| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > clsneircomplex | Structured version Visualization version GIF version | ||
| Description: The relative complement of the class 𝑆 exists as a subset of the base set. (Contributed by RP, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| clsneibex.d | ⊢ 𝐷 = (𝑃‘𝐵) |
| clsneibex.h | ⊢ 𝐻 = (𝐹 ∘ 𝐷) |
| clsneibex.r | ⊢ (𝜑 → 𝐾𝐻𝑁) |
| Ref | Expression |
|---|---|
| clsneircomplex | ⊢ (𝜑 → (𝐵 ∖ 𝑆) ∈ 𝒫 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clsneibex.d | . . 3 ⊢ 𝐷 = (𝑃‘𝐵) | |
| 2 | clsneibex.h | . . 3 ⊢ 𝐻 = (𝐹 ∘ 𝐷) | |
| 3 | clsneibex.r | . . 3 ⊢ (𝜑 → 𝐾𝐻𝑁) | |
| 4 | 1, 2, 3 | clsneibex 44093 | . 2 ⊢ (𝜑 → 𝐵 ∈ V) |
| 5 | difssd 4117 | . 2 ⊢ (𝜑 → (𝐵 ∖ 𝑆) ⊆ 𝐵) | |
| 6 | 4, 5 | sselpwd 5303 | 1 ⊢ (𝜑 → (𝐵 ∖ 𝑆) ∈ 𝒫 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3464 ∖ cdif 3928 𝒫 cpw 4580 class class class wbr 5124 ∘ ccom 5663 ‘cfv 6536 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-iota 6489 df-fv 6544 |
| This theorem is referenced by: clsneiel2 44100 |
| Copyright terms: Public domain | W3C validator |