MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  respreima Structured version   Visualization version   GIF version

Theorem respreima 6937
Description: The preimage of a restricted function. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
respreima (Fun 𝐹 → ((𝐹𝐵) “ 𝐴) = ((𝐹𝐴) ∩ 𝐵))

Proof of Theorem respreima
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 funfn 6460 . . 3 (Fun 𝐹𝐹 Fn dom 𝐹)
2 elin 3907 . . . . . . . . 9 (𝑥 ∈ (𝐵 ∩ dom 𝐹) ↔ (𝑥𝐵𝑥 ∈ dom 𝐹))
32biancomi 462 . . . . . . . 8 (𝑥 ∈ (𝐵 ∩ dom 𝐹) ↔ (𝑥 ∈ dom 𝐹𝑥𝐵))
43anbi1i 623 . . . . . . 7 ((𝑥 ∈ (𝐵 ∩ dom 𝐹) ∧ ((𝐹𝐵)‘𝑥) ∈ 𝐴) ↔ ((𝑥 ∈ dom 𝐹𝑥𝐵) ∧ ((𝐹𝐵)‘𝑥) ∈ 𝐴))
5 fvres 6787 . . . . . . . . . 10 (𝑥𝐵 → ((𝐹𝐵)‘𝑥) = (𝐹𝑥))
65eleq1d 2824 . . . . . . . . 9 (𝑥𝐵 → (((𝐹𝐵)‘𝑥) ∈ 𝐴 ↔ (𝐹𝑥) ∈ 𝐴))
76adantl 481 . . . . . . . 8 ((𝑥 ∈ dom 𝐹𝑥𝐵) → (((𝐹𝐵)‘𝑥) ∈ 𝐴 ↔ (𝐹𝑥) ∈ 𝐴))
87pm5.32i 574 . . . . . . 7 (((𝑥 ∈ dom 𝐹𝑥𝐵) ∧ ((𝐹𝐵)‘𝑥) ∈ 𝐴) ↔ ((𝑥 ∈ dom 𝐹𝑥𝐵) ∧ (𝐹𝑥) ∈ 𝐴))
94, 8bitri 274 . . . . . 6 ((𝑥 ∈ (𝐵 ∩ dom 𝐹) ∧ ((𝐹𝐵)‘𝑥) ∈ 𝐴) ↔ ((𝑥 ∈ dom 𝐹𝑥𝐵) ∧ (𝐹𝑥) ∈ 𝐴))
109a1i 11 . . . . 5 (𝐹 Fn dom 𝐹 → ((𝑥 ∈ (𝐵 ∩ dom 𝐹) ∧ ((𝐹𝐵)‘𝑥) ∈ 𝐴) ↔ ((𝑥 ∈ dom 𝐹𝑥𝐵) ∧ (𝐹𝑥) ∈ 𝐴)))
11 an32 642 . . . . 5 (((𝑥 ∈ dom 𝐹𝑥𝐵) ∧ (𝐹𝑥) ∈ 𝐴) ↔ ((𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝐴) ∧ 𝑥𝐵))
1210, 11bitrdi 286 . . . 4 (𝐹 Fn dom 𝐹 → ((𝑥 ∈ (𝐵 ∩ dom 𝐹) ∧ ((𝐹𝐵)‘𝑥) ∈ 𝐴) ↔ ((𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝐴) ∧ 𝑥𝐵)))
13 fnfun 6529 . . . . . . 7 (𝐹 Fn dom 𝐹 → Fun 𝐹)
1413funresd 6473 . . . . . 6 (𝐹 Fn dom 𝐹 → Fun (𝐹𝐵))
15 dmres 5910 . . . . . 6 dom (𝐹𝐵) = (𝐵 ∩ dom 𝐹)
16 df-fn 6433 . . . . . 6 ((𝐹𝐵) Fn (𝐵 ∩ dom 𝐹) ↔ (Fun (𝐹𝐵) ∧ dom (𝐹𝐵) = (𝐵 ∩ dom 𝐹)))
1714, 15, 16sylanblrc 589 . . . . 5 (𝐹 Fn dom 𝐹 → (𝐹𝐵) Fn (𝐵 ∩ dom 𝐹))
18 elpreima 6929 . . . . 5 ((𝐹𝐵) Fn (𝐵 ∩ dom 𝐹) → (𝑥 ∈ ((𝐹𝐵) “ 𝐴) ↔ (𝑥 ∈ (𝐵 ∩ dom 𝐹) ∧ ((𝐹𝐵)‘𝑥) ∈ 𝐴)))
1917, 18syl 17 . . . 4 (𝐹 Fn dom 𝐹 → (𝑥 ∈ ((𝐹𝐵) “ 𝐴) ↔ (𝑥 ∈ (𝐵 ∩ dom 𝐹) ∧ ((𝐹𝐵)‘𝑥) ∈ 𝐴)))
20 elin 3907 . . . . 5 (𝑥 ∈ ((𝐹𝐴) ∩ 𝐵) ↔ (𝑥 ∈ (𝐹𝐴) ∧ 𝑥𝐵))
21 elpreima 6929 . . . . . 6 (𝐹 Fn dom 𝐹 → (𝑥 ∈ (𝐹𝐴) ↔ (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝐴)))
2221anbi1d 629 . . . . 5 (𝐹 Fn dom 𝐹 → ((𝑥 ∈ (𝐹𝐴) ∧ 𝑥𝐵) ↔ ((𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝐴) ∧ 𝑥𝐵)))
2320, 22syl5bb 282 . . . 4 (𝐹 Fn dom 𝐹 → (𝑥 ∈ ((𝐹𝐴) ∩ 𝐵) ↔ ((𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝐴) ∧ 𝑥𝐵)))
2412, 19, 233bitr4d 310 . . 3 (𝐹 Fn dom 𝐹 → (𝑥 ∈ ((𝐹𝐵) “ 𝐴) ↔ 𝑥 ∈ ((𝐹𝐴) ∩ 𝐵)))
251, 24sylbi 216 . 2 (Fun 𝐹 → (𝑥 ∈ ((𝐹𝐵) “ 𝐴) ↔ 𝑥 ∈ ((𝐹𝐴) ∩ 𝐵)))
2625eqrdv 2737 1 (Fun 𝐹 → ((𝐹𝐵) “ 𝐴) = ((𝐹𝐴) ∩ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1541  wcel 2109  cin 3890  ccnv 5587  dom cdm 5588  cres 5590  cima 5591  Fun wfun 6424   Fn wfn 6425  cfv 6430
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pr 5355
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3432  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-br 5079  df-opab 5141  df-id 5488  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-iota 6388  df-fun 6432  df-fn 6433  df-fv 6438
This theorem is referenced by:  paste  22426  restmetu  23707  eulerpartlemt  32317  smfres  44275
  Copyright terms: Public domain W3C validator