MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inpreima Structured version   Visualization version   GIF version

Theorem inpreima 7003
Description: Preimage of an intersection. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 14-Jun-2016.)
Assertion
Ref Expression
inpreima (Fun 𝐹 → (𝐹 “ (𝐴𝐵)) = ((𝐹𝐴) ∩ (𝐹𝐵)))

Proof of Theorem inpreima
StepHypRef Expression
1 funcnvcnv 6553 . 2 (Fun 𝐹 → Fun 𝐹)
2 imain 6571 . 2 (Fun 𝐹 → (𝐹 “ (𝐴𝐵)) = ((𝐹𝐴) ∩ (𝐹𝐵)))
31, 2syl 17 1 (Fun 𝐹 → (𝐹 “ (𝐴𝐵)) = ((𝐹𝐴) ∩ (𝐹𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  cin 3897  ccnv 5618  cima 5622  Fun wfun 6480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-clab 2712  df-cleq 2725  df-clel 2808  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-br 5094  df-opab 5156  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-fun 6488
This theorem is referenced by:  cnvimainrn  7006  sspreima  7007  fimacnvinrn  7010  fsuppeq  8111  fsuppeqg  8112  ofco2  22367  cnrest2  23202  cnhaus  23270  kgencn3  23474  qtoptop2  23615  basqtop  23627  ismbfd  25568  mbfimaopn2  25586  i1fima  25607  i1fima2  25608  i1fd  25610  disjpreima  32566  smfco  46924  predisj  48935
  Copyright terms: Public domain W3C validator