![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sspreima | Structured version Visualization version GIF version |
Description: The preimage of a subset is a subset of the preimage. (Contributed by Brendan Leahy, 23-Sep-2017.) |
Ref | Expression |
---|---|
sspreima | ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ 𝐵) → (◡𝐹 “ 𝐴) ⊆ (◡𝐹 “ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inpreima 7097 | . . 3 ⊢ (Fun 𝐹 → (◡𝐹 “ (𝐴 ∩ 𝐵)) = ((◡𝐹 “ 𝐴) ∩ (◡𝐹 “ 𝐵))) | |
2 | dfss2 3994 | . . . . 5 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∩ 𝐵) = 𝐴) | |
3 | 2 | biimpi 216 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∩ 𝐵) = 𝐴) |
4 | 3 | imaeq2d 6089 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (◡𝐹 “ (𝐴 ∩ 𝐵)) = (◡𝐹 “ 𝐴)) |
5 | 1, 4 | sylan9req 2801 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ 𝐵) → ((◡𝐹 “ 𝐴) ∩ (◡𝐹 “ 𝐵)) = (◡𝐹 “ 𝐴)) |
6 | dfss2 3994 | . 2 ⊢ ((◡𝐹 “ 𝐴) ⊆ (◡𝐹 “ 𝐵) ↔ ((◡𝐹 “ 𝐴) ∩ (◡𝐹 “ 𝐵)) = (◡𝐹 “ 𝐴)) | |
7 | 5, 6 | sylibr 234 | 1 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ 𝐵) → (◡𝐹 “ 𝐴) ⊆ (◡𝐹 “ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∩ cin 3975 ⊆ wss 3976 ◡ccnv 5699 “ cima 5703 Fun wfun 6567 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-fun 6575 |
This theorem is referenced by: pwrssmgc 32973 gsumhashmul 33040 elrspunidl 33421 carsggect 34283 eulerpartlemmf 34340 eulerpartlemgf 34344 orvclteinc 34440 cnneiima 48596 |
Copyright terms: Public domain | W3C validator |