Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fcoreslem1 | Structured version Visualization version GIF version |
Description: Lemma 1 for fcores 44601. (Contributed by AV, 17-Sep-2024.) |
Ref | Expression |
---|---|
fcores.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
fcores.e | ⊢ 𝐸 = (ran 𝐹 ∩ 𝐶) |
fcores.p | ⊢ 𝑃 = (◡𝐹 “ 𝐶) |
Ref | Expression |
---|---|
fcoreslem1 | ⊢ (𝜑 → 𝑃 = (◡𝐹 “ 𝐸)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fcores.f | . . . . 5 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
2 | 1 | ffund 6622 | . . . 4 ⊢ (𝜑 → Fun 𝐹) |
3 | cnvimainrn 6964 | . . . 4 ⊢ (Fun 𝐹 → (◡𝐹 “ (ran 𝐹 ∩ 𝐶)) = (◡𝐹 “ 𝐶)) | |
4 | 2, 3 | syl 17 | . . 3 ⊢ (𝜑 → (◡𝐹 “ (ran 𝐹 ∩ 𝐶)) = (◡𝐹 “ 𝐶)) |
5 | 4 | eqcomd 2739 | . 2 ⊢ (𝜑 → (◡𝐹 “ 𝐶) = (◡𝐹 “ (ran 𝐹 ∩ 𝐶))) |
6 | fcores.p | . 2 ⊢ 𝑃 = (◡𝐹 “ 𝐶) | |
7 | fcores.e | . . 3 ⊢ 𝐸 = (ran 𝐹 ∩ 𝐶) | |
8 | 7 | imaeq2i 5968 | . 2 ⊢ (◡𝐹 “ 𝐸) = (◡𝐹 “ (ran 𝐹 ∩ 𝐶)) |
9 | 5, 6, 8 | 3eqtr4g 2798 | 1 ⊢ (𝜑 → 𝑃 = (◡𝐹 “ 𝐸)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∩ cin 3888 ◡ccnv 5590 ran crn 5592 “ cima 5594 Fun wfun 6441 ⟶wf 6443 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2103 ax-9 2111 ax-10 2132 ax-11 2149 ax-12 2166 ax-ext 2704 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2063 df-mo 2535 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3060 df-rex 3069 df-rab 3224 df-v 3436 df-dif 3892 df-un 3894 df-in 3896 df-ss 3906 df-nul 4260 df-if 4463 df-sn 4565 df-pr 4567 df-op 4571 df-br 5078 df-opab 5140 df-id 5491 df-xp 5597 df-rel 5598 df-cnv 5599 df-co 5600 df-dm 5601 df-rn 5602 df-res 5603 df-ima 5604 df-fun 6449 df-fn 6450 df-f 6451 |
This theorem is referenced by: fcoreslem2 44598 |
Copyright terms: Public domain | W3C validator |