Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme48d Structured version   Visualization version   GIF version

Theorem cdleme48d 38101
 Description: TODO: fix comment. (Contributed by NM, 8-Apr-2013.)
Hypotheses
Ref Expression
cdlemef46g.b 𝐵 = (Base‘𝐾)
cdlemef46g.l = (le‘𝐾)
cdlemef46g.j = (join‘𝐾)
cdlemef46g.m = (meet‘𝐾)
cdlemef46g.a 𝐴 = (Atoms‘𝐾)
cdlemef46g.h 𝐻 = (LHyp‘𝐾)
cdlemef46g.u 𝑈 = ((𝑃 𝑄) 𝑊)
cdlemef46g.d 𝐷 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))
cdlemefs46g.e 𝐸 = ((𝑃 𝑄) (𝐷 ((𝑠 𝑡) 𝑊)))
cdlemef46g.f 𝐹 = (𝑥𝐵 ↦ if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 (𝑃 𝑄), (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐸)), 𝑠 / 𝑡𝐷) (𝑥 𝑊)))), 𝑥))
cdlemef46.v 𝑉 = ((𝑄 𝑃) 𝑊)
cdlemef46.n 𝑁 = ((𝑣 𝑉) (𝑃 ((𝑄 𝑣) 𝑊)))
cdlemefs46.o 𝑂 = ((𝑄 𝑃) (𝑁 ((𝑢 𝑣) 𝑊)))
cdlemef46.g 𝐺 = (𝑎𝐵 ↦ if((𝑄𝑃 ∧ ¬ 𝑎 𝑊), (𝑐𝐵𝑢𝐴 ((¬ 𝑢 𝑊 ∧ (𝑢 (𝑎 𝑊)) = 𝑎) → 𝑐 = (if(𝑢 (𝑄 𝑃), (𝑏𝐵𝑣𝐴 ((¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑄 𝑃)) → 𝑏 = 𝑂)), 𝑢 / 𝑣𝑁) (𝑎 𝑊)))), 𝑎))
Assertion
Ref Expression
cdleme48d ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑆 (𝑋 𝑊)) = 𝑋)) → (𝐺‘(𝐹𝑋)) = 𝑋)
Distinct variable groups:   𝑡,𝑠,𝑥,𝑦,𝑧,𝐴   𝐵,𝑠,𝑡,𝑥,𝑦,𝑧   𝐷,𝑠,𝑥,𝑦,𝑧   𝑥,𝐸,𝑦,𝑧   𝐻,𝑠,𝑡,𝑥,𝑦,𝑧   ,𝑠,𝑡,𝑥,𝑦,𝑧   𝐾,𝑠,𝑡,𝑥,𝑦,𝑧   ,𝑠,𝑡,𝑥,𝑦,𝑧   ,𝑠,𝑡,𝑥,𝑦,𝑧   𝑃,𝑠,𝑡,𝑥,𝑦,𝑧   𝑄,𝑠,𝑡,𝑥,𝑦,𝑧   𝑈,𝑠,𝑡,𝑥,𝑦,𝑧   𝑊,𝑠,𝑡,𝑥,𝑦,𝑧   𝑆,𝑠,𝑡,𝑥,𝑦,𝑧   𝑎,𝑏,𝑐,𝑢,𝑣,𝐴   𝐵,𝑎,𝑏,𝑐,𝑢,𝑣   𝑣,𝐷   𝐺,𝑠,𝑡,𝑥,𝑦,𝑧   𝐻,𝑎,𝑏,𝑐,𝑢,𝑣   ,𝑎,𝑏,𝑐,𝑢,𝑣   𝐾,𝑎,𝑏,𝑐,𝑢,𝑣   ,𝑎,𝑏,𝑐,𝑢,𝑣   ,𝑎,𝑏,𝑐,𝑢,𝑣   𝑁,𝑎,𝑏,𝑐   𝑂,𝑎,𝑏,𝑐   𝑃,𝑎,𝑏,𝑐,𝑢,𝑣   𝑄,𝑎,𝑏,𝑐,𝑢,𝑣   𝑆,𝑎,𝑏,𝑐,𝑢,𝑣   𝑉,𝑎,𝑏,𝑐   𝑊,𝑎,𝑏,𝑐,𝑢,𝑣,𝑥,𝑦,𝑧   𝑢,𝑁,𝑥,𝑦,𝑧   𝑥,𝑂,𝑦,𝑧   𝑣,𝑡   𝑢,𝑉   𝑥,𝑣,𝑦,𝑧,𝑉   𝐷,𝑎,𝑏,𝑐   𝐸,𝑎,𝑏,𝑐   𝐹,𝑎,𝑏,𝑐,𝑢,𝑣   𝑡,𝑁   𝑈,𝑎,𝑏,𝑐,𝑣   𝑡,𝑉   𝑠,𝑎,𝑡,𝑏,𝑐,𝑥,𝑦,𝑧,𝑢,𝑣   𝑋,𝑎,𝑐,𝑠,𝑡,𝑢,𝑣,𝑥,𝑧
Allowed substitution hints:   𝐷(𝑢,𝑡)   𝑈(𝑢)   𝐸(𝑣,𝑢,𝑡,𝑠)   𝐹(𝑥,𝑦,𝑧,𝑡,𝑠)   𝐺(𝑣,𝑢,𝑎,𝑏,𝑐)   𝑁(𝑣,𝑠)   𝑂(𝑣,𝑢,𝑡,𝑠)   𝑉(𝑠)   𝑋(𝑦,𝑏)

Proof of Theorem cdleme48d
StepHypRef Expression
1 simp1 1134 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑆 (𝑋 𝑊)) = 𝑋)) → ((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)))
2 simp2l 1197 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑆 (𝑋 𝑊)) = 𝑋)) → 𝑃𝑄)
3 simp2rl 1240 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑆 (𝑋 𝑊)) = 𝑋)) → 𝑋𝐵)
4 cdlemef46g.b . . . . . 6 𝐵 = (Base‘𝐾)
5 cdlemef46g.l . . . . . 6 = (le‘𝐾)
6 cdlemef46g.j . . . . . 6 = (join‘𝐾)
7 cdlemef46g.m . . . . . 6 = (meet‘𝐾)
8 cdlemef46g.a . . . . . 6 𝐴 = (Atoms‘𝐾)
9 cdlemef46g.h . . . . . 6 𝐻 = (LHyp‘𝐾)
10 cdlemef46g.u . . . . . 6 𝑈 = ((𝑃 𝑄) 𝑊)
11 vex 3414 . . . . . . 7 𝑠 ∈ V
12 cdlemef46g.d . . . . . . . 8 𝐷 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))
13 eqid 2759 . . . . . . . 8 ((𝑠 𝑈) (𝑄 ((𝑃 𝑠) 𝑊))) = ((𝑠 𝑈) (𝑄 ((𝑃 𝑠) 𝑊)))
