![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdlemksv | Structured version Visualization version GIF version |
Description: Part of proof of Lemma K of [Crawley] p. 118. Value of the sigma(p) function. (Contributed by NM, 26-Jun-2013.) |
Ref | Expression |
---|---|
cdlemk.b | ⊢ 𝐵 = (Base‘𝐾) |
cdlemk.l | ⊢ ≤ = (le‘𝐾) |
cdlemk.j | ⊢ ∨ = (join‘𝐾) |
cdlemk.a | ⊢ 𝐴 = (Atoms‘𝐾) |
cdlemk.h | ⊢ 𝐻 = (LHyp‘𝐾) |
cdlemk.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
cdlemk.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
cdlemk.m | ⊢ ∧ = (meet‘𝐾) |
cdlemk.s | ⊢ 𝑆 = (𝑓 ∈ 𝑇 ↦ (℩𝑖 ∈ 𝑇 (𝑖‘𝑃) = ((𝑃 ∨ (𝑅‘𝑓)) ∧ ((𝑁‘𝑃) ∨ (𝑅‘(𝑓 ∘ ◡𝐹)))))) |
Ref | Expression |
---|---|
cdlemksv | ⊢ (𝐺 ∈ 𝑇 → (𝑆‘𝐺) = (℩𝑖 ∈ 𝑇 (𝑖‘𝑃) = ((𝑃 ∨ (𝑅‘𝐺)) ∧ ((𝑁‘𝑃) ∨ (𝑅‘(𝐺 ∘ ◡𝐹)))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6881 | . . . . . 6 ⊢ (𝑓 = 𝐺 → (𝑅‘𝑓) = (𝑅‘𝐺)) | |
2 | 1 | oveq2d 7417 | . . . . 5 ⊢ (𝑓 = 𝐺 → (𝑃 ∨ (𝑅‘𝑓)) = (𝑃 ∨ (𝑅‘𝐺))) |
3 | coeq1 5847 | . . . . . . 7 ⊢ (𝑓 = 𝐺 → (𝑓 ∘ ◡𝐹) = (𝐺 ∘ ◡𝐹)) | |
4 | 3 | fveq2d 6885 | . . . . . 6 ⊢ (𝑓 = 𝐺 → (𝑅‘(𝑓 ∘ ◡𝐹)) = (𝑅‘(𝐺 ∘ ◡𝐹))) |
5 | 4 | oveq2d 7417 | . . . . 5 ⊢ (𝑓 = 𝐺 → ((𝑁‘𝑃) ∨ (𝑅‘(𝑓 ∘ ◡𝐹))) = ((𝑁‘𝑃) ∨ (𝑅‘(𝐺 ∘ ◡𝐹)))) |
6 | 2, 5 | oveq12d 7419 | . . . 4 ⊢ (𝑓 = 𝐺 → ((𝑃 ∨ (𝑅‘𝑓)) ∧ ((𝑁‘𝑃) ∨ (𝑅‘(𝑓 ∘ ◡𝐹)))) = ((𝑃 ∨ (𝑅‘𝐺)) ∧ ((𝑁‘𝑃) ∨ (𝑅‘(𝐺 ∘ ◡𝐹))))) |
7 | 6 | eqeq2d 2735 | . . 3 ⊢ (𝑓 = 𝐺 → ((𝑖‘𝑃) = ((𝑃 ∨ (𝑅‘𝑓)) ∧ ((𝑁‘𝑃) ∨ (𝑅‘(𝑓 ∘ ◡𝐹)))) ↔ (𝑖‘𝑃) = ((𝑃 ∨ (𝑅‘𝐺)) ∧ ((𝑁‘𝑃) ∨ (𝑅‘(𝐺 ∘ ◡𝐹)))))) |
8 | 7 | riotabidv 7359 | . 2 ⊢ (𝑓 = 𝐺 → (℩𝑖 ∈ 𝑇 (𝑖‘𝑃) = ((𝑃 ∨ (𝑅‘𝑓)) ∧ ((𝑁‘𝑃) ∨ (𝑅‘(𝑓 ∘ ◡𝐹))))) = (℩𝑖 ∈ 𝑇 (𝑖‘𝑃) = ((𝑃 ∨ (𝑅‘𝐺)) ∧ ((𝑁‘𝑃) ∨ (𝑅‘(𝐺 ∘ ◡𝐹)))))) |
9 | cdlemk.s | . 2 ⊢ 𝑆 = (𝑓 ∈ 𝑇 ↦ (℩𝑖 ∈ 𝑇 (𝑖‘𝑃) = ((𝑃 ∨ (𝑅‘𝑓)) ∧ ((𝑁‘𝑃) ∨ (𝑅‘(𝑓 ∘ ◡𝐹)))))) | |
10 | riotaex 7361 | . 2 ⊢ (℩𝑖 ∈ 𝑇 (𝑖‘𝑃) = ((𝑃 ∨ (𝑅‘𝐺)) ∧ ((𝑁‘𝑃) ∨ (𝑅‘(𝐺 ∘ ◡𝐹))))) ∈ V | |
11 | 8, 9, 10 | fvmpt 6988 | 1 ⊢ (𝐺 ∈ 𝑇 → (𝑆‘𝐺) = (℩𝑖 ∈ 𝑇 (𝑖‘𝑃) = ((𝑃 ∨ (𝑅‘𝐺)) ∧ ((𝑁‘𝑃) ∨ (𝑅‘(𝐺 ∘ ◡𝐹)))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 ↦ cmpt 5221 ◡ccnv 5665 ∘ ccom 5670 ‘cfv 6533 ℩crio 7356 (class class class)co 7401 Basecbs 17143 lecple 17203 joincjn 18266 meetcmee 18267 Atomscatm 38623 LHypclh 39345 LTrncltrn 39462 trLctrl 39519 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pr 5417 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-br 5139 df-opab 5201 df-mpt 5222 df-id 5564 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-iota 6485 df-fun 6535 df-fv 6541 df-riota 7357 df-ov 7404 |
This theorem is referenced by: cdlemksel 40206 cdlemksv2 40208 cdlemkuvN 40225 cdlemkuel 40226 cdlemkuv2 40228 cdlemkuv-2N 40244 cdlemkuu 40256 |
Copyright terms: Public domain | W3C validator |