Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sspreima | Structured version Visualization version GIF version |
Description: The preimage of a subset is a subset of the preimage. (Contributed by Brendan Leahy, 23-Sep-2017.) |
Ref | Expression |
---|---|
sspreima | ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ 𝐵) → (◡𝐹 “ 𝐴) ⊆ (◡𝐹 “ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inpreima 6938 | . . 3 ⊢ (Fun 𝐹 → (◡𝐹 “ (𝐴 ∩ 𝐵)) = ((◡𝐹 “ 𝐴) ∩ (◡𝐹 “ 𝐵))) | |
2 | df-ss 3909 | . . . . 5 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∩ 𝐵) = 𝐴) | |
3 | 2 | biimpi 215 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∩ 𝐵) = 𝐴) |
4 | 3 | imaeq2d 5968 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (◡𝐹 “ (𝐴 ∩ 𝐵)) = (◡𝐹 “ 𝐴)) |
5 | 1, 4 | sylan9req 2801 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ 𝐵) → ((◡𝐹 “ 𝐴) ∩ (◡𝐹 “ 𝐵)) = (◡𝐹 “ 𝐴)) |
6 | df-ss 3909 | . 2 ⊢ ((◡𝐹 “ 𝐴) ⊆ (◡𝐹 “ 𝐵) ↔ ((◡𝐹 “ 𝐴) ∩ (◡𝐹 “ 𝐵)) = (◡𝐹 “ 𝐴)) | |
7 | 5, 6 | sylibr 233 | 1 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ 𝐵) → (◡𝐹 “ 𝐴) ⊆ (◡𝐹 “ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1542 ∩ cin 3891 ⊆ wss 3892 ◡ccnv 5589 “ cima 5593 Fun wfun 6426 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pr 5356 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ral 3071 df-rex 3072 df-rab 3075 df-v 3433 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4568 df-pr 4570 df-op 4574 df-br 5080 df-opab 5142 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-fun 6434 |
This theorem is referenced by: pwrssmgc 31274 gsumhashmul 31312 elrspunidl 31602 carsggect 32281 eulerpartlemmf 32338 eulerpartlemgf 32342 orvclteinc 32438 cnneiima 46179 |
Copyright terms: Public domain | W3C validator |