1412, 13cdleme31sc 37950 . . . . . . 7 (𝑠 ∈ V → 𝑠 / 𝑡𝐷 = ((𝑠 𝑈) (𝑄 ((𝑃 𝑠) 𝑊))))
1511, 14ax-mp 5 . . . . . 6 𝑠 / 𝑡𝐷 = ((𝑠 𝑈) (𝑄 ((𝑃 𝑠) 𝑊)))
16 cdlemefs46g.e . . . . . 6 𝐸 = ((𝑃 𝑄) (𝐷 ((𝑠 𝑡) 𝑊)))
17 eqid 2759 . . . . . 6 (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐸)) = (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐸))
18 eqid 2759 . . . . . 6 if(𝑠 (𝑃 𝑄), (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐸)), 𝑠 / 𝑡𝐷) = if(𝑠 (𝑃 𝑄), (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐸)), 𝑠 / 𝑡𝐷)
19 eqid 2759 . . . . . 6 (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 (𝑃 𝑄), (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐸)), 𝑠 / 𝑡𝐷) (𝑥 𝑊)))) = (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 (𝑃 𝑄), (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐸)), 𝑠 / 𝑡𝐷) (𝑥 𝑊))))
20 cdlemef46g.f . . . . . 6 𝐹 = (𝑥𝐵 ↦ if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 (𝑃 𝑄), (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐸)), 𝑠 / 𝑡𝐷) (𝑥 𝑊)))), 𝑥))
214, 5, 6, 7, 8, 9, 10, 15, 12, 16, 17, 18, 19, 20cdleme32fvcl 38006 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑋𝐵) → (𝐹𝑋) ∈ 𝐵)
221, 3, 21syl2anc 588 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑆 (𝑋 𝑊)) = 𝑋)) → (𝐹𝑋) ∈ 𝐵)
234, 5, 6, 7, 8, 9, 10, 12, 16, 20cdleme48bw 38068 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑆 (𝑋 𝑊)) = 𝑋)) → ¬ (𝐹𝑋) 𝑊)
2422, 23jca 516 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑆 (𝑋 𝑊)) = 𝑋)) → ((𝐹𝑋) ∈ 𝐵 ∧ ¬ (𝐹𝑋) 𝑊))
25 simp3l 1199 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑆 (𝑋 𝑊)) = 𝑋)) → (𝑆𝐴 ∧ ¬ 𝑆 𝑊))
264, 5, 6, 7, 8, 9, 10, 12, 16, 20cdleme46fvaw 38067 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) → ((𝐹𝑆) ∈ 𝐴 ∧ ¬ (𝐹𝑆) 𝑊))
271, 25, 26syl2anc 588 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑆 (𝑋 𝑊)) = 𝑋)) → ((𝐹𝑆) ∈ 𝐴 ∧ ¬ (𝐹𝑆) 𝑊))
284, 5, 6, 7, 8, 9, 10, 12, 16, 20cdleme48b 38069 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑆 (𝑋 𝑊)) = 𝑋)) → ((𝐹𝑋) 𝑊) = (𝑋 𝑊))
2928oveq2d 7164 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑆 (𝑋 𝑊)) = 𝑋)) → ((𝐹𝑆) ((𝐹𝑋) 𝑊)) = ((𝐹𝑆) (𝑋 𝑊)))
304, 5, 6, 7, 8, 9, 10, 12, 16, 20cdleme48fv 38065 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑆 (𝑋 𝑊)) = 𝑋)) → (𝐹𝑋) = ((𝐹𝑆) (𝑋 𝑊)))
3129, 30eqtr4d 2797 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑆 (𝑋 𝑊)) = 𝑋)) → ((𝐹𝑆) ((𝐹𝑋) 𝑊)) = (𝐹𝑋))
32 cdlemef46.v . . . 4 𝑉 = ((𝑄 𝑃) 𝑊)
33 cdlemef46.n . . . 4 𝑁 = ((𝑣 𝑉) (𝑃 ((𝑄 𝑣) 𝑊)))
34 cdlemefs46.o . . . 4 𝑂 = ((𝑄 𝑃) (𝑁 ((𝑢 𝑣) 𝑊)))
35 cdlemef46.g . . . 4 𝐺 = (𝑎𝐵 ↦ if((𝑄𝑃 ∧ ¬ 𝑎 𝑊), (𝑐𝐵𝑢𝐴 ((¬ 𝑢 𝑊 ∧ (𝑢 (𝑎 𝑊)) = 𝑎) → 𝑐 = (if(𝑢 (𝑄 𝑃), (𝑏𝐵𝑣𝐴 ((¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑄 𝑃)) → 𝑏 = 𝑂)), 𝑢 / 𝑣𝑁) (𝑎 𝑊)))), 𝑎))
