| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > clsneiel2 | Structured version Visualization version GIF version | ||
| Description: If a (pseudo-)closure function and a (pseudo-)neighborhood function are related by the 𝐻 operator, then membership in the closure of the complement of a subset is equivalent to the subset not being a neighborhood of the point. (Contributed by RP, 7-Jun-2021.) |
| Ref | Expression |
|---|---|
| clsnei.o | ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) |
| clsnei.p | ⊢ 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛 ↑m 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛 ∖ 𝑜)))))) |
| clsnei.d | ⊢ 𝐷 = (𝑃‘𝐵) |
| clsnei.f | ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) |
| clsnei.h | ⊢ 𝐻 = (𝐹 ∘ 𝐷) |
| clsnei.r | ⊢ (𝜑 → 𝐾𝐻𝑁) |
| clsneiel.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| clsneiel.s | ⊢ (𝜑 → 𝑆 ∈ 𝒫 𝐵) |
| Ref | Expression |
|---|---|
| clsneiel2 | ⊢ (𝜑 → (𝑋 ∈ (𝐾‘(𝐵 ∖ 𝑆)) ↔ ¬ 𝑆 ∈ (𝑁‘𝑋))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clsnei.o | . . 3 ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) | |
| 2 | clsnei.p | . . 3 ⊢ 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛 ↑m 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛 ∖ 𝑜)))))) | |
| 3 | clsnei.d | . . 3 ⊢ 𝐷 = (𝑃‘𝐵) | |
| 4 | clsnei.f | . . 3 ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) | |
| 5 | clsnei.h | . . 3 ⊢ 𝐻 = (𝐹 ∘ 𝐷) | |
| 6 | clsnei.r | . . 3 ⊢ (𝜑 → 𝐾𝐻𝑁) | |
| 7 | clsneiel.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 8 | 3, 5, 6 | clsneircomplex 44074 | . . 3 ⊢ (𝜑 → (𝐵 ∖ 𝑆) ∈ 𝒫 𝐵) |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | clsneiel1 44079 | . 2 ⊢ (𝜑 → (𝑋 ∈ (𝐾‘(𝐵 ∖ 𝑆)) ↔ ¬ (𝐵 ∖ (𝐵 ∖ 𝑆)) ∈ (𝑁‘𝑋))) |
| 10 | clsneiel.s | . . . . . 6 ⊢ (𝜑 → 𝑆 ∈ 𝒫 𝐵) | |
| 11 | 10 | elpwid 4584 | . . . . 5 ⊢ (𝜑 → 𝑆 ⊆ 𝐵) |
| 12 | dfss4 4244 | . . . . 5 ⊢ (𝑆 ⊆ 𝐵 ↔ (𝐵 ∖ (𝐵 ∖ 𝑆)) = 𝑆) | |
| 13 | 11, 12 | sylib 218 | . . . 4 ⊢ (𝜑 → (𝐵 ∖ (𝐵 ∖ 𝑆)) = 𝑆) |
| 14 | 13 | eleq1d 2819 | . . 3 ⊢ (𝜑 → ((𝐵 ∖ (𝐵 ∖ 𝑆)) ∈ (𝑁‘𝑋) ↔ 𝑆 ∈ (𝑁‘𝑋))) |
| 15 | 14 | notbid 318 | . 2 ⊢ (𝜑 → (¬ (𝐵 ∖ (𝐵 ∖ 𝑆)) ∈ (𝑁‘𝑋) ↔ ¬ 𝑆 ∈ (𝑁‘𝑋))) |
| 16 | 9, 15 | bitrd 279 | 1 ⊢ (𝜑 → (𝑋 ∈ (𝐾‘(𝐵 ∖ 𝑆)) ↔ ¬ 𝑆 ∈ (𝑁‘𝑋))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2108 {crab 3415 Vcvv 3459 ∖ cdif 3923 ⊆ wss 3926 𝒫 cpw 4575 class class class wbr 5119 ↦ cmpt 5201 ∘ ccom 5658 ‘cfv 6530 (class class class)co 7403 ∈ cmpo 7405 ↑m cmap 8838 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-ov 7406 df-oprab 7407 df-mpo 7408 df-1st 7986 df-2nd 7987 df-map 8840 |
| This theorem is referenced by: clsneifv3 44081 |
| Copyright terms: Public domain | W3C validator |