![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdlemksv | Structured version Visualization version GIF version |
Description: Part of proof of Lemma K of [Crawley] p. 118. Value of the sigma(p) function. (Contributed by NM, 26-Jun-2013.) |
Ref | Expression |
---|---|
cdlemk.b | β’ π΅ = (BaseβπΎ) |
cdlemk.l | β’ β€ = (leβπΎ) |
cdlemk.j | β’ β¨ = (joinβπΎ) |
cdlemk.a | β’ π΄ = (AtomsβπΎ) |
cdlemk.h | β’ π» = (LHypβπΎ) |
cdlemk.t | β’ π = ((LTrnβπΎ)βπ) |
cdlemk.r | β’ π = ((trLβπΎ)βπ) |
cdlemk.m | β’ β§ = (meetβπΎ) |
cdlemk.s | β’ π = (π β π β¦ (β©π β π (πβπ) = ((π β¨ (π βπ)) β§ ((πβπ) β¨ (π β(π β β‘πΉ)))))) |
Ref | Expression |
---|---|
cdlemksv | β’ (πΊ β π β (πβπΊ) = (β©π β π (πβπ) = ((π β¨ (π βπΊ)) β§ ((πβπ) β¨ (π β(πΊ β β‘πΉ)))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6891 | . . . . . 6 β’ (π = πΊ β (π βπ) = (π βπΊ)) | |
2 | 1 | oveq2d 7424 | . . . . 5 β’ (π = πΊ β (π β¨ (π βπ)) = (π β¨ (π βπΊ))) |
3 | coeq1 5857 | . . . . . . 7 β’ (π = πΊ β (π β β‘πΉ) = (πΊ β β‘πΉ)) | |
4 | 3 | fveq2d 6895 | . . . . . 6 β’ (π = πΊ β (π β(π β β‘πΉ)) = (π β(πΊ β β‘πΉ))) |
5 | 4 | oveq2d 7424 | . . . . 5 β’ (π = πΊ β ((πβπ) β¨ (π β(π β β‘πΉ))) = ((πβπ) β¨ (π β(πΊ β β‘πΉ)))) |
6 | 2, 5 | oveq12d 7426 | . . . 4 β’ (π = πΊ β ((π β¨ (π βπ)) β§ ((πβπ) β¨ (π β(π β β‘πΉ)))) = ((π β¨ (π βπΊ)) β§ ((πβπ) β¨ (π β(πΊ β β‘πΉ))))) |
7 | 6 | eqeq2d 2743 | . . 3 β’ (π = πΊ β ((πβπ) = ((π β¨ (π βπ)) β§ ((πβπ) β¨ (π β(π β β‘πΉ)))) β (πβπ) = ((π β¨ (π βπΊ)) β§ ((πβπ) β¨ (π β(πΊ β β‘πΉ)))))) |
8 | 7 | riotabidv 7366 | . 2 β’ (π = πΊ β (β©π β π (πβπ) = ((π β¨ (π βπ)) β§ ((πβπ) β¨ (π β(π β β‘πΉ))))) = (β©π β π (πβπ) = ((π β¨ (π βπΊ)) β§ ((πβπ) β¨ (π β(πΊ β β‘πΉ)))))) |
9 | cdlemk.s | . 2 β’ π = (π β π β¦ (β©π β π (πβπ) = ((π β¨ (π βπ)) β§ ((πβπ) β¨ (π β(π β β‘πΉ)))))) | |
10 | riotaex 7368 | . 2 β’ (β©π β π (πβπ) = ((π β¨ (π βπΊ)) β§ ((πβπ) β¨ (π β(πΊ β β‘πΉ))))) β V | |
11 | 8, 9, 10 | fvmpt 6998 | 1 β’ (πΊ β π β (πβπΊ) = (β©π β π (πβπ) = ((π β¨ (π βπΊ)) β§ ((πβπ) β¨ (π β(πΊ β β‘πΉ)))))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1541 β wcel 2106 β¦ cmpt 5231 β‘ccnv 5675 β ccom 5680 βcfv 6543 β©crio 7363 (class class class)co 7408 Basecbs 17143 lecple 17203 joincjn 18263 meetcmee 18264 Atomscatm 38128 LHypclh 38850 LTrncltrn 38967 trLctrl 39024 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-iota 6495 df-fun 6545 df-fv 6551 df-riota 7364 df-ov 7411 |
This theorem is referenced by: cdlemksel 39711 cdlemksv2 39713 cdlemkuvN 39730 cdlemkuel 39731 cdlemkuv2 39733 cdlemkuv-2N 39749 cdlemkuu 39761 |
Copyright terms: Public domain | W3C validator |