| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > inpreima | Structured version Visualization version GIF version | ||
| Description: Preimage of an intersection. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 14-Jun-2016.) |
| Ref | Expression |
|---|---|
| inpreima | ⊢ (Fun 𝐹 → (◡𝐹 “ (𝐴 ∩ 𝐵)) = ((◡𝐹 “ 𝐴) ∩ (◡𝐹 “ 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funcnvcnv 6603 | . 2 ⊢ (Fun 𝐹 → Fun ◡◡𝐹) | |
| 2 | imain 6621 | . 2 ⊢ (Fun ◡◡𝐹 → (◡𝐹 “ (𝐴 ∩ 𝐵)) = ((◡𝐹 “ 𝐴) ∩ (◡𝐹 “ 𝐵))) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (Fun 𝐹 → (◡𝐹 “ (𝐴 ∩ 𝐵)) = ((◡𝐹 “ 𝐴) ∩ (◡𝐹 “ 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∩ cin 3925 ◡ccnv 5653 “ cima 5657 Fun wfun 6525 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-fun 6533 |
| This theorem is referenced by: cnvimainrn 7057 sspreima 7058 fimacnvinrn 7061 fsuppeq 8174 fsuppeqg 8175 ofco2 22389 cnrest2 23224 cnhaus 23292 kgencn3 23496 qtoptop2 23637 basqtop 23649 ismbfd 25592 mbfimaopn2 25610 i1fima 25631 i1fima2 25632 i1fd 25634 disjpreima 32565 smfco 46831 predisj 48789 |
| Copyright terms: Public domain | W3C validator |