| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sspreima | Structured version Visualization version GIF version | ||
| Description: The preimage of a subset is a subset of the preimage. (Contributed by Brendan Leahy, 23-Sep-2017.) |
| Ref | Expression |
|---|---|
| sspreima | ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ 𝐵) → (◡𝐹 “ 𝐴) ⊆ (◡𝐹 “ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inpreima 6997 | . . 3 ⊢ (Fun 𝐹 → (◡𝐹 “ (𝐴 ∩ 𝐵)) = ((◡𝐹 “ 𝐴) ∩ (◡𝐹 “ 𝐵))) | |
| 2 | dfss2 3920 | . . . . 5 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∩ 𝐵) = 𝐴) | |
| 3 | 2 | biimpi 216 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∩ 𝐵) = 𝐴) |
| 4 | 3 | imaeq2d 6009 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (◡𝐹 “ (𝐴 ∩ 𝐵)) = (◡𝐹 “ 𝐴)) |
| 5 | 1, 4 | sylan9req 2787 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ 𝐵) → ((◡𝐹 “ 𝐴) ∩ (◡𝐹 “ 𝐵)) = (◡𝐹 “ 𝐴)) |
| 6 | dfss2 3920 | . 2 ⊢ ((◡𝐹 “ 𝐴) ⊆ (◡𝐹 “ 𝐵) ↔ ((◡𝐹 “ 𝐴) ∩ (◡𝐹 “ 𝐵)) = (◡𝐹 “ 𝐴)) | |
| 7 | 5, 6 | sylibr 234 | 1 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ 𝐵) → (◡𝐹 “ 𝐴) ⊆ (◡𝐹 “ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∩ cin 3901 ⊆ wss 3902 ◡ccnv 5615 “ cima 5619 Fun wfun 6475 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-br 5092 df-opab 5154 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-fun 6483 |
| This theorem is referenced by: pwrssmgc 32976 gsumhashmul 33036 elrspunidl 33388 carsggect 34326 eulerpartlemmf 34383 eulerpartlemgf 34387 orvclteinc 34484 cnneiima 48947 |
| Copyright terms: Public domain | W3C validator |