MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sspreima Structured version   Visualization version   GIF version

Theorem sspreima 7087
Description: The preimage of a subset is a subset of the preimage. (Contributed by Brendan Leahy, 23-Sep-2017.)
Assertion
Ref Expression
sspreima ((Fun 𝐹𝐴𝐵) → (𝐹𝐴) ⊆ (𝐹𝐵))

Proof of Theorem sspreima
StepHypRef Expression
1 inpreima 7083 . . 3 (Fun 𝐹 → (𝐹 “ (𝐴𝐵)) = ((𝐹𝐴) ∩ (𝐹𝐵)))
2 dfss2 3980 . . . . 5 (𝐴𝐵 ↔ (𝐴𝐵) = 𝐴)
32biimpi 216 . . . 4 (𝐴𝐵 → (𝐴𝐵) = 𝐴)
43imaeq2d 6079 . . 3 (𝐴𝐵 → (𝐹 “ (𝐴𝐵)) = (𝐹𝐴))
51, 4sylan9req 2795 . 2 ((Fun 𝐹𝐴𝐵) → ((𝐹𝐴) ∩ (𝐹𝐵)) = (𝐹𝐴))
6 dfss2 3980 . 2 ((𝐹𝐴) ⊆ (𝐹𝐵) ↔ ((𝐹𝐴) ∩ (𝐹𝐵)) = (𝐹𝐴))
75, 6sylibr 234 1 ((Fun 𝐹𝐴𝐵) → (𝐹𝐴) ⊆ (𝐹𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1536  cin 3961  wss 3962  ccnv 5687  cima 5691  Fun wfun 6556
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pr 5437
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-clab 2712  df-cleq 2726  df-clel 2813  df-ral 3059  df-rex 3068  df-rab 3433  df-v 3479  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-nul 4339  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-br 5148  df-opab 5210  df-id 5582  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-fun 6564
This theorem is referenced by:  pwrssmgc  32974  gsumhashmul  33046  elrspunidl  33435  carsggect  34299  eulerpartlemmf  34356  eulerpartlemgf  34360  orvclteinc  34456  cnneiima  48712
  Copyright terms: Public domain W3C validator