Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fcoreslem1 Structured version   Visualization version   GIF version

Theorem fcoreslem1 47067
Description: Lemma 1 for fcores 47071. (Contributed by AV, 17-Sep-2024.)
Hypotheses
Ref Expression
fcores.f (𝜑𝐹:𝐴𝐵)
fcores.e 𝐸 = (ran 𝐹𝐶)
fcores.p 𝑃 = (𝐹𝐶)
Assertion
Ref Expression
fcoreslem1 (𝜑𝑃 = (𝐹𝐸))

Proof of Theorem fcoreslem1
StepHypRef Expression
1 fcores.f . . . . 5 (𝜑𝐹:𝐴𝐵)
21ffund 6656 . . . 4 (𝜑 → Fun 𝐹)
3 cnvimainrn 7001 . . . 4 (Fun 𝐹 → (𝐹 “ (ran 𝐹𝐶)) = (𝐹𝐶))
42, 3syl 17 . . 3 (𝜑 → (𝐹 “ (ran 𝐹𝐶)) = (𝐹𝐶))
54eqcomd 2735 . 2 (𝜑 → (𝐹𝐶) = (𝐹 “ (ran 𝐹𝐶)))
6 fcores.p . 2 𝑃 = (𝐹𝐶)
7 fcores.e . . 3 𝐸 = (ran 𝐹𝐶)
87imaeq2i 6009 . 2 (𝐹𝐸) = (𝐹 “ (ran 𝐹𝐶))
95, 6, 83eqtr4g 2789 1 (𝜑𝑃 = (𝐹𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  cin 3902  ccnv 5618  ran crn 5620  cima 5622  Fun wfun 6476  wf 6478
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5093  df-opab 5155  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-fun 6484  df-fn 6485  df-f 6486
This theorem is referenced by:  fcoreslem2  47068
  Copyright terms: Public domain W3C validator