Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemksv Structured version   Visualization version   GIF version

Theorem cdlemksv 39310
Description: Part of proof of Lemma K of [Crawley] p. 118. Value of the sigma(p) function. (Contributed by NM, 26-Jun-2013.)
Hypotheses
Ref Expression
cdlemk.b 𝐡 = (Baseβ€˜πΎ)
cdlemk.l ≀ = (leβ€˜πΎ)
cdlemk.j ∨ = (joinβ€˜πΎ)
cdlemk.a 𝐴 = (Atomsβ€˜πΎ)
cdlemk.h 𝐻 = (LHypβ€˜πΎ)
cdlemk.t 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
cdlemk.r 𝑅 = ((trLβ€˜πΎ)β€˜π‘Š)
cdlemk.m ∧ = (meetβ€˜πΎ)
cdlemk.s 𝑆 = (𝑓 ∈ 𝑇 ↦ (℩𝑖 ∈ 𝑇 (π‘–β€˜π‘ƒ) = ((𝑃 ∨ (π‘…β€˜π‘“)) ∧ ((π‘β€˜π‘ƒ) ∨ (π‘…β€˜(𝑓 ∘ ◑𝐹))))))
Assertion
Ref Expression
cdlemksv (𝐺 ∈ 𝑇 β†’ (π‘†β€˜πΊ) = (℩𝑖 ∈ 𝑇 (π‘–β€˜π‘ƒ) = ((𝑃 ∨ (π‘…β€˜πΊ)) ∧ ((π‘β€˜π‘ƒ) ∨ (π‘…β€˜(𝐺 ∘ ◑𝐹))))))
Distinct variable groups:   ∧ ,𝑓   ∨ ,𝑓   𝑓,𝐹   𝑓,𝑖,𝐺   𝑓,𝑁   𝑃,𝑓   𝑅,𝑓   𝑇,𝑓   𝑓,π‘Š
Allowed substitution hints:   𝐴(𝑓,𝑖)   𝐡(𝑓,𝑖)   𝑃(𝑖)   𝑅(𝑖)   𝑆(𝑓,𝑖)   𝑇(𝑖)   𝐹(𝑖)   𝐻(𝑓,𝑖)   ∨ (𝑖)   𝐾(𝑓,𝑖)   ≀ (𝑓,𝑖)   ∧ (𝑖)   𝑁(𝑖)   π‘Š(𝑖)

Proof of Theorem cdlemksv
StepHypRef Expression
1 fveq2 6843 . . . . . 6 (𝑓 = 𝐺 β†’ (π‘…β€˜π‘“) = (π‘…β€˜πΊ))
21oveq2d 7374 . . . . 5 (𝑓 = 𝐺 β†’ (𝑃 ∨ (π‘…β€˜π‘“)) = (𝑃 ∨ (π‘…β€˜πΊ)))
3 coeq1 5814 . . . . . . 7 (𝑓 = 𝐺 β†’ (𝑓 ∘ ◑𝐹) = (𝐺 ∘ ◑𝐹))
43fveq2d 6847 . . . . . 6 (𝑓 = 𝐺 β†’ (π‘…β€˜(𝑓 ∘ ◑𝐹)) = (π‘…β€˜(𝐺 ∘ ◑𝐹)))
54oveq2d 7374 . . . . 5 (𝑓 = 𝐺 β†’ ((π‘β€˜π‘ƒ) ∨ (π‘…β€˜(𝑓 ∘ ◑𝐹))) = ((π‘β€˜π‘ƒ) ∨ (π‘…β€˜(𝐺 ∘ ◑𝐹))))
62, 5oveq12d 7376 . . . 4 (𝑓 = 𝐺 β†’ ((𝑃 ∨ (π‘…β€˜π‘“)) ∧ ((π‘β€˜π‘ƒ) ∨ (π‘…β€˜(𝑓 ∘ ◑𝐹)))) = ((𝑃 ∨ (π‘…β€˜πΊ)) ∧ ((π‘β€˜π‘ƒ) ∨ (π‘…β€˜(𝐺 ∘ ◑𝐹)))))
76eqeq2d 2748 . . 3 (𝑓 = 𝐺 β†’ ((π‘–β€˜π‘ƒ) = ((𝑃 ∨ (π‘…β€˜π‘“)) ∧ ((π‘β€˜π‘ƒ) ∨ (π‘…β€˜(𝑓 ∘ ◑𝐹)))) ↔ (π‘–β€˜π‘ƒ) = ((𝑃 ∨ (π‘…β€˜πΊ)) ∧ ((π‘β€˜π‘ƒ) ∨ (π‘…β€˜(𝐺 ∘ ◑𝐹))))))
87riotabidv 7316 . 2 (𝑓 = 𝐺 β†’ (℩𝑖 ∈ 𝑇 (π‘–β€˜π‘ƒ) = ((𝑃 ∨ (π‘…β€˜π‘“)) ∧ ((π‘β€˜π‘ƒ) ∨ (π‘…β€˜(𝑓 ∘ ◑𝐹))))) = (℩𝑖 ∈ 𝑇 (π‘–β€˜π‘ƒ) = ((𝑃 ∨ (π‘…β€˜πΊ)) ∧ ((π‘β€˜π‘ƒ) ∨ (π‘…β€˜(𝐺 ∘ ◑𝐹))))))
9 cdlemk.s . 2 𝑆 = (𝑓 ∈ 𝑇 ↦ (℩𝑖 ∈ 𝑇 (π‘–β€˜π‘ƒ) = ((𝑃 ∨ (π‘…β€˜π‘“)) ∧ ((π‘β€˜π‘ƒ) ∨ (π‘…β€˜(𝑓 ∘ ◑𝐹))))))
10 riotaex 7318 . 2 (℩𝑖 ∈ 𝑇 (π‘–β€˜π‘ƒ) = ((𝑃 ∨ (π‘…β€˜πΊ)) ∧ ((π‘β€˜π‘ƒ) ∨ (π‘…β€˜(𝐺 ∘ ◑𝐹))))) ∈ V
118, 9, 10fvmpt 6949 1 (𝐺 ∈ 𝑇 β†’ (π‘†β€˜πΊ) = (℩𝑖 ∈ 𝑇 (π‘–β€˜π‘ƒ) = ((𝑃 ∨ (π‘…β€˜πΊ)) ∧ ((π‘β€˜π‘ƒ) ∨ (π‘…β€˜(𝐺 ∘ ◑𝐹))))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1542   ∈ wcel 2107   ↦ cmpt 5189  β—‘ccnv 5633   ∘ ccom 5638  β€˜cfv 6497  β„©crio 7313  (class class class)co 7358  Basecbs 17084  lecple 17141  joincjn 18201  meetcmee 18202  Atomscatm 37728  LHypclh 38450  LTrncltrn 38567  trLctrl 38624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-sep 5257  ax-nul 5264  ax-pr 5385
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-ral 3066  df-rex 3075  df-rab 3409  df-v 3448  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4284  df-if 4488  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-br 5107  df-opab 5169  df-mpt 5190  df-id 5532  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-iota 6449  df-fun 6499  df-fv 6505  df-riota 7314  df-ov 7361
This theorem is referenced by:  cdlemksel  39311  cdlemksv2  39313  cdlemkuvN  39330  cdlemkuel  39331  cdlemkuv2  39333  cdlemkuv-2N  39349  cdlemkuu  39361
  Copyright terms: Public domain W3C validator