MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sspreima Structured version   Visualization version   GIF version

Theorem sspreima 7058
Description: The preimage of a subset is a subset of the preimage. (Contributed by Brendan Leahy, 23-Sep-2017.)
Assertion
Ref Expression
sspreima ((Fun 𝐹𝐴𝐵) → (𝐹𝐴) ⊆ (𝐹𝐵))

Proof of Theorem sspreima
StepHypRef Expression
1 inpreima 7054 . . 3 (Fun 𝐹 → (𝐹 “ (𝐴𝐵)) = ((𝐹𝐴) ∩ (𝐹𝐵)))
2 dfss2 3944 . . . . 5 (𝐴𝐵 ↔ (𝐴𝐵) = 𝐴)
32biimpi 216 . . . 4 (𝐴𝐵 → (𝐴𝐵) = 𝐴)
43imaeq2d 6047 . . 3 (𝐴𝐵 → (𝐹 “ (𝐴𝐵)) = (𝐹𝐴))
51, 4sylan9req 2791 . 2 ((Fun 𝐹𝐴𝐵) → ((𝐹𝐴) ∩ (𝐹𝐵)) = (𝐹𝐴))
6 dfss2 3944 . 2 ((𝐹𝐴) ⊆ (𝐹𝐵) ↔ ((𝐹𝐴) ∩ (𝐹𝐵)) = (𝐹𝐴))
75, 6sylibr 234 1 ((Fun 𝐹𝐴𝐵) → (𝐹𝐴) ⊆ (𝐹𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  cin 3925  wss 3926  ccnv 5653  cima 5657  Fun wfun 6525
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-clab 2714  df-cleq 2727  df-clel 2809  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-br 5120  df-opab 5182  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-fun 6533
This theorem is referenced by:  pwrssmgc  32980  gsumhashmul  33055  elrspunidl  33443  carsggect  34350  eulerpartlemmf  34407  eulerpartlemgf  34411  orvclteinc  34508  cnneiima  48891
  Copyright terms: Public domain W3C validator