![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sspreima | Structured version Visualization version GIF version |
Description: The preimage of a subset is a subset of the preimage. (Contributed by Brendan Leahy, 23-Sep-2017.) |
Ref | Expression |
---|---|
sspreima | ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ 𝐵) → (◡𝐹 “ 𝐴) ⊆ (◡𝐹 “ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inpreima 7064 | . . 3 ⊢ (Fun 𝐹 → (◡𝐹 “ (𝐴 ∩ 𝐵)) = ((◡𝐹 “ 𝐴) ∩ (◡𝐹 “ 𝐵))) | |
2 | df-ss 3964 | . . . . 5 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∩ 𝐵) = 𝐴) | |
3 | 2 | biimpi 215 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∩ 𝐵) = 𝐴) |
4 | 3 | imaeq2d 6058 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (◡𝐹 “ (𝐴 ∩ 𝐵)) = (◡𝐹 “ 𝐴)) |
5 | 1, 4 | sylan9req 2791 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ 𝐵) → ((◡𝐹 “ 𝐴) ∩ (◡𝐹 “ 𝐵)) = (◡𝐹 “ 𝐴)) |
6 | df-ss 3964 | . 2 ⊢ ((◡𝐹 “ 𝐴) ⊆ (◡𝐹 “ 𝐵) ↔ ((◡𝐹 “ 𝐴) ∩ (◡𝐹 “ 𝐵)) = (◡𝐹 “ 𝐴)) | |
7 | 5, 6 | sylibr 233 | 1 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ 𝐵) → (◡𝐹 “ 𝐴) ⊆ (◡𝐹 “ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1539 ∩ cin 3946 ⊆ wss 3947 ◡ccnv 5674 “ cima 5678 Fun wfun 6536 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-clab 2708 df-cleq 2722 df-clel 2808 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-br 5148 df-opab 5210 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-fun 6544 |
This theorem is referenced by: pwrssmgc 32437 gsumhashmul 32478 elrspunidl 32820 carsggect 33615 eulerpartlemmf 33672 eulerpartlemgf 33676 orvclteinc 33772 cnneiima 47636 |
Copyright terms: Public domain | W3C validator |