Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemksv Structured version   Visualization version   GIF version

Theorem cdlemksv 38785
Description: Part of proof of Lemma K of [Crawley] p. 118. Value of the sigma(p) function. (Contributed by NM, 26-Jun-2013.)
Hypotheses
Ref Expression
cdlemk.b 𝐵 = (Base‘𝐾)
cdlemk.l = (le‘𝐾)
cdlemk.j = (join‘𝐾)
cdlemk.a 𝐴 = (Atoms‘𝐾)
cdlemk.h 𝐻 = (LHyp‘𝐾)
cdlemk.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemk.r 𝑅 = ((trL‘𝐾)‘𝑊)
cdlemk.m = (meet‘𝐾)
cdlemk.s 𝑆 = (𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))
Assertion
Ref Expression
cdlemksv (𝐺𝑇 → (𝑆𝐺) = (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝐺)) ((𝑁𝑃) (𝑅‘(𝐺𝐹))))))
Distinct variable groups:   ,𝑓   ,𝑓   𝑓,𝐹   𝑓,𝑖,𝐺   𝑓,𝑁   𝑃,𝑓   𝑅,𝑓   𝑇,𝑓   𝑓,𝑊
Allowed substitution hints:   𝐴(𝑓,𝑖)   𝐵(𝑓,𝑖)   𝑃(𝑖)   𝑅(𝑖)   𝑆(𝑓,𝑖)   𝑇(𝑖)   𝐹(𝑖)   𝐻(𝑓,𝑖)   (𝑖)   𝐾(𝑓,𝑖)   (𝑓,𝑖)   (𝑖)   𝑁(𝑖)   𝑊(𝑖)

Proof of Theorem cdlemksv
StepHypRef Expression
1 fveq2 6756 . . . . . 6 (𝑓 = 𝐺 → (𝑅𝑓) = (𝑅𝐺))
21oveq2d 7271 . . . . 5 (𝑓 = 𝐺 → (𝑃 (𝑅𝑓)) = (𝑃 (𝑅𝐺)))
3 coeq1 5755 . . . . . . 7 (𝑓 = 𝐺 → (𝑓𝐹) = (𝐺𝐹))
43fveq2d 6760 . . . . . 6 (𝑓 = 𝐺 → (𝑅‘(𝑓𝐹)) = (𝑅‘(𝐺𝐹)))
54oveq2d 7271 . . . . 5 (𝑓 = 𝐺 → ((𝑁𝑃) (𝑅‘(𝑓𝐹))) = ((𝑁𝑃) (𝑅‘(𝐺𝐹))))
62, 5oveq12d 7273 . . . 4 (𝑓 = 𝐺 → ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹)))) = ((𝑃 (𝑅𝐺)) ((𝑁𝑃) (𝑅‘(𝐺𝐹)))))
76eqeq2d 2749 . . 3 (𝑓 = 𝐺 → ((𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹)))) ↔ (𝑖𝑃) = ((𝑃 (𝑅𝐺)) ((𝑁𝑃) (𝑅‘(𝐺𝐹))))))
87riotabidv 7214 . 2 (𝑓 = 𝐺 → (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))) = (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝐺)) ((𝑁𝑃) (𝑅‘(𝐺𝐹))))))
9 cdlemk.s . 2 𝑆 = (𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))
10 riotaex 7216 . 2 (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝐺)) ((𝑁𝑃) (𝑅‘(𝐺𝐹))))) ∈ V
118, 9, 10fvmpt 6857 1 (𝐺𝑇 → (𝑆𝐺) = (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝐺)) ((𝑁𝑃) (𝑅‘(𝐺𝐹))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  cmpt 5153  ccnv 5579  ccom 5584  cfv 6418  crio 7211  (class class class)co 7255  Basecbs 16840  lecple 16895  joincjn 17944  meetcmee 17945  Atomscatm 37204  LHypclh 37925  LTrncltrn 38042  trLctrl 38099
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-iota 6376  df-fun 6420  df-fv 6426  df-riota 7212  df-ov 7258
This theorem is referenced by:  cdlemksel  38786  cdlemksv2  38788  cdlemkuvN  38805  cdlemkuel  38806  cdlemkuv2  38808  cdlemkuv-2N  38824  cdlemkuu  38836
  Copyright terms: Public domain W3C validator