Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fcoreslem1 Structured version   Visualization version   GIF version

Theorem fcoreslem1 44444
Description: Lemma 1 for fcores 44448. (Contributed by AV, 17-Sep-2024.)
Hypotheses
Ref Expression
fcores.f (𝜑𝐹:𝐴𝐵)
fcores.e 𝐸 = (ran 𝐹𝐶)
fcores.p 𝑃 = (𝐹𝐶)
Assertion
Ref Expression
fcoreslem1 (𝜑𝑃 = (𝐹𝐸))

Proof of Theorem fcoreslem1
StepHypRef Expression
1 fcores.f . . . . 5 (𝜑𝐹:𝐴𝐵)
21ffund 6588 . . . 4 (𝜑 → Fun 𝐹)
3 cnvimainrn 6926 . . . 4 (Fun 𝐹 → (𝐹 “ (ran 𝐹𝐶)) = (𝐹𝐶))
42, 3syl 17 . . 3 (𝜑 → (𝐹 “ (ran 𝐹𝐶)) = (𝐹𝐶))
54eqcomd 2744 . 2 (𝜑 → (𝐹𝐶) = (𝐹 “ (ran 𝐹𝐶)))
6 fcores.p . 2 𝑃 = (𝐹𝐶)
7 fcores.e . . 3 𝐸 = (ran 𝐹𝐶)
87imaeq2i 5956 . 2 (𝐹𝐸) = (𝐹 “ (ran 𝐹𝐶))
95, 6, 83eqtr4g 2804 1 (𝜑𝑃 = (𝐹𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  cin 3882  ccnv 5579  ran crn 5581  cima 5583  Fun wfun 6412  wf 6414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-fun 6420  df-fn 6421  df-f 6422
This theorem is referenced by:  fcoreslem2  44445
  Copyright terms: Public domain W3C validator