Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemkuv-2N Structured version   Visualization version   GIF version

Theorem cdlemkuv-2N 38897
Description: Part of proof of Lemma K of [Crawley] p. 118. Value of the sigma2 (p) function, given 𝑉. (Contributed by NM, 2-Jul-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdlemk2.b 𝐵 = (Base‘𝐾)
cdlemk2.l = (le‘𝐾)
cdlemk2.j = (join‘𝐾)
cdlemk2.m = (meet‘𝐾)
cdlemk2.a 𝐴 = (Atoms‘𝐾)
cdlemk2.h 𝐻 = (LHyp‘𝐾)
cdlemk2.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemk2.r 𝑅 = ((trL‘𝐾)‘𝑊)
cdlemk2.s 𝑆 = (𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))
cdlemk2.q 𝑄 = (𝑆𝐶)
cdlemk2.v 𝑉 = (𝑑𝑇 ↦ (𝑘𝑇 (𝑘𝑃) = ((𝑃 (𝑅𝑑)) ((𝑄𝑃) (𝑅‘(𝑑𝐶))))))
Assertion
Ref Expression
cdlemkuv-2N (𝐺𝑇 → (𝑉𝐺) = (𝑘𝑇 (𝑘𝑃) = ((𝑃 (𝑅𝐺)) ((𝑄𝑃) (𝑅‘(𝐺𝐶))))))
Distinct variable groups:   𝑓,𝑖,   ,𝑖   ,𝑓,𝑖   𝐴,𝑖   𝐶,𝑓,𝑖   𝑓,𝐹,𝑖   𝑖,𝐻   𝑖,𝐾   𝑓,𝑁,𝑖   𝑃,𝑓,𝑖   𝑅,𝑓,𝑖   𝑇,𝑓,𝑖   𝑓,𝑊,𝑖   ,𝑑   ,𝑑   𝐶,𝑑   𝑘,𝑑,𝐺   𝑄,𝑑   𝑃,𝑑   𝑅,𝑑   𝑇,𝑑   𝑊,𝑑
Allowed substitution hints:   𝐴(𝑓,𝑘,𝑑)   𝐵(𝑓,𝑖,𝑘,𝑑)   𝐶(𝑘)   𝑃(𝑘)   𝑄(𝑓,𝑖,𝑘)   𝑅(𝑘)   𝑆(𝑓,𝑖,𝑘,𝑑)   𝑇(𝑘)   𝐹(𝑘,𝑑)   𝐺(𝑓,𝑖)   𝐻(𝑓,𝑘,𝑑)   (𝑘)   𝐾(𝑓,𝑘,𝑑)   (𝑓,𝑘,𝑑)   (𝑘)   𝑁(𝑘,𝑑)   𝑉(𝑓,𝑖,𝑘,𝑑)   𝑊(𝑘)

Proof of Theorem cdlemkuv-2N
StepHypRef Expression
1 cdlemk2.b . 2 𝐵 = (Base‘𝐾)
2 cdlemk2.l . 2 = (le‘𝐾)
3 cdlemk2.j . 2 = (join‘𝐾)
4 cdlemk2.a . 2 𝐴 = (Atoms‘𝐾)
5 cdlemk2.h . 2 𝐻 = (LHyp‘𝐾)
6 cdlemk2.t . 2 𝑇 = ((LTrn‘𝐾)‘𝑊)
7 cdlemk2.r . 2 𝑅 = ((trL‘𝐾)‘𝑊)
8 cdlemk2.m . 2 = (meet‘𝐾)
9 cdlemk2.v . 2 𝑉 = (𝑑𝑇 ↦ (𝑘𝑇 (𝑘𝑃) = ((𝑃 (𝑅𝑑)) ((𝑄𝑃) (𝑅‘(𝑑𝐶))))))
101, 2, 3, 4, 5, 6, 7, 8, 9cdlemksv 38858 1 (𝐺𝑇 → (𝑉𝐺) = (𝑘𝑇 (𝑘𝑃) = ((𝑃 (𝑅𝐺)) ((𝑄𝑃) (𝑅‘(𝐺𝐶))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  cmpt 5157  ccnv 5588  ccom 5593  cfv 6433  crio 7231  (class class class)co 7275  Basecbs 16912  lecple 16969  joincjn 18029  meetcmee 18030  Atomscatm 37277  LHypclh 37998  LTrncltrn 38115  trLctrl 38172
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-iota 6391  df-fun 6435  df-fv 6441  df-riota 7232  df-ov 7278
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator