| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > inpreima | Structured version Visualization version GIF version | ||
| Description: Preimage of an intersection. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 14-Jun-2016.) |
| Ref | Expression |
|---|---|
| inpreima | ⊢ (Fun 𝐹 → (◡𝐹 “ (𝐴 ∩ 𝐵)) = ((◡𝐹 “ 𝐴) ∩ (◡𝐹 “ 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funcnvcnv 6586 | . 2 ⊢ (Fun 𝐹 → Fun ◡◡𝐹) | |
| 2 | imain 6604 | . 2 ⊢ (Fun ◡◡𝐹 → (◡𝐹 “ (𝐴 ∩ 𝐵)) = ((◡𝐹 “ 𝐴) ∩ (◡𝐹 “ 𝐵))) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (Fun 𝐹 → (◡𝐹 “ (𝐴 ∩ 𝐵)) = ((◡𝐹 “ 𝐴) ∩ (◡𝐹 “ 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∩ cin 3916 ◡ccnv 5640 “ cima 5644 Fun wfun 6508 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-fun 6516 |
| This theorem is referenced by: cnvimainrn 7042 sspreima 7043 fimacnvinrn 7046 fsuppeq 8157 fsuppeqg 8158 ofco2 22345 cnrest2 23180 cnhaus 23248 kgencn3 23452 qtoptop2 23593 basqtop 23605 ismbfd 25547 mbfimaopn2 25565 i1fima 25586 i1fima2 25587 i1fd 25589 disjpreima 32520 smfco 46807 predisj 48803 |
| Copyright terms: Public domain | W3C validator |