364, 5, 6, 7, 8, 9, 32, 33, 34, 35cdleme4gfv 38073 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ ((𝐹𝑋) ∈ 𝐵 ∧ ¬ (𝐹𝑋) 𝑊)) ∧ (((𝐹𝑆) ∈ 𝐴 ∧ ¬ (𝐹𝑆) 𝑊) ∧ ((𝐹𝑆) ((𝐹𝑋) 𝑊)) = (𝐹𝑋))) → (𝐺‘(𝐹𝑋)) = ((𝐺‘(𝐹𝑆)) ((𝐹𝑋) 𝑊)))
371, 2, 24, 27, 31, 36syl122anc 1377 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑆 (𝑋 𝑊)) = 𝑋)) → (𝐺‘(𝐹𝑋)) = ((𝐺‘(𝐹𝑆)) ((𝐹𝑋) 𝑊)))
384, 5, 6, 7, 8, 9, 10, 12, 16, 20, 32, 33, 34, 35cdlemeg46gf 38099 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊))) → (𝐺‘(𝐹𝑆)) = 𝑆)
391, 2, 25, 38syl12anc 836 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑆 (𝑋 𝑊)) = 𝑋)) → (𝐺‘(𝐹𝑆)) = 𝑆)
4039, 28oveq12d 7166 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑆 (𝑋 𝑊)) = 𝑋)) → ((𝐺‘(𝐹𝑆)) ((𝐹𝑋) 𝑊)) = (𝑆 (𝑋 𝑊)))
41 simp3r 1200 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑆 (𝑋 𝑊)) = 𝑋)) → (𝑆 (𝑋 𝑊)) = 𝑋)
4237, 40, 413eqtrd 2798 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑆 (𝑋 𝑊)) = 𝑋)) → (𝐺‘(𝐹𝑋)) = 𝑋)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 400   ∧ w3a 1085   = wceq 1539   ∈ wcel 2112   ≠ wne 2952  ∀wral 3071  Vcvv 3410  ⦋csb 3806  ifcif 4418   class class class wbr 5030   ↦ cmpt 5110  ‘cfv 6333  ℩crio 7105  (class class class)co 7148  Basecbs 16531  lecple 16620  joincjn 17610  meetcmee 17611  Atomscatm 36829  HLchlt 36916  LHypclh 37550 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7457  ax-riotaBAD 36519 This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-ral 3076  df-rex 3077  df-reu 3078  df-rmo 3079  df-rab 3080  df-v 3412  df-sbc 3698  df-csb 3807  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-nul 4227  df-if 4419  df-pw 4494  df-sn 4521  df-pr 4523  df-op 4527  df-uni 4797  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5428  df-xp 5528  df-rel 5529  df-cnv 5530  df-co 5531  df-dm 5532  df-rn 5533  df-res 5534  df-ima 5535  df-iota 6292  df-fun 6335  df-fn 6336  df-f 6337  df-f1 6338  df-fo 6339  df-f1o 6340  df-fv 6341  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-1st 7691  df-2nd 7692  df-undef 7947  df-proset 17594  df-poset 17612  df-plt 17624  df-lub 17640  df-glb 17641  df-join 17642  df-meet 17643  df-p0 17705  df-p1 17706  df-lat 17712  df-clat 17774  df-oposet 36742  df-ol 36744  df-oml 36745  df-covers 36832  df-ats 36833  df-atl 36864  df-cvlat 36888  df-hlat 36917  df-llines 37064  df-lplanes 37065  df-lvols 37066  df-lines 37067  df-psubsp 37069  df-pmap 37070  df-padd 37362  df-lhyp 37554 This theorem is referenced by:  cdleme48gfv1  38102
 Copyright terms: Public domain W3C validator