u . . . . . 6 𝑈 = ((𝑃 𝑄) 𝑊)
11 vex 3414 . . . . . . 7 𝑠 ∈ V
12 cdlemef46g.d . . . . . . . 8 𝐷 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))
13 eqid 2759 . . . . . . . 8 ((𝑠 𝑈) (𝑄 ((𝑃 𝑠) 𝑊))) = ((𝑠 𝑈) (𝑄 ((𝑃 𝑠) 𝑊)))
1412, 13cdleme31sc 37950 . . . . . . 7 (𝑠 ∈ V → 𝑠 / 𝑡𝐷 = ((𝑠 𝑈) (𝑄 ((𝑃 𝑠) 𝑊))))
1511, 14ax-mp 5 . . . . . 6 𝑠 / 𝑡𝐷 = ((𝑠 𝑈) (𝑄 ((𝑃 𝑠) 𝑊)))
16 cdlemefs46g.e . . . . . 6 𝐸 = ((𝑃 𝑄) (𝐷 ((𝑠 𝑡) 𝑊)))
17 eqid 2759 . . . . . 6 (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐸)) = (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐸))
18 eqid 2759 . . . . . 6 if(𝑠 (𝑃 𝑄), (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐸)), 𝑠 / 𝑡𝐷) = if(𝑠 (𝑃 𝑄), (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐸)), 𝑠 / 𝑡𝐷)
19 eqid 2759 . . . . . 6 (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 (𝑃 𝑄), (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐸)), 𝑠 / 𝑡𝐷) (𝑥 𝑊)))) = (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 (𝑃 𝑄), (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐸)), 𝑠 / 𝑡𝐷) (𝑥 𝑊))))
20 cdlemef46g.f . . . . . 6 𝐹 = (𝑥𝐵 ↦ if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 (𝑃 𝑄), (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐸)), 𝑠 / 𝑡𝐷) (𝑥 𝑊)))), 𝑥))
214, 5, 6, 7, 8, 9, 10, 15, 12, 16, 17, 18, 19, 20cdleme32fvcl 38006 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑋𝐵) → (𝐹𝑋) ∈ 𝐵)
221, 3, 21syl2anc 588 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑆 (𝑋 𝑊)) = 𝑋)) → (𝐹𝑋) ∈ 𝐵)
234, 5, 6, 7, 8, 9, 10, 12, 16, 20cdleme48bw 38068 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑆 (𝑋 𝑊)) = 𝑋)) → ¬ (𝐹𝑋) 𝑊)
2422, 23jca 516 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑆 (𝑋 𝑊)) = 𝑋)) → ((𝐹𝑋) ∈ 𝐵 ∧ ¬ (𝐹𝑋) 𝑊))
25 simp3l 1199 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑆 (𝑋 𝑊)) = 𝑋)) → (𝑆𝐴 ∧ ¬ 𝑆 𝑊))
264, 5, 6, 7, 8, 9, 10, 12, 16, 20cdleme46fvaw 38067 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) → ((𝐹𝑆) ∈ 𝐴 ∧ ¬ (𝐹𝑆) 𝑊))
271, 25, 26syl2anc 588 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑆 (𝑋 𝑊)) = 𝑋)) → ((𝐹𝑆) ∈ 𝐴 ∧ ¬ (𝐹𝑆) 𝑊))
284, 5, 6, 7, 8, 9, 10, 12, 16, 20cdleme48b 38069 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑆 (𝑋 𝑊)) = 𝑋)) → ((𝐹𝑋) 𝑊) = (𝑋 𝑊))
2928oveq2d 7164 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑆 (𝑋 𝑊)) = 𝑋)) → ((𝐹𝑆) ((𝐹𝑋) 𝑊)) = ((𝐹𝑆) (𝑋 𝑊)))
304, 5, 6, 7, 8, 9, 10, 12, 16, 20cdleme48fv 38065 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑆 (𝑋 𝑊)) = 𝑋)) → (𝐹𝑋) = ((𝐹𝑆) (𝑋 𝑊)))
3129, 30eqtr4d 2797 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑆 (𝑋 𝑊)) = 𝑋)) → ((𝐹𝑆) ((𝐹𝑋) 𝑊)) = (𝐹𝑋))
32 cdlemef46.v . . . 4 𝑉 = ((𝑄 𝑃) 𝑊)
33 cdlemef46.n . . . 4 𝑁 = ((𝑣 𝑉) (𝑃 ((𝑄 𝑣) 𝑊)))
34 cdlemefs46.o . . . 4 𝑂 = ((𝑄 𝑃) (𝑁 ((𝑢 𝑣) 𝑊)))
