MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inpreima Structured version   Visualization version   GIF version

Theorem inpreima 7065
Description: Preimage of an intersection. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 14-Jun-2016.)
Assertion
Ref Expression
inpreima (Fun 𝐹 → (𝐹 “ (𝐴𝐵)) = ((𝐹𝐴) ∩ (𝐹𝐵)))

Proof of Theorem inpreima
StepHypRef Expression
1 funcnvcnv 6615 . 2 (Fun 𝐹 → Fun 𝐹)
2 imain 6633 . 2 (Fun 𝐹 → (𝐹 “ (𝐴𝐵)) = ((𝐹𝐴) ∩ (𝐹𝐵)))
31, 2syl 17 1 (Fun 𝐹 → (𝐹 “ (𝐴𝐵)) = ((𝐹𝐴) ∩ (𝐹𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  cin 3947  ccnv 5675  cima 5679  Fun wfun 6537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-clab 2710  df-cleq 2724  df-clel 2810  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-br 5149  df-opab 5211  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-fun 6545
This theorem is referenced by:  cnvimainrn  7068  sspreima  7069  fimacnvinrn  7073  fsuppeq  8162  fsuppeqg  8163  ofco2  22173  cnrest2  23010  cnhaus  23078  kgencn3  23282  qtoptop2  23423  basqtop  23435  ismbfd  25380  mbfimaopn2  25398  i1fima  25419  i1fima2  25420  i1fd  25422  disjpreima  32070  smfco  45817  predisj  47583
  Copyright terms: Public domain W3C validator