| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sspreima | Structured version Visualization version GIF version | ||
| Description: The preimage of a subset is a subset of the preimage. (Contributed by Brendan Leahy, 23-Sep-2017.) |
| Ref | Expression |
|---|---|
| sspreima | ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ 𝐵) → (◡𝐹 “ 𝐴) ⊆ (◡𝐹 “ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inpreima 7003 | . . 3 ⊢ (Fun 𝐹 → (◡𝐹 “ (𝐴 ∩ 𝐵)) = ((◡𝐹 “ 𝐴) ∩ (◡𝐹 “ 𝐵))) | |
| 2 | dfss2 3916 | . . . . 5 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∩ 𝐵) = 𝐴) | |
| 3 | 2 | biimpi 216 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∩ 𝐵) = 𝐴) |
| 4 | 3 | imaeq2d 6013 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (◡𝐹 “ (𝐴 ∩ 𝐵)) = (◡𝐹 “ 𝐴)) |
| 5 | 1, 4 | sylan9req 2789 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ 𝐵) → ((◡𝐹 “ 𝐴) ∩ (◡𝐹 “ 𝐵)) = (◡𝐹 “ 𝐴)) |
| 6 | dfss2 3916 | . 2 ⊢ ((◡𝐹 “ 𝐴) ⊆ (◡𝐹 “ 𝐵) ↔ ((◡𝐹 “ 𝐴) ∩ (◡𝐹 “ 𝐵)) = (◡𝐹 “ 𝐴)) | |
| 7 | 5, 6 | sylibr 234 | 1 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ 𝐵) → (◡𝐹 “ 𝐴) ⊆ (◡𝐹 “ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∩ cin 3897 ⊆ wss 3898 ◡ccnv 5618 “ cima 5622 Fun wfun 6480 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-br 5094 df-opab 5156 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-fun 6488 |
| This theorem is referenced by: pwrssmgc 32988 gsumhashmul 33048 elrspunidl 33400 carsggect 34352 eulerpartlemmf 34409 eulerpartlemgf 34413 orvclteinc 34510 cnneiima 49041 |
| Copyright terms: Public domain | W3C validator |