Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemksv Structured version   Visualization version   GIF version

Theorem cdlemksv 40827
Description: Part of proof of Lemma K of [Crawley] p. 118. Value of the sigma(p) function. (Contributed by NM, 26-Jun-2013.)
Hypotheses
Ref Expression
cdlemk.b 𝐵 = (Base‘𝐾)
cdlemk.l = (le‘𝐾)
cdlemk.j = (join‘𝐾)
cdlemk.a 𝐴 = (Atoms‘𝐾)
cdlemk.h 𝐻 = (LHyp‘𝐾)
cdlemk.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemk.r 𝑅 = ((trL‘𝐾)‘𝑊)
cdlemk.m = (meet‘𝐾)
cdlemk.s 𝑆 = (𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))
Assertion
Ref Expression
cdlemksv (𝐺𝑇 → (𝑆𝐺) = (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝐺)) ((𝑁𝑃) (𝑅‘(𝐺𝐹))))))
Distinct variable groups:   ,𝑓   ,𝑓   𝑓,𝐹   𝑓,𝑖,𝐺   𝑓,𝑁   𝑃,𝑓   𝑅,𝑓   𝑇,𝑓   𝑓,𝑊
Allowed substitution hints:   𝐴(𝑓,𝑖)   𝐵(𝑓,𝑖)   𝑃(𝑖)   𝑅(𝑖)   𝑆(𝑓,𝑖)   𝑇(𝑖)   𝐹(𝑖)   𝐻(𝑓,𝑖)   (𝑖)   𝐾(𝑓,𝑖)   (𝑓,𝑖)   (𝑖)   𝑁(𝑖)   𝑊(𝑖)

Proof of Theorem cdlemksv
StepHypRef Expression
1 fveq2 6822 . . . . . 6 (𝑓 = 𝐺 → (𝑅𝑓) = (𝑅𝐺))
21oveq2d 7365 . . . . 5 (𝑓 = 𝐺 → (𝑃 (𝑅𝑓)) = (𝑃 (𝑅𝐺)))
3 coeq1 5800 . . . . . . 7 (𝑓 = 𝐺 → (𝑓𝐹) = (𝐺𝐹))
43fveq2d 6826 . . . . . 6 (𝑓 = 𝐺 → (𝑅‘(𝑓𝐹)) = (𝑅‘(𝐺𝐹)))
54oveq2d 7365 . . . . 5 (𝑓 = 𝐺 → ((𝑁𝑃) (𝑅‘(𝑓𝐹))) = ((𝑁𝑃) (𝑅‘(𝐺𝐹))))
62, 5oveq12d 7367 . . . 4 (𝑓 = 𝐺 → ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹)))) = ((𝑃 (𝑅𝐺)) ((𝑁𝑃) (𝑅‘(𝐺𝐹)))))
76eqeq2d 2740 . . 3 (𝑓 = 𝐺 → ((𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹)))) ↔ (𝑖𝑃) = ((𝑃 (𝑅𝐺)) ((𝑁𝑃) (𝑅‘(𝐺𝐹))))))
87riotabidv 7308 . 2 (𝑓 = 𝐺 → (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))) = (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝐺)) ((𝑁𝑃) (𝑅‘(𝐺𝐹))))))
9 cdlemk.s . 2 𝑆 = (𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))
10 riotaex 7310 . 2 (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝐺)) ((𝑁𝑃) (𝑅‘(𝐺𝐹))))) ∈ V
118, 9, 10fvmpt 6930 1 (𝐺𝑇 → (𝑆𝐺) = (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝐺)) ((𝑁𝑃) (𝑅‘(𝐺𝐹))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cmpt 5173  ccnv 5618  ccom 5623  cfv 6482  crio 7305  (class class class)co 7349  Basecbs 17120  lecple 17168  joincjn 18217  meetcmee 18218  Atomscatm 39246  LHypclh 39967  LTrncltrn 40084  trLctrl 40141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-iota 6438  df-fun 6484  df-fv 6490  df-riota 7306  df-ov 7352
This theorem is referenced by:  cdlemksel  40828  cdlemksv2  40830  cdlemkuvN  40847  cdlemkuel  40848  cdlemkuv2  40850  cdlemkuv-2N  40866  cdlemkuu  40878
  Copyright terms: Public domain W3C validator