![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > clsneiel2 | Structured version Visualization version GIF version |
Description: If a (pseudo-)closure function and a (pseudo-)neighborhood function are related by the 𝐻 operator, then membership in the closure of the complement of a subset is equivalent to the subset not being a neighborhood of the point. (Contributed by RP, 7-Jun-2021.) |
Ref | Expression |
---|---|
clsnei.o | ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) |
clsnei.p | ⊢ 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛 ↑m 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛 ∖ 𝑜)))))) |
clsnei.d | ⊢ 𝐷 = (𝑃‘𝐵) |
clsnei.f | ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) |
clsnei.h | ⊢ 𝐻 = (𝐹 ∘ 𝐷) |
clsnei.r | ⊢ (𝜑 → 𝐾𝐻𝑁) |
clsneiel.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
clsneiel.s | ⊢ (𝜑 → 𝑆 ∈ 𝒫 𝐵) |
Ref | Expression |
---|---|
clsneiel2 | ⊢ (𝜑 → (𝑋 ∈ (𝐾‘(𝐵 ∖ 𝑆)) ↔ ¬ 𝑆 ∈ (𝑁‘𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clsnei.o | . . 3 ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) | |
2 | clsnei.p | . . 3 ⊢ 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛 ↑m 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛 ∖ 𝑜)))))) | |
3 | clsnei.d | . . 3 ⊢ 𝐷 = (𝑃‘𝐵) | |
4 | clsnei.f | . . 3 ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) | |
5 | clsnei.h | . . 3 ⊢ 𝐻 = (𝐹 ∘ 𝐷) | |
6 | clsnei.r | . . 3 ⊢ (𝜑 → 𝐾𝐻𝑁) | |
7 | clsneiel.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
8 | 3, 5, 6 | clsneircomplex 42467 | . . 3 ⊢ (𝜑 → (𝐵 ∖ 𝑆) ∈ 𝒫 𝐵) |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | clsneiel1 42472 | . 2 ⊢ (𝜑 → (𝑋 ∈ (𝐾‘(𝐵 ∖ 𝑆)) ↔ ¬ (𝐵 ∖ (𝐵 ∖ 𝑆)) ∈ (𝑁‘𝑋))) |
10 | clsneiel.s | . . . . . 6 ⊢ (𝜑 → 𝑆 ∈ 𝒫 𝐵) | |
11 | 10 | elpwid 4573 | . . . . 5 ⊢ (𝜑 → 𝑆 ⊆ 𝐵) |
12 | dfss4 4222 | . . . . 5 ⊢ (𝑆 ⊆ 𝐵 ↔ (𝐵 ∖ (𝐵 ∖ 𝑆)) = 𝑆) | |
13 | 11, 12 | sylib 217 | . . . 4 ⊢ (𝜑 → (𝐵 ∖ (𝐵 ∖ 𝑆)) = 𝑆) |
14 | 13 | eleq1d 2819 | . . 3 ⊢ (𝜑 → ((𝐵 ∖ (𝐵 ∖ 𝑆)) ∈ (𝑁‘𝑋) ↔ 𝑆 ∈ (𝑁‘𝑋))) |
15 | 14 | notbid 318 | . 2 ⊢ (𝜑 → (¬ (𝐵 ∖ (𝐵 ∖ 𝑆)) ∈ (𝑁‘𝑋) ↔ ¬ 𝑆 ∈ (𝑁‘𝑋))) |
16 | 9, 15 | bitrd 279 | 1 ⊢ (𝜑 → (𝑋 ∈ (𝐾‘(𝐵 ∖ 𝑆)) ↔ ¬ 𝑆 ∈ (𝑁‘𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 = wceq 1542 ∈ wcel 2107 {crab 3406 Vcvv 3447 ∖ cdif 3911 ⊆ wss 3914 𝒫 cpw 4564 class class class wbr 5109 ↦ cmpt 5192 ∘ ccom 5641 ‘cfv 6500 (class class class)co 7361 ∈ cmpo 7363 ↑m cmap 8771 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5246 ax-sep 5260 ax-nul 5267 ax-pow 5324 ax-pr 5388 ax-un 7676 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3353 df-rab 3407 df-v 3449 df-sbc 3744 df-csb 3860 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4287 df-if 4491 df-pw 4566 df-sn 4591 df-pr 4593 df-op 4597 df-uni 4870 df-iun 4960 df-br 5110 df-opab 5172 df-mpt 5193 df-id 5535 df-xp 5643 df-rel 5644 df-cnv 5645 df-co 5646 df-dm 5647 df-rn 5648 df-res 5649 df-ima 5650 df-iota 6452 df-fun 6502 df-fn 6503 df-f 6504 df-f1 6505 df-fo 6506 df-f1o 6507 df-fv 6508 df-ov 7364 df-oprab 7365 df-mpo 7366 df-1st 7925 df-2nd 7926 df-map 8773 |
This theorem is referenced by: clsneifv3 42474 |
Copyright terms: Public domain | W3C validator |