Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdlemksv | Structured version Visualization version GIF version |
Description: Part of proof of Lemma K of [Crawley] p. 118. Value of the sigma(p) function. (Contributed by NM, 26-Jun-2013.) |
Ref | Expression |
---|---|
cdlemk.b | ⊢ 𝐵 = (Base‘𝐾) |
cdlemk.l | ⊢ ≤ = (le‘𝐾) |
cdlemk.j | ⊢ ∨ = (join‘𝐾) |
cdlemk.a | ⊢ 𝐴 = (Atoms‘𝐾) |
cdlemk.h | ⊢ 𝐻 = (LHyp‘𝐾) |
cdlemk.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
cdlemk.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
cdlemk.m | ⊢ ∧ = (meet‘𝐾) |
cdlemk.s | ⊢ 𝑆 = (𝑓 ∈ 𝑇 ↦ (℩𝑖 ∈ 𝑇 (𝑖‘𝑃) = ((𝑃 ∨ (𝑅‘𝑓)) ∧ ((𝑁‘𝑃) ∨ (𝑅‘(𝑓 ∘ ◡𝐹)))))) |
Ref | Expression |
---|---|
cdlemksv | ⊢ (𝐺 ∈ 𝑇 → (𝑆‘𝐺) = (℩𝑖 ∈ 𝑇 (𝑖‘𝑃) = ((𝑃 ∨ (𝑅‘𝐺)) ∧ ((𝑁‘𝑃) ∨ (𝑅‘(𝐺 ∘ ◡𝐹)))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6756 | . . . . . 6 ⊢ (𝑓 = 𝐺 → (𝑅‘𝑓) = (𝑅‘𝐺)) | |
2 | 1 | oveq2d 7271 | . . . . 5 ⊢ (𝑓 = 𝐺 → (𝑃 ∨ (𝑅‘𝑓)) = (𝑃 ∨ (𝑅‘𝐺))) |
3 | coeq1 5755 | . . . . . . 7 ⊢ (𝑓 = 𝐺 → (𝑓 ∘ ◡𝐹) = (𝐺 ∘ ◡𝐹)) | |
4 | 3 | fveq2d 6760 | . . . . . 6 ⊢ (𝑓 = 𝐺 → (𝑅‘(𝑓 ∘ ◡𝐹)) = (𝑅‘(𝐺 ∘ ◡𝐹))) |
5 | 4 | oveq2d 7271 | . . . . 5 ⊢ (𝑓 = 𝐺 → ((𝑁‘𝑃) ∨ (𝑅‘(𝑓 ∘ ◡𝐹))) = ((𝑁‘𝑃) ∨ (𝑅‘(𝐺 ∘ ◡𝐹)))) |
6 | 2, 5 | oveq12d 7273 | . . . 4 ⊢ (𝑓 = 𝐺 → ((𝑃 ∨ (𝑅‘𝑓)) ∧ ((𝑁‘𝑃) ∨ (𝑅‘(𝑓 ∘ ◡𝐹)))) = ((𝑃 ∨ (𝑅‘𝐺)) ∧ ((𝑁‘𝑃) ∨ (𝑅‘(𝐺 ∘ ◡𝐹))))) |
7 | 6 | eqeq2d 2749 | . . 3 ⊢ (𝑓 = 𝐺 → ((𝑖‘𝑃) = ((𝑃 ∨ (𝑅‘𝑓)) ∧ ((𝑁‘𝑃) ∨ (𝑅‘(𝑓 ∘ ◡𝐹)))) ↔ (𝑖‘𝑃) = ((𝑃 ∨ (𝑅‘𝐺)) ∧ ((𝑁‘𝑃) ∨ (𝑅‘(𝐺 ∘ ◡𝐹)))))) |
8 | 7 | riotabidv 7214 | . 2 ⊢ (𝑓 = 𝐺 → (℩𝑖 ∈ 𝑇 (𝑖‘𝑃) = ((𝑃 ∨ (𝑅‘𝑓)) ∧ ((𝑁‘𝑃) ∨ (𝑅‘(𝑓 ∘ ◡𝐹))))) = (℩𝑖 ∈ 𝑇 (𝑖‘𝑃) = ((𝑃 ∨ (𝑅‘𝐺)) ∧ ((𝑁‘𝑃) ∨ (𝑅‘(𝐺 ∘ ◡𝐹)))))) |
9 | cdlemk.s | . 2 ⊢ 𝑆 = (𝑓 ∈ 𝑇 ↦ (℩𝑖 ∈ 𝑇 (𝑖‘𝑃) = ((𝑃 ∨ (𝑅‘𝑓)) ∧ ((𝑁‘𝑃) ∨ (𝑅‘(𝑓 ∘ ◡𝐹)))))) | |
10 | riotaex 7216 | . 2 ⊢ (℩𝑖 ∈ 𝑇 (𝑖‘𝑃) = ((𝑃 ∨ (𝑅‘𝐺)) ∧ ((𝑁‘𝑃) ∨ (𝑅‘(𝐺 ∘ ◡𝐹))))) ∈ V | |
11 | 8, 9, 10 | fvmpt 6857 | 1 ⊢ (𝐺 ∈ 𝑇 → (𝑆‘𝐺) = (℩𝑖 ∈ 𝑇 (𝑖‘𝑃) = ((𝑃 ∨ (𝑅‘𝐺)) ∧ ((𝑁‘𝑃) ∨ (𝑅‘(𝐺 ∘ ◡𝐹)))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ↦ cmpt 5153 ◡ccnv 5579 ∘ ccom 5584 ‘cfv 6418 ℩crio 7211 (class class class)co 7255 Basecbs 16840 lecple 16895 joincjn 17944 meetcmee 17945 Atomscatm 37204 LHypclh 37925 LTrncltrn 38042 trLctrl 38099 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fv 6426 df-riota 7212 df-ov 7258 |
This theorem is referenced by: cdlemksel 38786 cdlemksv2 38788 cdlemkuvN 38805 cdlemkuel 38806 cdlemkuv2 38808 cdlemkuv-2N 38824 cdlemkuu 38836 |
Copyright terms: Public domain | W3C validator |