Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg2jlemOLDN Structured version   Visualization version   GIF version

Theorem cdlemg2jlemOLDN 39768
Description: Part of proof of Lemma E in [Crawley] p. 113. TODO: FIX COMMENT. f preserves join: f(r ∨ s) = f(r) ∨ s, p. 115 10th line from bottom. TODO: Combine with cdlemg2jOLDN 39773? (Contributed by NM, 22-Apr-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdlemg2.b 𝐡 = (Baseβ€˜πΎ)
cdlemg2.l ≀ = (leβ€˜πΎ)
cdlemg2.j ∨ = (joinβ€˜πΎ)
cdlemg2.m ∧ = (meetβ€˜πΎ)
cdlemg2.a 𝐴 = (Atomsβ€˜πΎ)
cdlemg2.h 𝐻 = (LHypβ€˜πΎ)
cdlemg2.t 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
cdlemg2ex.u π‘ˆ = ((𝑝 ∨ π‘ž) ∧ π‘Š)
cdlemg2ex.d 𝐷 = ((𝑑 ∨ π‘ˆ) ∧ (π‘ž ∨ ((𝑝 ∨ 𝑑) ∧ π‘Š)))
cdlemg2ex.e 𝐸 = ((𝑝 ∨ π‘ž) ∧ (𝐷 ∨ ((𝑠 ∨ 𝑑) ∧ π‘Š)))
cdlemg2ex.g 𝐺 = (π‘₯ ∈ 𝐡 ↦ if((𝑝 β‰  π‘ž ∧ Β¬ π‘₯ ≀ π‘Š), (℩𝑧 ∈ 𝐡 βˆ€π‘  ∈ 𝐴 ((Β¬ 𝑠 ≀ π‘Š ∧ (𝑠 ∨ (π‘₯ ∧ π‘Š)) = π‘₯) β†’ 𝑧 = (if(𝑠 ≀ (𝑝 ∨ π‘ž), (℩𝑦 ∈ 𝐡 βˆ€π‘‘ ∈ 𝐴 ((Β¬ 𝑑 ≀ π‘Š ∧ Β¬ 𝑑 ≀ (𝑝 ∨ π‘ž)) β†’ 𝑦 = 𝐸)), ⦋𝑠 / π‘‘β¦Œπ·) ∨ (π‘₯ ∧ π‘Š)))), π‘₯))
Assertion
Ref Expression
cdlemg2jlemOLDN (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ 𝐹 ∈ 𝑇) β†’ (πΉβ€˜(𝑃 ∨ 𝑄)) = ((πΉβ€˜π‘ƒ) ∨ (πΉβ€˜π‘„)))
Distinct variable groups:   𝑑,𝑠,π‘₯,𝑦,𝑧,𝐴   𝐡,𝑠,𝑑,π‘₯,𝑦,𝑧   𝐷,𝑠,π‘₯,𝑦,𝑧   π‘₯,𝐸,𝑦,𝑧   𝐻,𝑠,𝑑,π‘₯,𝑦,𝑧   ∨ ,𝑠,𝑑,π‘₯,𝑦,𝑧   𝐾,𝑠,𝑑,π‘₯,𝑦,𝑧   ≀ ,𝑠,𝑑,π‘₯,𝑦,𝑧   ∧ ,𝑠,𝑑,π‘₯,𝑦,𝑧   𝑃,𝑠,𝑑,π‘₯,𝑦,𝑧   𝑄,𝑠,𝑑,π‘₯,𝑦,𝑧   π‘ˆ,𝑠,𝑑,π‘₯,𝑦,𝑧   π‘Š,𝑠,𝑑,π‘₯,𝑦,𝑧   π‘ž,𝑝,𝐴   𝐹,𝑝,π‘ž   𝐻,𝑝,π‘ž   𝐾,𝑝,π‘ž   ≀ ,𝑝,π‘ž   𝑇,𝑝,π‘ž   π‘Š,𝑝,π‘ž,𝑠,𝑑,π‘₯,𝑦,𝑧   ∨ ,𝑝,π‘ž   𝑃,𝑝,π‘ž   𝑄,𝑝,π‘ž
Allowed substitution hints:   𝐡(π‘ž,𝑝)   𝐷(𝑑,π‘ž,𝑝)   𝑇(π‘₯,𝑦,𝑧,𝑑,𝑠)   π‘ˆ(π‘ž,𝑝)   𝐸(𝑑,𝑠,π‘ž,𝑝)   𝐹(π‘₯,𝑦,𝑧,𝑑,𝑠)   𝐺(π‘₯,𝑦,𝑧,𝑑,𝑠,π‘ž,𝑝)   ∧ (π‘ž,𝑝)

Proof of Theorem cdlemg2jlemOLDN
StepHypRef Expression
1 cdlemg2.b . . 3 𝐡 = (Baseβ€˜πΎ)
2 cdlemg2.l . . 3 ≀ = (leβ€˜πΎ)
3 cdlemg2.j . . 3 ∨ = (joinβ€˜πΎ)
4 cdlemg2.m . . 3 ∧ = (meetβ€˜πΎ)
5 cdlemg2.a . . 3 𝐴 = (Atomsβ€˜πΎ)
