| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cdlemg2jlemOLDN | Structured version Visualization version GIF version | ||
| Description: Part of proof of Lemma E in [Crawley] p. 113. TODO: FIX COMMENT. f preserves join: f(r ∨ s) = f(r) ∨ s, p. 115 10th line from bottom. TODO: Combine with cdlemg2jOLDN 40541? (Contributed by NM, 22-Apr-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| cdlemg2.b | ⊢ 𝐵 = (Base‘𝐾) |
| cdlemg2.l | ⊢ ≤ = (le‘𝐾) |
| cdlemg2.j | ⊢ ∨ = (join‘𝐾) |
| cdlemg2.m | ⊢ ∧ = (meet‘𝐾) |
| cdlemg2.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| cdlemg2.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| cdlemg2.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| cdlemg2ex.u | ⊢ 𝑈 = ((𝑝 ∨ 𝑞) ∧ 𝑊) |
| cdlemg2ex.d | ⊢ 𝐷 = ((𝑡 ∨ 𝑈) ∧ (𝑞 ∨ ((𝑝 ∨ 𝑡) ∧ 𝑊))) |
| cdlemg2ex.e | ⊢ 𝐸 = ((𝑝 ∨ 𝑞) ∧ (𝐷 ∨ ((𝑠 ∨ 𝑡) ∧ 𝑊))) |
| cdlemg2ex.g | ⊢ 𝐺 = (𝑥 ∈ 𝐵 ↦ if((𝑝 ≠ 𝑞 ∧ ¬ 𝑥 ≤ 𝑊), (℩𝑧 ∈ 𝐵 ∀𝑠 ∈ 𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑥 ∧ 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 ≤ (𝑝 ∨ 𝑞), (℩𝑦 ∈ 𝐵 ∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑝 ∨ 𝑞)) → 𝑦 = 𝐸)), ⦋𝑠 / 𝑡⦌𝐷) ∨ (𝑥 ∧ 𝑊)))), 𝑥)) |
| Ref | Expression |
|---|---|
| cdlemg2jlemOLDN | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝐹 ∈ 𝑇) → (𝐹‘(𝑃 ∨ 𝑄)) = ((𝐹‘𝑃) ∨ (𝐹‘𝑄))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cdlemg2.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | cdlemg2.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
| 3 | cdlemg2.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
| 4 | cdlemg2.m | . . 3 ⊢ ∧ = (meet‘𝐾) | |
| 5 | cdlemg2.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 6 | cdlemg2.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 7 | cdlemg2.t | . . 3 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 8 | cdlemg2ex.u | . . 3 ⊢ 𝑈 = ((𝑝 ∨ 𝑞) ∧ 𝑊) | |
| 9 | cdlemg2ex.d | . . 3 ⊢ 𝐷 = ((𝑡 ∨ 𝑈) ∧ (𝑞 ∨ ((𝑝 ∨ 𝑡) ∧ 𝑊))) | |
| 10 | cdlemg2ex.e | . . 3 ⊢ 𝐸 = ((𝑝 ∨ 𝑞) ∧ (𝐷 ∨ ((𝑠 ∨ 𝑡) ∧ 𝑊))) | |
| 11 | cdlemg2ex.g | . . 3 ⊢ 𝐺 = (𝑥 ∈ 𝐵 ↦ if((𝑝 ≠ 𝑞 ∧ ¬ 𝑥 ≤ 𝑊), (℩𝑧 ∈ 𝐵 ∀𝑠 ∈ 𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑥 ∧ 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 ≤ (𝑝 ∨ 𝑞), (℩𝑦 ∈ 𝐵 ∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑝 ∨ 𝑞)) → 𝑦 = 𝐸)), ⦋𝑠 / 𝑡⦌𝐷) ∨ (𝑥 ∧ 𝑊)))), 𝑥)) | |
| 12 | fveq1 6886 | . . . 4 ⊢ (𝐹 = 𝐺 → (𝐹‘(𝑃 ∨ 𝑄)) = (𝐺‘(𝑃 ∨ 𝑄))) | |
| 13 | fveq1 6886 | . . . . 5 ⊢ (𝐹 = 𝐺 → (𝐹‘𝑃) = (𝐺‘𝑃)) | |
| 14 | fveq1 6886 | . . . . 5 ⊢ (𝐹 = 𝐺 → (𝐹‘𝑄) = (𝐺‘𝑄)) | |
| 15 | 13, 14 | oveq12d 7432 | . . . 4 ⊢ (𝐹 = 𝐺 → ((𝐹‘𝑃) ∨ (𝐹‘𝑄)) = ((𝐺‘𝑃) ∨ (𝐺‘𝑄))) |
| 16 | 12, 15 | eqeq12d 2750 | . . 3 ⊢ (𝐹 = 𝐺 → ((𝐹‘(𝑃 ∨ 𝑄)) = ((𝐹‘𝑃) ∨ (𝐹‘𝑄)) ↔ (𝐺‘(𝑃 ∨ 𝑄)) = ((𝐺‘𝑃) ∨ (𝐺‘𝑄)))) |
| 17 | vex 3468 | . . . . 5 ⊢ 𝑠 ∈ V | |
| 18 | eqid 2734 | . . . . . 6 ⊢ ((𝑠 ∨ 𝑈) ∧ (𝑞 ∨ ((𝑝 ∨ 𝑠) ∧ 𝑊))) = ((𝑠 ∨ 𝑈) ∧ (𝑞 ∨ ((𝑝 ∨ 𝑠) ∧ 𝑊))) | |
