Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fcoreslem1 Structured version   Visualization version   GIF version

Theorem fcoreslem1 46345
Description: Lemma 1 for fcores 46349. (Contributed by AV, 17-Sep-2024.)
Hypotheses
Ref Expression
fcores.f (𝜑𝐹:𝐴𝐵)
fcores.e 𝐸 = (ran 𝐹𝐶)
fcores.p 𝑃 = (𝐹𝐶)
Assertion
Ref Expression
fcoreslem1 (𝜑𝑃 = (𝐹𝐸))

Proof of Theorem fcoreslem1
StepHypRef Expression
1 fcores.f . . . . 5 (𝜑𝐹:𝐴𝐵)
21ffund 6715 . . . 4 (𝜑 → Fun 𝐹)
3 cnvimainrn 7062 . . . 4 (Fun 𝐹 → (𝐹 “ (ran 𝐹𝐶)) = (𝐹𝐶))
42, 3syl 17 . . 3 (𝜑 → (𝐹 “ (ran 𝐹𝐶)) = (𝐹𝐶))
54eqcomd 2732 . 2 (𝜑 → (𝐹𝐶) = (𝐹 “ (ran 𝐹𝐶)))
6 fcores.p . 2 𝑃 = (𝐹𝐶)
7 fcores.e . . 3 𝐸 = (ran 𝐹𝐶)
87imaeq2i 6051 . 2 (𝐹𝐸) = (𝐹 “ (ran 𝐹𝐶))
95, 6, 83eqtr4g 2791 1 (𝜑𝑃 = (𝐹𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  cin 3942  ccnv 5668  ran crn 5670  cima 5672  Fun wfun 6531  wf 6533
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pr 5420
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-clab 2704  df-cleq 2718  df-clel 2804  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-br 5142  df-opab 5204  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-fun 6539  df-fn 6540  df-f 6541
This theorem is referenced by:  fcoreslem2  46346
  Copyright terms: Public domain W3C validator