6 cdlemg2.h . . 3 𝐻 = (LHypβ€˜πΎ)
7 cdlemg2.t . . 3 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
8 cdlemg2ex.u . . 3 π‘ˆ = ((𝑝 ∨ π‘ž) ∧ π‘Š)
9 cdlemg2ex.d . . 3 𝐷 = ((𝑑 ∨ π‘ˆ) ∧ (π‘ž ∨ ((𝑝 ∨ 𝑑) ∧ π‘Š)))
10 cdlemg2ex.e . . 3 𝐸 = ((𝑝 ∨ π‘ž) ∧ (𝐷 ∨ ((𝑠 ∨ 𝑑) ∧ π‘Š)))
11 cdlemg2ex.g . . 3 𝐺 = (π‘₯ ∈ 𝐡 ↦ if((𝑝 β‰  π‘ž ∧ Β¬ π‘₯ ≀ π‘Š), (℩𝑧 ∈ 𝐡 βˆ€π‘  ∈ 𝐴 ((Β¬ 𝑠 ≀ π‘Š ∧ (𝑠 ∨ (π‘₯ ∧ π‘Š)) = π‘₯) β†’ 𝑧 = (if(𝑠 ≀ (𝑝 ∨ π‘ž), (℩𝑦 ∈ 𝐡 βˆ€π‘‘ ∈ 𝐴 ((Β¬ 𝑑 ≀ π‘Š ∧ Β¬ 𝑑 ≀ (𝑝 ∨ π‘ž)) β†’ 𝑦 = 𝐸)), ⦋𝑠 / π‘‘β¦Œπ·) ∨ (π‘₯ ∧ π‘Š)))), π‘₯))
12 fveq1 6891 . . . 4 (𝐹 = 𝐺 β†’ (πΉβ€˜(𝑃 ∨ 𝑄)) = (πΊβ€˜(𝑃 ∨ 𝑄)))
13 fveq1 6891 . . . . 5 (𝐹 = 𝐺 β†’ (πΉβ€˜π‘ƒ) = (πΊβ€˜π‘ƒ))
14 fveq1 6891 . . . . 5 (𝐹 = 𝐺 β†’ (πΉβ€˜π‘„) = (πΊβ€˜π‘„))
1513, 14oveq12d 7430 . . . 4 (𝐹 = 𝐺 β†’ ((πΉβ€˜π‘ƒ) ∨ (πΉβ€˜π‘„)) = ((πΊβ€˜π‘ƒ) ∨ (πΊβ€˜π‘„)))
1612, 15eqeq12d 2747 . . 3 (𝐹 = 𝐺 β†’ ((πΉβ€˜(𝑃 ∨ 𝑄)) = ((πΉβ€˜π‘ƒ) ∨ (πΉβ€˜π‘„)) ↔ (πΊβ€˜(𝑃 ∨ 𝑄)) = ((πΊβ€˜π‘ƒ) ∨ (πΊβ€˜π‘„))))
17 vex 3477 . . . . 5 𝑠 ∈ V
18 eqid 2731 . . . . . 6 ((𝑠 ∨ π‘ˆ) ∧ (π‘ž ∨ ((𝑝 ∨ 𝑠) ∧ π‘Š))) = ((𝑠 ∨ π‘ˆ) ∧ (π‘ž ∨ ((𝑝 ∨ 𝑠) ∧ π‘Š)))
199, 18cdleme31sc 39559 . . . . 5 (𝑠 ∈ V β†’ ⦋𝑠 / π‘‘β¦Œπ· = ((𝑠 ∨ π‘ˆ) ∧ (π‘ž ∨ ((𝑝 ∨ 𝑠) ∧ π‘Š))))
2017, 19ax-mp 5 . . . 4 ⦋𝑠 / π‘‘β¦Œπ· = ((𝑠 ∨ π‘ˆ) ∧ (π‘ž ∨ ((𝑝 ∨ 𝑠) ∧ π‘Š)))
21 eqid 2731 . . . 4 (℩𝑦 ∈ 𝐡 βˆ€π‘‘ ∈ 𝐴 ((Β¬ 𝑑 ≀ π‘Š ∧ Β¬ 𝑑 ≀ (𝑝 ∨ π‘ž)) β†’ 𝑦 = 𝐸)) = (℩𝑦 ∈ 𝐡 βˆ€π‘‘ ∈ 𝐴 ((Β¬ 𝑑 ≀ π‘Š ∧ Β¬ 𝑑 ≀ (𝑝 ∨ π‘ž)) β†’ 𝑦 = 𝐸))
22 eqid 2731 . . . 4 if(𝑠 ≀ (𝑝 ∨ π‘ž), (℩𝑦 ∈ 𝐡 βˆ€π‘‘ ∈ 𝐴 ((Β¬ 𝑑 ≀ π‘Š ∧ Β¬ 𝑑 ≀ (𝑝 ∨ π‘ž)) β†’ 𝑦 = 𝐸)), ⦋𝑠 / π‘‘β¦Œπ·) = if(𝑠 ≀ (𝑝 ∨ π‘ž), (℩𝑦 ∈ 𝐡 βˆ€π‘‘ ∈ 𝐴 ((Β¬ 𝑑 ≀ π‘Š ∧ Β¬ 𝑑 ≀ (𝑝 ∨ π‘ž)) β†’ 𝑦 = 𝐸)), ⦋𝑠 / π‘‘β¦Œπ·)
23 eqid 2731 . . . 4 (℩𝑧 ∈ 𝐡 βˆ€π‘  ∈ 𝐴 ((Β¬ 𝑠 ≀ π‘Š ∧ (𝑠 ∨ (π‘₯ ∧ π‘Š)) = π‘₯) β†’ 𝑧 = (if(𝑠 ≀ (𝑝 ∨ π‘ž), (℩𝑦 ∈ 𝐡 βˆ€π‘‘ ∈ 𝐴 ((Β¬ 𝑑 ≀ π‘Š ∧ Β¬ 𝑑 ≀ (𝑝 ∨ π‘ž)) β†’ 𝑦 = 𝐸)), ⦋𝑠 / π‘‘β¦Œπ·) ∨ (π‘₯ ∧ π‘Š)))) = (℩𝑧 ∈ 𝐡 βˆ€π‘  ∈ 𝐴 ((Β¬ 𝑠 ≀ π‘Š ∧ (𝑠 ∨ (π‘₯ ∧ π‘Š)) = π‘₯) β†’ 𝑧 = (if(𝑠 ≀ (𝑝 ∨ π‘ž), (℩𝑦 ∈ 𝐡 βˆ€π‘‘ ∈ 𝐴 ((Β¬ 𝑑 ≀ π‘Š ∧ Β¬ 𝑑 ≀ (𝑝 ∨ π‘ž)) β†’ 𝑦 = 𝐸)), ⦋𝑠 / π‘‘β¦Œπ·) ∨ (π‘₯ ∧ π‘Š))))
