| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fcoreslem1 | Structured version Visualization version GIF version | ||
| Description: Lemma 1 for fcores 47065. (Contributed by AV, 17-Sep-2024.) |
| Ref | Expression |
|---|---|
| fcores.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| fcores.e | ⊢ 𝐸 = (ran 𝐹 ∩ 𝐶) |
| fcores.p | ⊢ 𝑃 = (◡𝐹 “ 𝐶) |
| Ref | Expression |
|---|---|
| fcoreslem1 | ⊢ (𝜑 → 𝑃 = (◡𝐹 “ 𝐸)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fcores.f | . . . . 5 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
| 2 | 1 | ffund 6692 | . . . 4 ⊢ (𝜑 → Fun 𝐹) |
| 3 | cnvimainrn 7039 | . . . 4 ⊢ (Fun 𝐹 → (◡𝐹 “ (ran 𝐹 ∩ 𝐶)) = (◡𝐹 “ 𝐶)) | |
| 4 | 2, 3 | syl 17 | . . 3 ⊢ (𝜑 → (◡𝐹 “ (ran 𝐹 ∩ 𝐶)) = (◡𝐹 “ 𝐶)) |
| 5 | 4 | eqcomd 2735 | . 2 ⊢ (𝜑 → (◡𝐹 “ 𝐶) = (◡𝐹 “ (ran 𝐹 ∩ 𝐶))) |
| 6 | fcores.p | . 2 ⊢ 𝑃 = (◡𝐹 “ 𝐶) | |
| 7 | fcores.e | . . 3 ⊢ 𝐸 = (ran 𝐹 ∩ 𝐶) | |
| 8 | 7 | imaeq2i 6029 | . 2 ⊢ (◡𝐹 “ 𝐸) = (◡𝐹 “ (ran 𝐹 ∩ 𝐶)) |
| 9 | 5, 6, 8 | 3eqtr4g 2789 | 1 ⊢ (𝜑 → 𝑃 = (◡𝐹 “ 𝐸)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∩ cin 3913 ◡ccnv 5637 ran crn 5639 “ cima 5641 Fun wfun 6505 ⟶wf 6507 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-fun 6513 df-fn 6514 df-f 6515 |
| This theorem is referenced by: fcoreslem2 47062 |
| Copyright terms: Public domain | W3C validator |