Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  clsneircomplex Structured version   Visualization version   GIF version

Theorem clsneircomplex 41602
Description: The relative complement of the class 𝑆 exists as a subset of the base set. (Contributed by RP, 26-Jun-2021.)
Hypotheses
Ref Expression
clsneibex.d 𝐷 = (𝑃𝐵)
clsneibex.h 𝐻 = (𝐹𝐷)
clsneibex.r (𝜑𝐾𝐻𝑁)
Assertion
Ref Expression
clsneircomplex (𝜑 → (𝐵𝑆) ∈ 𝒫 𝐵)

Proof of Theorem clsneircomplex
StepHypRef Expression
1 clsneibex.d . . 3 𝐷 = (𝑃𝐵)
2 clsneibex.h . . 3 𝐻 = (𝐹𝐷)
3 clsneibex.r . . 3 (𝜑𝐾𝐻𝑁)
41, 2, 3clsneibex 41601 . 2 (𝜑𝐵 ∈ V)
5 difssd 4063 . 2 (𝜑 → (𝐵𝑆) ⊆ 𝐵)
64, 5sselpwd 5245 1 (𝜑 → (𝐵𝑆) ∈ 𝒫 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  Vcvv 3422  cdif 3880  𝒫 cpw 4530   class class class wbr 5070  ccom 5584  cfv 6418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-iota 6376  df-fv 6426
This theorem is referenced by:  clsneiel2  41608
  Copyright terms: Public domain W3C validator