| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cdlemksv | Structured version Visualization version GIF version | ||
| Description: Part of proof of Lemma K of [Crawley] p. 118. Value of the sigma(p) function. (Contributed by NM, 26-Jun-2013.) |
| Ref | Expression |
|---|---|
| cdlemk.b | ⊢ 𝐵 = (Base‘𝐾) |
| cdlemk.l | ⊢ ≤ = (le‘𝐾) |
| cdlemk.j | ⊢ ∨ = (join‘𝐾) |
| cdlemk.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| cdlemk.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| cdlemk.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| cdlemk.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
| cdlemk.m | ⊢ ∧ = (meet‘𝐾) |
| cdlemk.s | ⊢ 𝑆 = (𝑓 ∈ 𝑇 ↦ (℩𝑖 ∈ 𝑇 (𝑖‘𝑃) = ((𝑃 ∨ (𝑅‘𝑓)) ∧ ((𝑁‘𝑃) ∨ (𝑅‘(𝑓 ∘ ◡𝐹)))))) |
| Ref | Expression |
|---|---|
| cdlemksv | ⊢ (𝐺 ∈ 𝑇 → (𝑆‘𝐺) = (℩𝑖 ∈ 𝑇 (𝑖‘𝑃) = ((𝑃 ∨ (𝑅‘𝐺)) ∧ ((𝑁‘𝑃) ∨ (𝑅‘(𝐺 ∘ ◡𝐹)))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6822 | . . . . . 6 ⊢ (𝑓 = 𝐺 → (𝑅‘𝑓) = (𝑅‘𝐺)) | |
| 2 | 1 | oveq2d 7362 | . . . . 5 ⊢ (𝑓 = 𝐺 → (𝑃 ∨ (𝑅‘𝑓)) = (𝑃 ∨ (𝑅‘𝐺))) |
| 3 | coeq1 5796 | . . . . . . 7 ⊢ (𝑓 = 𝐺 → (𝑓 ∘ ◡𝐹) = (𝐺 ∘ ◡𝐹)) | |
| 4 | 3 | fveq2d 6826 | . . . . . 6 ⊢ (𝑓 = 𝐺 → (𝑅‘(𝑓 ∘ ◡𝐹)) = (𝑅‘(𝐺 ∘ ◡𝐹))) |
| 5 | 4 | oveq2d 7362 | . . . . 5 ⊢ (𝑓 = 𝐺 → ((𝑁‘𝑃) ∨ (𝑅‘(𝑓 ∘ ◡𝐹))) = ((𝑁‘𝑃) ∨ (𝑅‘(𝐺 ∘ ◡𝐹)))) |
| 6 | 2, 5 | oveq12d 7364 | . . . 4 ⊢ (𝑓 = 𝐺 → ((𝑃 ∨ (𝑅‘𝑓)) ∧ ((𝑁‘𝑃) ∨ (𝑅‘(𝑓 ∘ ◡𝐹)))) = ((𝑃 ∨ (𝑅‘𝐺)) ∧ ((𝑁‘𝑃) ∨ (𝑅‘(𝐺 ∘ ◡𝐹))))) |
| 7 | 6 | eqeq2d 2742 | . . 3 ⊢ (𝑓 = 𝐺 → ((𝑖‘𝑃) = ((𝑃 ∨ (𝑅‘𝑓)) ∧ ((𝑁‘𝑃) ∨ (𝑅‘(𝑓 ∘ ◡𝐹)))) ↔ (𝑖‘𝑃) = ((𝑃 ∨ (𝑅‘𝐺)) ∧ ((𝑁‘𝑃) ∨ (𝑅‘(𝐺 ∘ ◡𝐹)))))) |
| 8 | 7 | riotabidv 7305 | . 2 ⊢ (𝑓 = 𝐺 → (℩𝑖 ∈ 𝑇 (𝑖‘𝑃) = ((𝑃 ∨ (𝑅‘𝑓)) ∧ ((𝑁‘𝑃) ∨ (𝑅‘(𝑓 ∘ ◡𝐹))))) = (℩𝑖 ∈ 𝑇 (𝑖‘𝑃) = ((𝑃 ∨ (𝑅‘𝐺)) ∧ ((𝑁‘𝑃) ∨ (𝑅‘(𝐺 ∘ ◡𝐹)))))) |
| 9 | cdlemk.s | . 2 ⊢ 𝑆 = (𝑓 ∈ 𝑇 ↦ (℩𝑖 ∈ 𝑇 (𝑖‘𝑃) = ((𝑃 ∨ (𝑅‘𝑓)) ∧ ((𝑁‘𝑃) ∨ (𝑅‘(𝑓 ∘ ◡𝐹)))))) | |
| 10 | riotaex 7307 | . 2 ⊢ (℩𝑖 ∈ 𝑇 (𝑖‘𝑃) = ((𝑃 ∨ (𝑅‘𝐺)) ∧ ((𝑁‘𝑃) ∨ (𝑅‘(𝐺 ∘ ◡𝐹))))) ∈ V | |
| 11 | 8, 9, 10 | fvmpt 6929 | 1 ⊢ (𝐺 ∈ 𝑇 → (𝑆‘𝐺) = (℩𝑖 ∈ 𝑇 (𝑖‘𝑃) = ((𝑃 ∨ (𝑅‘𝐺)) ∧ ((𝑁‘𝑃) ∨ (𝑅‘(𝐺 ∘ ◡𝐹)))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ↦ cmpt 5170 ◡ccnv 5613 ∘ ccom 5618 ‘cfv 6481 ℩crio 7302 (class class class)co 7346 Basecbs 17120 lecple 17168 joincjn 18217 meetcmee 18218 Atomscatm 39372 LHypclh 40093 LTrncltrn 40210 trLctrl 40267 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-iota 6437 df-fun 6483 df-fv 6489 df-riota 7303 df-ov 7349 |
| This theorem is referenced by: cdlemksel 40954 cdlemksv2 40956 cdlemkuvN 40973 cdlemkuel 40974 cdlemkuv2 40976 cdlemkuv-2N 40992 cdlemkuu 41004 |
| Copyright terms: Public domain | W3C validator |