Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemksv Structured version   Visualization version   GIF version

Theorem cdlemksv 36918
Description: Part of proof of Lemma K of [Crawley] p. 118. Value of the sigma(p) function. (Contributed by NM, 26-Jun-2013.)
Hypotheses
Ref Expression
cdlemk.b 𝐵 = (Base‘𝐾)
cdlemk.l = (le‘𝐾)
cdlemk.j = (join‘𝐾)
cdlemk.a 𝐴 = (Atoms‘𝐾)
cdlemk.h 𝐻 = (LHyp‘𝐾)
cdlemk.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemk.r 𝑅 = ((trL‘𝐾)‘𝑊)
cdlemk.m = (meet‘𝐾)
cdlemk.s 𝑆 = (𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))
Assertion
Ref Expression
cdlemksv (𝐺𝑇 → (𝑆𝐺) = (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝐺)) ((𝑁𝑃) (𝑅‘(𝐺𝐹))))))
Distinct variable groups:   ,𝑓   ,𝑓   𝑓,𝐹   𝑓,𝑖,𝐺   𝑓,𝑁   𝑃,𝑓   𝑅,𝑓   𝑇,𝑓   𝑓,𝑊
Allowed substitution hints:   𝐴(𝑓,𝑖)   𝐵(𝑓,𝑖)   𝑃(𝑖)   𝑅(𝑖)   𝑆(𝑓,𝑖)   𝑇(𝑖)   𝐹(𝑖)   𝐻(𝑓,𝑖)   (𝑖)   𝐾(𝑓,𝑖)   (𝑓,𝑖)   (𝑖)   𝑁(𝑖)   𝑊(𝑖)

Proof of Theorem cdlemksv
StepHypRef Expression
1 fveq2 6437 . . . . . 6 (𝑓 = 𝐺 → (𝑅𝑓) = (𝑅𝐺))
21oveq2d 6926 . . . . 5 (𝑓 = 𝐺 → (𝑃 (𝑅𝑓)) = (𝑃 (𝑅𝐺)))
3 coeq1 5516 . . . . . . 7 (𝑓 = 𝐺 → (𝑓𝐹) = (𝐺𝐹))
43fveq2d 6441 . . . . . 6 (𝑓 = 𝐺 → (𝑅‘(𝑓𝐹)) = (𝑅‘(𝐺𝐹)))
54oveq2d 6926 . . . . 5 (𝑓 = 𝐺 → ((𝑁𝑃) (𝑅‘(𝑓𝐹))) = ((𝑁𝑃) (𝑅‘(𝐺𝐹))))
62, 5oveq12d 6928 . . . 4 (𝑓 = 𝐺 → ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹)))) = ((𝑃 (𝑅𝐺)) ((𝑁𝑃) (𝑅‘(𝐺𝐹)))))
76eqeq2d 2835 . . 3 (𝑓 = 𝐺 → ((𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹)))) ↔ (𝑖𝑃) = ((𝑃 (𝑅𝐺)) ((𝑁𝑃) (𝑅‘(𝐺𝐹))))))
87riotabidv 6873 . 2 (𝑓 = 𝐺 → (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))) = (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝐺)) ((𝑁𝑃) (𝑅‘(𝐺𝐹))))))
9 cdlemk.s . 2 𝑆 = (𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))
10 riotaex 6875 . 2 (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝐺)) ((𝑁𝑃) (𝑅‘(𝐺𝐹))))) ∈ V
118, 9, 10fvmpt 6533 1 (𝐺𝑇 → (𝑆𝐺) = (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝐺)) ((𝑁𝑃) (𝑅‘(𝐺𝐹))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1656  wcel 2164  cmpt 4954  ccnv 5345  ccom 5350  cfv 6127  crio 6870  (class class class)co 6910  Basecbs 16229  lecple 16319  joincjn 17304  meetcmee 17305  Atomscatm 35337  LHypclh 36058  LTrncltrn 36175  trLctrl 36232
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-sep 5007  ax-nul 5015  ax-pr 5129
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ral 3122  df-rex 3123  df-rab 3126  df-v 3416  df-sbc 3663  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4147  df-if 4309  df-sn 4400  df-pr 4402  df-op 4406  df-uni 4661  df-br 4876  df-opab 4938  df-mpt 4955  df-id 5252  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-iota 6090  df-fun 6129  df-fv 6135  df-riota 6871  df-ov 6913
This theorem is referenced by:  cdlemksel  36919  cdlemksv2  36921  cdlemkuvN  36938  cdlemkuel  36939  cdlemkuv2  36941  cdlemkuv-2N  36957  cdlemkuu  36969
  Copyright terms: Public domain W3C validator