35 cdlemef46.g . . . 4 𝐺 = (𝑎𝐵 ↦ if((𝑄𝑃 ∧ ¬ 𝑎 𝑊), (𝑐𝐵𝑢𝐴 ((¬ 𝑢 𝑊 ∧ (𝑢 (𝑎 𝑊)) = 𝑎) → 𝑐 = (if(𝑢 (𝑄 𝑃), (𝑏𝐵𝑣𝐴 ((¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑄 𝑃)) → 𝑏 = 𝑂)), 𝑢 / 𝑣𝑁) (𝑎 𝑊)))), 𝑎))
364, 5, 6, 7, 8, 9, 32, 33, 34, 35cdleme4gfv 38073 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ ((𝐹𝑋) ∈ 𝐵 ∧ ¬ (𝐹𝑋) 𝑊)) ∧ (((𝐹𝑆) ∈ 𝐴 ∧ ¬ (𝐹𝑆) 𝑊) ∧ ((𝐹𝑆) ((𝐹𝑋) 𝑊)) = (𝐹𝑋))) → (𝐺‘(𝐹𝑋)) = ((𝐺‘(𝐹𝑆)) ((𝐹𝑋) 𝑊)))
371, 2, 24, 27, 31, 36syl122anc 1377 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑆 (𝑋 𝑊)) = 𝑋)) → (𝐺‘(𝐹𝑋)) = ((𝐺‘(𝐹𝑆)) ((𝐹𝑋) 𝑊)))
384, 5, 6, 7, 8, 9, 10, 12, 16, 20, 32, 33, 34, 35cdlemeg46gf 38099 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊))) → (𝐺‘(𝐹𝑆)) = 𝑆)
391, 2, 25, 38syl12anc 836 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑆 (𝑋 𝑊)) = 𝑋)) → (𝐺‘(𝐹𝑆)) = 𝑆)
4039, 28oveq12d 7166 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑆 (𝑋 𝑊)) = 𝑋)) → ((𝐺‘(𝐹𝑆)) ((𝐹𝑋) 𝑊)) = (𝑆 (𝑋 𝑊)))
41 simp3r 1200 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑆 (𝑋 𝑊)) = 𝑋)) → (𝑆 (𝑋 𝑊)) = 𝑋)
4237, 40, 413eqtrd 2798 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑆 (𝑋 𝑊)) = 𝑋)) → (𝐺‘(𝐹𝑋)) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 400  w3a 1085   = wceq 1539  wcel 2112  wne 2952  wral 3071  Vcvv 3410  csb 3806  ifcif 4418   class class class wbr 5030  cmpt 5110  cfv 6333  crio 7105  (class class class)co 7148  Basecbs 16531  lecple 16620  joincjn 17610  meetcmee 17611  Atomscatm 36829  HLchlt 36916  LHypclh 37550
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7457  ax-riotaBAD 36519
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-ral 3076  df-rex 3077  df-reu 3078  df-rmo 3079  df-rab 3080  df-v 3412  df-sbc 3698  df-csb 3807  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-nul 4227  df-if 4419  df-pw 4494  df-sn 4521  df-pr 4523  df-op 4527  df-uni 4797  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5428  df-xp 5528  df-rel 5529  df-cnv 5530  df-co 5531  df-dm 5532  df-rn 5533  df-res 5534  df-ima 5535  df-iota 6292  df-fun 6335  df-fn 6336  df-f 6337  df-f1 6338  df-fo 6339  df-f1o 6340  df-fv 6341  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-1st 7691  df-2nd 7692  df-undef 7947  df-proset 17594  df-poset 17612  df-plt 17624  df-lub 17640  df-glb 17641  df-join 17642  df-meet 17643  df-p0 17705  df-p1 17706  df-lat 17712  df-clat 17774  df-oposet 36742  df-ol 36744  df-oml 36745  df-covers 36832  df-ats 36833  df-atl 36864  df-cvlat 36888  df-hlat 36917  df-llines 37064  df-lplanes 37065  df-lvols 37066  df-lines 37067  df-psubsp 37069  df-pmap 37070  df-padd 37362  df-lhyp 37554
This theorem is referenced by:  cdleme48gfv1  38102
  Copyright terms: Public domain W3C validator