Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fcoreslem1 Structured version   Visualization version   GIF version

Theorem fcoreslem1 44597
Description: Lemma 1 for fcores 44601. (Contributed by AV, 17-Sep-2024.)
Hypotheses
Ref Expression
fcores.f (𝜑𝐹:𝐴𝐵)
fcores.e 𝐸 = (ran 𝐹𝐶)
fcores.p 𝑃 = (𝐹𝐶)
Assertion
Ref Expression
fcoreslem1 (𝜑𝑃 = (𝐹𝐸))

Proof of Theorem fcoreslem1
StepHypRef Expression
1 fcores.f . . . . 5 (𝜑𝐹:𝐴𝐵)
21ffund 6622 . . . 4 (𝜑 → Fun 𝐹)
3 cnvimainrn 6964 . . . 4 (Fun 𝐹 → (𝐹 “ (ran 𝐹𝐶)) = (𝐹𝐶))
42, 3syl 17 . . 3 (𝜑 → (𝐹 “ (ran 𝐹𝐶)) = (𝐹𝐶))
54eqcomd 2739 . 2 (𝜑 → (𝐹𝐶) = (𝐹 “ (ran 𝐹𝐶)))
6 fcores.p . 2 𝑃 = (𝐹𝐶)
7 fcores.e . . 3 𝐸 = (ran 𝐹𝐶)
87imaeq2i 5968 . 2 (𝐹𝐸) = (𝐹 “ (ran 𝐹𝐶))
95, 6, 83eqtr4g 2798 1 (𝜑𝑃 = (𝐹𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  cin 3888  ccnv 5590  ran crn 5592  cima 5594  Fun wfun 6441  wf 6443
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2103  ax-9 2111  ax-10 2132  ax-11 2149  ax-12 2166  ax-ext 2704  ax-sep 5226  ax-nul 5233  ax-pr 5355
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2063  df-mo 2535  df-clab 2711  df-cleq 2725  df-clel 2811  df-ral 3060  df-rex 3069  df-rab 3224  df-v 3436  df-dif 3892  df-un 3894  df-in 3896  df-ss 3906  df-nul 4260  df-if 4463  df-sn 4565  df-pr 4567  df-op 4571  df-br 5078  df-opab 5140  df-id 5491  df-xp 5597  df-rel 5598  df-cnv 5599  df-co 5600  df-dm 5601  df-rn 5602  df-res 5603  df-ima 5604  df-fun 6449  df-fn 6450  df-f 6451
This theorem is referenced by:  fcoreslem2  44598
  Copyright terms: Public domain W3C validator