Step | Hyp | Ref
| Expression |
1 | | funfn 6464 |
. . 3
⊢ (Fun
𝐹 ↔ 𝐹 Fn dom 𝐹) |
2 | | elin 3903 |
. . . . . . . . 9
⊢ (𝑥 ∈ (𝐵 ∩ dom 𝐹) ↔ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ dom 𝐹)) |
3 | 2 | biancomi 463 |
. . . . . . . 8
⊢ (𝑥 ∈ (𝐵 ∩ dom 𝐹) ↔ (𝑥 ∈ dom 𝐹 ∧ 𝑥 ∈ 𝐵)) |
4 | 3 | anbi1i 624 |
. . . . . . 7
⊢ ((𝑥 ∈ (𝐵 ∩ dom 𝐹) ∧ ((𝐹 ↾ 𝐵)‘𝑥) ∈ 𝐴) ↔ ((𝑥 ∈ dom 𝐹 ∧ 𝑥 ∈ 𝐵) ∧ ((𝐹 ↾ 𝐵)‘𝑥) ∈ 𝐴)) |
5 | | fvres 6793 |
. . . . . . . . . 10
⊢ (𝑥 ∈ 𝐵 → ((𝐹 ↾ 𝐵)‘𝑥) = (𝐹‘𝑥)) |
6 | 5 | eleq1d 2823 |
. . . . . . . . 9
⊢ (𝑥 ∈ 𝐵 → (((𝐹 ↾ 𝐵)‘𝑥) ∈ 𝐴 ↔ (𝐹‘𝑥) ∈ 𝐴)) |
7 | 6 | adantl 482 |
. . . . . . . 8
⊢ ((𝑥 ∈ dom 𝐹 ∧ 𝑥 ∈ 𝐵) → (((𝐹 ↾ 𝐵)‘𝑥) ∈ 𝐴 ↔ (𝐹‘𝑥) ∈ 𝐴)) |
8 | 7 | pm5.32i 575 |
. . . . . . 7
⊢ (((𝑥 ∈ dom 𝐹 ∧ 𝑥 ∈ 𝐵) ∧ ((𝐹 ↾ 𝐵)‘𝑥) ∈ 𝐴) ↔ ((𝑥 ∈ dom 𝐹 ∧ 𝑥 ∈ 𝐵) ∧ (𝐹‘𝑥) ∈ 𝐴)) |
9 | 4, 8 | bitri 274 |
. . . . . 6
⊢ ((𝑥 ∈ (𝐵 ∩ dom 𝐹) ∧ ((𝐹 ↾ 𝐵)‘𝑥) ∈ 𝐴) ↔ ((𝑥 ∈ dom 𝐹 ∧ 𝑥 ∈ 𝐵) ∧ (𝐹‘𝑥) ∈ 𝐴)) |
10 | 9 | a1i 11 |
. . . . 5
⊢ (𝐹 Fn dom 𝐹 → ((𝑥 ∈ (𝐵 ∩ dom 𝐹) ∧ ((𝐹 ↾ 𝐵)‘𝑥) ∈ 𝐴) ↔ ((𝑥 ∈ dom 𝐹 ∧ 𝑥 ∈ 𝐵) ∧ (𝐹‘𝑥) ∈ 𝐴))) |
11 | | an32 643 |
. . . . 5
⊢ (((𝑥 ∈ dom 𝐹 ∧ 𝑥 ∈ 𝐵) ∧ (𝐹‘𝑥) ∈ 𝐴) ↔ ((𝑥 ∈ dom 𝐹 ∧ (𝐹‘𝑥) ∈ 𝐴) ∧ 𝑥 ∈ 𝐵)) |
12 | 10, 11 | bitrdi 287 |
. . . 4
⊢ (𝐹 Fn dom 𝐹 → ((𝑥 ∈ (𝐵 ∩ dom 𝐹) ∧ ((𝐹 ↾ 𝐵)‘𝑥) ∈ 𝐴) ↔ ((𝑥 ∈ dom 𝐹 ∧ (𝐹‘𝑥) ∈ 𝐴) ∧ 𝑥 ∈ 𝐵))) |
13 | | fnfun 6533 |
. . . . . . 7
⊢ (𝐹 Fn dom 𝐹 → Fun 𝐹) |
14 | 13 | funresd 6477 |
. . . . . 6
⊢ (𝐹 Fn dom 𝐹 → Fun (𝐹 ↾ 𝐵)) |
15 | | dmres 5913 |
. . . . . 6
⊢ dom
(𝐹 ↾ 𝐵) = (𝐵 ∩ dom 𝐹) |
16 | | df-fn 6436 |
. . . . . 6
⊢ ((𝐹 ↾ 𝐵) Fn (𝐵 ∩ dom 𝐹) ↔ (Fun (𝐹 ↾ 𝐵) ∧ dom (𝐹 ↾ 𝐵) = (𝐵 ∩ dom 𝐹))) |
17 | 14, 15, 16 | sylanblrc 590 |
. . . . 5
⊢ (𝐹 Fn dom 𝐹 → (𝐹 ↾ 𝐵) Fn (𝐵 ∩ dom 𝐹)) |
18 | | elpreima 6935 |
. . . . 5
⊢ ((𝐹 ↾ 𝐵) Fn (𝐵 ∩ dom 𝐹) → (𝑥 ∈ (◡(𝐹 ↾ 𝐵) “ 𝐴) ↔ (𝑥 ∈ (𝐵 ∩ dom 𝐹) ∧ ((𝐹 ↾ 𝐵)‘𝑥) ∈ 𝐴))) |
19 | 17, 18 | syl 17 |
. . . 4
⊢ (𝐹 Fn dom 𝐹 → (𝑥 ∈ (◡(𝐹 ↾ 𝐵) “ 𝐴) ↔ (𝑥 ∈ (𝐵 ∩ dom 𝐹) ∧ ((𝐹 ↾ 𝐵)‘𝑥) ∈ 𝐴))) |
20 | | elin 3903 |
. . . . 5
⊢ (𝑥 ∈ ((◡𝐹 “ 𝐴) ∩ 𝐵) ↔ (𝑥 ∈ (◡𝐹 “ 𝐴) ∧ 𝑥 ∈ 𝐵)) |
21 | | elpreima 6935 |
. . . . . 6
⊢ (𝐹 Fn dom 𝐹 → (𝑥 ∈ (◡𝐹 “ 𝐴) ↔ (𝑥 ∈ dom 𝐹 ∧ (𝐹‘𝑥) ∈ 𝐴))) |
22 | 21 | anbi1d 630 |
. . . . 5
⊢ (𝐹 Fn dom 𝐹 → ((𝑥 ∈ (◡𝐹 “ 𝐴) ∧ 𝑥 ∈ 𝐵) ↔ ((𝑥 ∈ dom 𝐹 ∧ (𝐹‘𝑥) ∈ 𝐴) ∧ 𝑥 ∈ 𝐵))) |
23 | 20, 22 | bitrid 282 |
. . . 4
⊢ (𝐹 Fn dom 𝐹 → (𝑥 ∈ ((◡𝐹 “ 𝐴) ∩ 𝐵) ↔ ((𝑥 ∈ dom 𝐹 ∧ (𝐹‘𝑥) ∈ 𝐴) ∧ 𝑥 ∈ 𝐵))) |
24 | 12, 19, 23 | 3bitr4d 311 |
. . 3
⊢ (𝐹 Fn dom 𝐹 → (𝑥 ∈ (◡(𝐹 ↾ 𝐵) “ 𝐴) ↔ 𝑥 ∈ ((◡𝐹 “ 𝐴) ∩ 𝐵))) |
25 | 1, 24 | sylbi 216 |
. 2
⊢ (Fun
𝐹 → (𝑥 ∈ (◡(𝐹 ↾ 𝐵) “ 𝐴) ↔ 𝑥 ∈ ((◡𝐹 “ 𝐴) ∩ 𝐵))) |
26 | 25 | eqrdv 2736 |
1
⊢ (Fun
𝐹 → (◡(𝐹 ↾ 𝐵) “ 𝐴) = ((◡𝐹 “ 𝐴) ∩ 𝐵)) |