241, 2, 3, 4, 5, 6, 8, 20, 9, 10, 21, 22, 23, 11cdleme42mgN 39663 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑝 ∈ 𝐴 ∧ Β¬ 𝑝 ≀ π‘Š) ∧ (π‘ž ∈ 𝐴 ∧ Β¬ π‘ž ≀ π‘Š)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š))) β†’ (πΊβ€˜(𝑃 ∨ 𝑄)) = ((πΊβ€˜π‘ƒ) ∨ (πΊβ€˜π‘„)))
251, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 16, 24cdlemg2ce 39767 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š))) β†’ (πΉβ€˜(𝑃 ∨ 𝑄)) = ((πΉβ€˜π‘ƒ) ∨ (πΉβ€˜π‘„)))
26253com23 1125 1 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ 𝐹 ∈ 𝑇) β†’ (πΉβ€˜(𝑃 ∨ 𝑄)) = ((πΉβ€˜π‘ƒ) ∨ (πΉβ€˜π‘„)))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 395   ∧ w3a 1086   = wceq 1540   ∈ wcel 2105   β‰  wne 2939  βˆ€wral 3060  Vcvv 3473  β¦‹csb 3894  ifcif 4529   class class class wbr 5149   ↦ cmpt 5232  β€˜cfv 6544  β„©crio 7367  (class class class)co 7412  Basecbs 17149  lecple 17209  joincjn 18269  meetcmee 18270  Atomscatm 38437  HLchlt 38524  LHypclh 39159  LTrncltrn 39276
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7728  ax-riotaBAD 38127
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-iin 5001  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-1st 7978  df-2nd 7979  df-undef 8261  df-map 8825  df-proset 18253  df-poset 18271  df-plt 18288  df-lub 18304  df-glb 18305  df-join 18306  df-meet 18307  df-p0 18383  df-p1 18384  df-lat 18390  df-clat 18457  df-oposet 38350  df-ol 38352  df-oml 38353  df-covers 38440  df-ats 38441  df-atl 38472  df-cvlat 38496  df-hlat 38525  df-llines 38673  df-lplanes 38674  df-lvols 38675  df-lines 38676  df-psubsp 38678  df-pmap 38679  df-padd 38971  df-lhyp 39163  df-laut 39164  df-ldil 39279  df-ltrn 39280  df-trl 39334
This theorem is referenced by:  cdlemg2jOLDN  39773
  Copyright terms: Public domain W3C validator