MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sspreima Structured version   Visualization version   GIF version

Theorem sspreima 7101
Description: The preimage of a subset is a subset of the preimage. (Contributed by Brendan Leahy, 23-Sep-2017.)
Assertion
Ref Expression
sspreima ((Fun 𝐹𝐴𝐵) → (𝐹𝐴) ⊆ (𝐹𝐵))

Proof of Theorem sspreima
StepHypRef Expression
1 inpreima 7097 . . 3 (Fun 𝐹 → (𝐹 “ (𝐴𝐵)) = ((𝐹𝐴) ∩ (𝐹𝐵)))
2 dfss2 3994 . . . . 5 (𝐴𝐵 ↔ (𝐴𝐵) = 𝐴)
32biimpi 216 . . . 4 (𝐴𝐵 → (𝐴𝐵) = 𝐴)
43imaeq2d 6089 . . 3 (𝐴𝐵 → (𝐹 “ (𝐴𝐵)) = (𝐹𝐴))
51, 4sylan9req 2801 . 2 ((Fun 𝐹𝐴𝐵) → ((𝐹𝐴) ∩ (𝐹𝐵)) = (𝐹𝐴))
6 dfss2 3994 . 2 ((𝐹𝐴) ⊆ (𝐹𝐵) ↔ ((𝐹𝐴) ∩ (𝐹𝐵)) = (𝐹𝐴))
75, 6sylibr 234 1 ((Fun 𝐹𝐴𝐵) → (𝐹𝐴) ⊆ (𝐹𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  cin 3975  wss 3976  ccnv 5699  cima 5703  Fun wfun 6567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-fun 6575
This theorem is referenced by:  pwrssmgc  32973  gsumhashmul  33040  elrspunidl  33421  carsggect  34283  eulerpartlemmf  34340  eulerpartlemgf  34344  orvclteinc  34440  cnneiima  48596
  Copyright terms: Public domain W3C validator