| 19 | 9, 18 | cdleme31sc 40327 | . . . . 5 ⊢ (𝑠 ∈ V → ⦋𝑠 / 𝑡⦌𝐷 = ((𝑠 ∨ 𝑈) ∧ (𝑞 ∨ ((𝑝 ∨ 𝑠) ∧ 𝑊)))) |
| 20 | 17, 19 | ax-mp 5 | . . . 4 ⊢ ⦋𝑠 / 𝑡⦌𝐷 = ((𝑠 ∨ 𝑈) ∧ (𝑞 ∨ ((𝑝 ∨ 𝑠) ∧ 𝑊))) |
| 21 | eqid 2734 | . . . 4 ⊢ (℩𝑦 ∈ 𝐵 ∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑝 ∨ 𝑞)) → 𝑦 = 𝐸)) = (℩𝑦 ∈ 𝐵 ∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑝 ∨ 𝑞)) → 𝑦 = 𝐸)) | |
| 22 | eqid 2734 | . . . 4 ⊢ if(𝑠 ≤ (𝑝 ∨ 𝑞), (℩𝑦 ∈ 𝐵 ∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑝 ∨ 𝑞)) → 𝑦 = 𝐸)), ⦋𝑠 / 𝑡⦌𝐷) = if(𝑠 ≤ (𝑝 ∨ 𝑞), (℩𝑦 ∈ 𝐵 ∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑝 ∨ 𝑞)) → 𝑦 = 𝐸)), ⦋𝑠 / 𝑡⦌𝐷) | |
| 23 | eqid 2734 | . . . 4 ⊢ (℩𝑧 ∈ 𝐵 ∀𝑠 ∈ 𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑥 ∧ 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 ≤ (𝑝 ∨ 𝑞), (℩𝑦 ∈ 𝐵 ∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑝 ∨ 𝑞)) → 𝑦 = 𝐸)), ⦋𝑠 / 𝑡⦌𝐷) ∨ (𝑥 ∧ 𝑊)))) = (℩𝑧 ∈ 𝐵 ∀𝑠 ∈ 𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑥 ∧ 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 ≤ (𝑝 ∨ 𝑞), (℩𝑦 ∈ 𝐵 ∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑝 ∨ 𝑞)) → 𝑦 = 𝐸)), ⦋𝑠 / 𝑡⦌𝐷) ∨ (𝑥 ∧ 𝑊)))) | |
| 24 | 1, 2, 3, 4, 5, 6, 8, 20, 9, 10, 21, 22, 23, 11 | cdleme42mgN 40431 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊) ∧ (𝑞 ∈ 𝐴 ∧ ¬ 𝑞 ≤ 𝑊)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊))) → (𝐺‘(𝑃 ∨ 𝑄)) = ((𝐺‘𝑃) ∨ (𝐺‘𝑄))) |
| 25 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 16, 24 | cdlemg2ce 40535 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊))) → (𝐹‘(𝑃 ∨ 𝑄)) = ((𝐹‘𝑃) ∨ (𝐹‘𝑄))) |
| 26 | 25 | 3com23 1126 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝐹 ∈ 𝑇) → (𝐹‘(𝑃 ∨ 𝑄)) = ((𝐹‘𝑃) ∨ (𝐹‘𝑄))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ≠ wne 2931 ∀wral 3050 Vcvv 3464 ⦋csb 3881 ifcif 4507 class class class wbr 5125 ↦ cmpt 5207 ‘cfv 6542 ℩crio 7370 (class class class)co 7414 Basecbs 17230 lecple 17284 joincjn 18332 meetcmee 18333 Atomscatm 39205 HLchlt 39292 LHypclh 39927 LTrncltrn 40044 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5261 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 ax-riotaBAD 38895 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-iun 4975 df-iin 4976 df-br 5126 df-opab 5188 df-mpt 5208 df-id 5560 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7371 df-ov 7417 df-oprab 7418 df-mpo 7419 df-1st 7997 df-2nd 7998 df-undef 8281 df-map 8851 df-proset 18315 df-poset 18334 df-plt 18349 df-lub 18365 df-glb 18366 df-join 18367 df-meet 18368 df-p0 18444 df-p1 18445 df-lat 18451 df-clat 18518 df-oposet 39118 df-ol 39120 df-oml 39121 df-covers 39208 df-ats 39209 df-atl 39240 df-cvlat 39264 df-hlat 39293 df-llines 39441 df-lplanes 39442 df-lvols 39443 df-lines 39444 df-psubsp 39446 df-pmap 39447 df-padd 39739 df-lhyp 39931 df-laut 39932 df-ldil 40047 df-ltrn 40048 df-trl 40102 |
| This theorem is referenced by: cdlemg2jOLDN 40541 |
| Copyright terms: Public domain | W3C validator |