Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > clsneircomplex | Structured version Visualization version GIF version |
Description: The relative complement of the class 𝑆 exists as a subset of the base set. (Contributed by RP, 26-Jun-2021.) |
Ref | Expression |
---|---|
clsneibex.d | ⊢ 𝐷 = (𝑃‘𝐵) |
clsneibex.h | ⊢ 𝐻 = (𝐹 ∘ 𝐷) |
clsneibex.r | ⊢ (𝜑 → 𝐾𝐻𝑁) |
Ref | Expression |
---|---|
clsneircomplex | ⊢ (𝜑 → (𝐵 ∖ 𝑆) ∈ 𝒫 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clsneibex.d | . . 3 ⊢ 𝐷 = (𝑃‘𝐵) | |
2 | clsneibex.h | . . 3 ⊢ 𝐻 = (𝐹 ∘ 𝐷) | |
3 | clsneibex.r | . . 3 ⊢ (𝜑 → 𝐾𝐻𝑁) | |
4 | 1, 2, 3 | clsneibex 41712 | . 2 ⊢ (𝜑 → 𝐵 ∈ V) |
5 | difssd 4067 | . 2 ⊢ (𝜑 → (𝐵 ∖ 𝑆) ⊆ 𝐵) | |
6 | 4, 5 | sselpwd 5250 | 1 ⊢ (𝜑 → (𝐵 ∖ 𝑆) ∈ 𝒫 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 Vcvv 3432 ∖ cdif 3884 𝒫 cpw 4533 class class class wbr 5074 ∘ ccom 5593 ‘cfv 6433 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-iota 6391 df-fv 6441 |
This theorem is referenced by: clsneiel2 41719 |
Copyright terms: Public domain | W3C validator |