Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemkuv-2N Structured version   Visualization version   GIF version

Theorem cdlemkuv-2N 40992
Description: Part of proof of Lemma K of [Crawley] p. 118. Value of the sigma2 (p) function, given 𝑉. (Contributed by NM, 2-Jul-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdlemk2.b 𝐵 = (Base‘𝐾)
cdlemk2.l = (le‘𝐾)
cdlemk2.j = (join‘𝐾)
cdlemk2.m = (meet‘𝐾)
cdlemk2.a 𝐴 = (Atoms‘𝐾)
cdlemk2.h 𝐻 = (LHyp‘𝐾)
cdlemk2.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemk2.r 𝑅 = ((trL‘𝐾)‘𝑊)
cdlemk2.s 𝑆 = (𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))
cdlemk2.q 𝑄 = (𝑆𝐶)
cdlemk2.v 𝑉 = (𝑑𝑇 ↦ (𝑘𝑇 (𝑘𝑃) = ((𝑃 (𝑅𝑑)) ((𝑄𝑃) (𝑅‘(𝑑𝐶))))))
Assertion
Ref Expression
cdlemkuv-2N (𝐺𝑇 → (𝑉𝐺) = (𝑘𝑇 (𝑘𝑃) = ((𝑃 (𝑅𝐺)) ((𝑄𝑃) (𝑅‘(𝐺𝐶))))))
Distinct variable groups:   𝑓,𝑖,   ,𝑖   ,𝑓,𝑖   𝐴,𝑖   𝐶,𝑓,𝑖   𝑓,𝐹,𝑖   𝑖,𝐻   𝑖,𝐾   𝑓,𝑁,𝑖   𝑃,𝑓,𝑖   𝑅,𝑓,𝑖   𝑇,𝑓,𝑖   𝑓,𝑊,𝑖   ,𝑑   ,𝑑   𝐶,𝑑   𝑘,𝑑,𝐺   𝑄,𝑑   𝑃,𝑑   𝑅,𝑑   𝑇,𝑑   𝑊,𝑑
Allowed substitution hints:   𝐴(𝑓,𝑘,𝑑)   𝐵(𝑓,𝑖,𝑘,𝑑)   𝐶(𝑘)   𝑃(𝑘)   𝑄(𝑓,𝑖,𝑘)   𝑅(𝑘)   𝑆(𝑓,𝑖,𝑘,𝑑)   𝑇(𝑘)   𝐹(𝑘,𝑑)   𝐺(𝑓,𝑖)   𝐻(𝑓,𝑘,𝑑)   (𝑘)   𝐾(𝑓,𝑘,𝑑)   (𝑓,𝑘,𝑑)   (𝑘)   𝑁(𝑘,𝑑)   𝑉(𝑓,𝑖,𝑘,𝑑)   𝑊(𝑘)

Proof of Theorem cdlemkuv-2N
StepHypRef Expression
1 cdlemk2.b . 2 𝐵 = (Base‘𝐾)
2 cdlemk2.l . 2 = (le‘𝐾)
3 cdlemk2.j . 2 = (join‘𝐾)
4 cdlemk2.a . 2 𝐴 = (Atoms‘𝐾)
5 cdlemk2.h . 2 𝐻 = (LHyp‘𝐾)
6 cdlemk2.t . 2 𝑇 = ((LTrn‘𝐾)‘𝑊)
7 cdlemk2.r . 2 𝑅 = ((trL‘𝐾)‘𝑊)
8 cdlemk2.m . 2 = (meet‘𝐾)
9 cdlemk2.v . 2 𝑉 = (𝑑𝑇 ↦ (𝑘𝑇 (𝑘𝑃) = ((𝑃 (𝑅𝑑)) ((𝑄𝑃) (𝑅‘(𝑑𝐶))))))
101, 2, 3, 4, 5, 6, 7, 8, 9cdlemksv 40953 1 (𝐺𝑇 → (𝑉𝐺) = (𝑘𝑇 (𝑘𝑃) = ((𝑃 (𝑅𝐺)) ((𝑄𝑃) (𝑅‘(𝐺𝐶))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  cmpt 5170  ccnv 5613  ccom 5618  cfv 6481  crio 7302  (class class class)co 7346  Basecbs 17120  lecple 17168  joincjn 18217  meetcmee 18218  Atomscatm 39372  LHypclh 40093  LTrncltrn 40210  trLctrl 40267
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-iota 6437  df-fun 6483  df-fv 6489  df-riota 7303  df-ov 7349
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator