Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdlemg2jlemOLDN | Structured version Visualization version GIF version |
Description: Part of proof of Lemma E in [Crawley] p. 113. TODO: FIX COMMENT. f preserves join: f(r ∨ s) = f(r) ∨ s, p. 115 10th line from bottom. TODO: Combine with cdlemg2jOLDN 38591? (Contributed by NM, 22-Apr-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cdlemg2.b | ⊢ 𝐵 = (Base‘𝐾) |
cdlemg2.l | ⊢ ≤ = (le‘𝐾) |
cdlemg2.j | ⊢ ∨ = (join‘𝐾) |
cdlemg2.m | ⊢ ∧ = (meet‘𝐾) |
cdlemg2.a | ⊢ 𝐴 = (Atoms‘𝐾) |
cdlemg2.h | ⊢ 𝐻 = (LHyp‘𝐾) |
cdlemg2.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
cdlemg2ex.u | ⊢ 𝑈 = ((𝑝 ∨ 𝑞) ∧ 𝑊) |
cdlemg2ex.d | ⊢ 𝐷 = ((𝑡 ∨ 𝑈) ∧ (𝑞 ∨ ((𝑝 ∨ 𝑡) ∧ 𝑊))) |
cdlemg2ex.e | ⊢ 𝐸 = ((𝑝 ∨ 𝑞) ∧ (𝐷 ∨ ((𝑠 ∨ 𝑡) ∧ 𝑊))) |
cdlemg2ex.g | ⊢ 𝐺 = (𝑥 ∈ 𝐵 ↦ if((𝑝 ≠ 𝑞 ∧ ¬ 𝑥 ≤ 𝑊), (℩𝑧 ∈ 𝐵 ∀𝑠 ∈ 𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑥 ∧ 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 ≤ (𝑝 ∨ 𝑞), (℩𝑦 ∈ 𝐵 ∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑝 ∨ 𝑞)) → 𝑦 = 𝐸)), ⦋𝑠 / 𝑡⦌𝐷) ∨ (𝑥 ∧ 𝑊)))), 𝑥)) |
Ref | Expression |
---|---|
cdlemg2jlemOLDN | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝐹 ∈ 𝑇) → (𝐹‘(𝑃 ∨ 𝑄)) = ((𝐹‘𝑃) ∨ (𝐹‘𝑄))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdlemg2.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
2 | cdlemg2.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
3 | cdlemg2.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
4 | cdlemg2.m | . . 3 ⊢ ∧ = (meet‘𝐾) | |
5 | cdlemg2.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
6 | cdlemg2.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
7 | cdlemg2.t | . . 3 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
8 | cdlemg2ex.u | . . 3 ⊢ 𝑈 = ((𝑝 ∨ 𝑞) ∧ 𝑊) | |
9 | cdlemg2ex.d | . . 3 ⊢ 𝐷 = ((𝑡 ∨ 𝑈) ∧ (𝑞 ∨ ((𝑝 ∨ 𝑡) ∧ 𝑊))) | |
10 | cdlemg2ex.e | . . 3 ⊢ 𝐸 = ((𝑝 ∨ 𝑞) ∧ (𝐷 ∨ ((𝑠 ∨ 𝑡) ∧ 𝑊))) | |
11 | cdlemg2ex.g | . . 3 ⊢ 𝐺 = (𝑥 ∈ 𝐵 ↦ if((𝑝 ≠ 𝑞 ∧ ¬ 𝑥 ≤ 𝑊), (℩𝑧 ∈ 𝐵 ∀𝑠 ∈ 𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑥 ∧ 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 ≤ (𝑝 ∨ 𝑞), (℩𝑦 ∈ 𝐵 ∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑝 ∨ 𝑞)) → 𝑦 = 𝐸)), ⦋𝑠 / 𝑡⦌𝐷) ∨ (𝑥 ∧ 𝑊)))), 𝑥)) | |
12 | fveq1 6767 | . . . 4 ⊢ (𝐹 = 𝐺 → (𝐹‘(𝑃 ∨ 𝑄)) = (𝐺‘(𝑃 ∨ 𝑄))) | |
13 | fveq1 6767 | . . . . 5 ⊢ (𝐹 = 𝐺 → (𝐹‘𝑃) = (𝐺‘𝑃)) | |
14 | fveq1 6767 | . . . . 5 ⊢ (𝐹 = 𝐺 → (𝐹‘𝑄) = (𝐺‘𝑄)) | |
15 | 13, 14 | oveq12d 7286 | . . . 4 ⊢ (𝐹 = 𝐺 → ((𝐹‘𝑃) ∨ (𝐹‘𝑄)) = ((𝐺‘𝑃) ∨ (𝐺‘𝑄))) |
16 | 12, 15 | eqeq12d 2755 | . . 3 ⊢ (𝐹 = 𝐺 → ((𝐹‘(𝑃 ∨ 𝑄)) = ((𝐹‘𝑃) ∨ (𝐹‘𝑄)) ↔ (𝐺‘(𝑃 ∨ 𝑄)) = ((𝐺‘𝑃) ∨ (𝐺‘𝑄)))) |
17 | vex 3434 | . . . . 5 ⊢ 𝑠 ∈ V | |
18 | eqid 2739 | . . . . . 6 ⊢ ((𝑠 ∨ 𝑈) ∧ (𝑞 ∨ ((𝑝 ∨ 𝑠) ∧ 𝑊))) = ((𝑠 ∨ 𝑈) ∧ (𝑞 ∨ ((𝑝 ∨ 𝑠) ∧ 𝑊))) | |
19 | 9, 18 | cdleme31sc 38377 | . . . . 5 ⊢ (𝑠 ∈ V → ⦋𝑠 / 𝑡⦌𝐷 = ((𝑠 ∨ 𝑈) ∧ (𝑞 ∨ ((𝑝 ∨ 𝑠) ∧ 𝑊)))) |
20 | 17, 19 | ax-mp 5 | . . . 4 ⊢ ⦋𝑠 / 𝑡⦌𝐷 = ((𝑠 ∨ 𝑈) ∧ (𝑞 ∨ ((𝑝 ∨ 𝑠) ∧ 𝑊))) |
21 | eqid 2739 | . . . 4 ⊢ (℩𝑦 ∈ 𝐵 ∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑝 ∨ 𝑞)) → 𝑦 = 𝐸)) = (℩𝑦 ∈ 𝐵 ∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑝 ∨ 𝑞)) → 𝑦 = 𝐸)) | |
22 | eqid 2739 | . . . 4 ⊢ if(𝑠 ≤ (𝑝 ∨ 𝑞), (℩𝑦 ∈ 𝐵 ∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑝 ∨ 𝑞)) → 𝑦 = 𝐸)), ⦋𝑠 / 𝑡⦌𝐷) = if(𝑠 ≤ (𝑝 ∨ 𝑞), (℩𝑦 ∈ 𝐵 ∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑝 ∨ 𝑞)) → 𝑦 = 𝐸)), ⦋𝑠 / 𝑡⦌𝐷) | |
23 | eqid 2739 | . . . 4 ⊢ (℩𝑧 ∈ 𝐵 ∀𝑠 ∈ 𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑥 ∧ 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 ≤ (𝑝 ∨ 𝑞), (℩𝑦 ∈ 𝐵 ∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑝 ∨ 𝑞)) → 𝑦 = 𝐸)), ⦋𝑠 / 𝑡⦌𝐷) ∨ (𝑥 ∧ 𝑊)))) = (℩𝑧 ∈ 𝐵 ∀𝑠 ∈ 𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑥 ∧ 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 ≤ (𝑝 ∨ 𝑞), (℩𝑦 ∈ 𝐵 ∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑝 ∨ 𝑞)) → 𝑦 = 𝐸)), ⦋𝑠 / 𝑡⦌𝐷) ∨ (𝑥 ∧ 𝑊)))) | |
24 | 1, 2, 3, 4, 5, 6, 8, 20, 9, 10, 21, 22, 23, 11 | cdleme42mgN 38481 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊) ∧ (𝑞 ∈ 𝐴 ∧ ¬ 𝑞 ≤ 𝑊)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊))) → (𝐺‘(𝑃 ∨ 𝑄)) = ((𝐺‘𝑃) ∨ (𝐺‘𝑄))) |
25 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 16, 24 | cdlemg2ce 38585 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊))) → (𝐹‘(𝑃 ∨ 𝑄)) = ((𝐹‘𝑃) ∨ (𝐹‘𝑄))) |
26 | 25 | 3com23 1124 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝐹 ∈ 𝑇) → (𝐹‘(𝑃 ∨ 𝑄)) = ((𝐹‘𝑃) ∨ (𝐹‘𝑄))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1541 ∈ wcel 2109 ≠ wne 2944 ∀wral 3065 Vcvv 3430 ⦋csb 3836 ifcif 4464 class class class wbr 5078 ↦ cmpt 5161 ‘cfv 6430 ℩crio 7224 (class class class)co 7268 Basecbs 16893 lecple 16950 joincjn 18010 meetcmee 18011 Atomscatm 37256 HLchlt 37343 LHypclh 37977 LTrncltrn 38094 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-riotaBAD 36946 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-reu 3072 df-rmo 3073 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-iun 4931 df-iin 4932 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-1st 7817 df-2nd 7818 df-undef 8073 df-map 8591 df-proset 17994 df-poset 18012 df-plt 18029 df-lub 18045 df-glb 18046 df-join 18047 df-meet 18048 df-p0 18124 df-p1 18125 df-lat 18131 df-clat 18198 df-oposet 37169 df-ol 37171 df-oml 37172 df-covers 37259 df-ats 37260 df-atl 37291 df-cvlat 37315 df-hlat 37344 df-llines 37491 df-lplanes 37492 df-lvols 37493 df-lines 37494 df-psubsp 37496 df-pmap 37497 df-padd 37789 df-lhyp 37981 df-laut 37982 df-ldil 38097 df-ltrn 38098 df-trl 38152 |
This theorem is referenced by: cdlemg2jOLDN 38591 |
Copyright terms: Public domain | W3C validator |