| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cdlemkuv-2N | Structured version Visualization version GIF version | ||
| Description: Part of proof of Lemma K of [Crawley] p. 118. Value of the sigma2 (p) function, given 𝑉. (Contributed by NM, 2-Jul-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| cdlemk2.b | ⊢ 𝐵 = (Base‘𝐾) |
| cdlemk2.l | ⊢ ≤ = (le‘𝐾) |
| cdlemk2.j | ⊢ ∨ = (join‘𝐾) |
| cdlemk2.m | ⊢ ∧ = (meet‘𝐾) |
| cdlemk2.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| cdlemk2.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| cdlemk2.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| cdlemk2.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
| cdlemk2.s | ⊢ 𝑆 = (𝑓 ∈ 𝑇 ↦ (℩𝑖 ∈ 𝑇 (𝑖‘𝑃) = ((𝑃 ∨ (𝑅‘𝑓)) ∧ ((𝑁‘𝑃) ∨ (𝑅‘(𝑓 ∘ ◡𝐹)))))) |
| cdlemk2.q | ⊢ 𝑄 = (𝑆‘𝐶) |
| cdlemk2.v | ⊢ 𝑉 = (𝑑 ∈ 𝑇 ↦ (℩𝑘 ∈ 𝑇 (𝑘‘𝑃) = ((𝑃 ∨ (𝑅‘𝑑)) ∧ ((𝑄‘𝑃) ∨ (𝑅‘(𝑑 ∘ ◡𝐶)))))) |
| Ref | Expression |
|---|---|
| cdlemkuv-2N | ⊢ (𝐺 ∈ 𝑇 → (𝑉‘𝐺) = (℩𝑘 ∈ 𝑇 (𝑘‘𝑃) = ((𝑃 ∨ (𝑅‘𝐺)) ∧ ((𝑄‘𝑃) ∨ (𝑅‘(𝐺 ∘ ◡𝐶)))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cdlemk2.b | . 2 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | cdlemk2.l | . 2 ⊢ ≤ = (le‘𝐾) | |
| 3 | cdlemk2.j | . 2 ⊢ ∨ = (join‘𝐾) | |
| 4 | cdlemk2.a | . 2 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 5 | cdlemk2.h | . 2 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 6 | cdlemk2.t | . 2 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 7 | cdlemk2.r | . 2 ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | |
| 8 | cdlemk2.m | . 2 ⊢ ∧ = (meet‘𝐾) | |
| 9 | cdlemk2.v | . 2 ⊢ 𝑉 = (𝑑 ∈ 𝑇 ↦ (℩𝑘 ∈ 𝑇 (𝑘‘𝑃) = ((𝑃 ∨ (𝑅‘𝑑)) ∧ ((𝑄‘𝑃) ∨ (𝑅‘(𝑑 ∘ ◡𝐶)))))) | |
| 10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | cdlemksv 40953 | 1 ⊢ (𝐺 ∈ 𝑇 → (𝑉‘𝐺) = (℩𝑘 ∈ 𝑇 (𝑘‘𝑃) = ((𝑃 ∨ (𝑅‘𝐺)) ∧ ((𝑄‘𝑃) ∨ (𝑅‘(𝐺 ∘ ◡𝐶)))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ↦ cmpt 5170 ◡ccnv 5613 ∘ ccom 5618 ‘cfv 6481 ℩crio 7302 (class class class)co 7346 Basecbs 17120 lecple 17168 joincjn 18217 meetcmee 18218 Atomscatm 39372 LHypclh 40093 LTrncltrn 40210 trLctrl 40267 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-iota 6437 df-fun 6483 df-fv 6489 df-riota 7303 df-ov 7349 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |