Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cocnv | Structured version Visualization version GIF version |
Description: Composition with a function and then with the converse. (Contributed by Jeff Madsen, 2-Sep-2009.) |
Ref | Expression |
---|---|
cocnv | ⊢ ((Fun 𝐹 ∧ Fun 𝐺) → ((𝐹 ∘ 𝐺) ∘ ◡𝐺) = (𝐹 ↾ ran 𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | coass 6169 | . 2 ⊢ ((𝐹 ∘ 𝐺) ∘ ◡𝐺) = (𝐹 ∘ (𝐺 ∘ ◡𝐺)) | |
2 | funcocnv2 6741 | . . . . 5 ⊢ (Fun 𝐺 → (𝐺 ∘ ◡𝐺) = ( I ↾ ran 𝐺)) | |
3 | 2 | adantl 482 | . . . 4 ⊢ ((Fun 𝐹 ∧ Fun 𝐺) → (𝐺 ∘ ◡𝐺) = ( I ↾ ran 𝐺)) |
4 | 3 | coeq2d 5771 | . . 3 ⊢ ((Fun 𝐹 ∧ Fun 𝐺) → (𝐹 ∘ (𝐺 ∘ ◡𝐺)) = (𝐹 ∘ ( I ↾ ran 𝐺))) |
5 | resco 6154 | . . . 4 ⊢ ((𝐹 ∘ I ) ↾ ran 𝐺) = (𝐹 ∘ ( I ↾ ran 𝐺)) | |
6 | funrel 6451 | . . . . . . 7 ⊢ (Fun 𝐹 → Rel 𝐹) | |
7 | coi1 6166 | . . . . . . 7 ⊢ (Rel 𝐹 → (𝐹 ∘ I ) = 𝐹) | |
8 | 6, 7 | syl 17 | . . . . . 6 ⊢ (Fun 𝐹 → (𝐹 ∘ I ) = 𝐹) |
9 | 8 | reseq1d 5890 | . . . . 5 ⊢ (Fun 𝐹 → ((𝐹 ∘ I ) ↾ ran 𝐺) = (𝐹 ↾ ran 𝐺)) |
10 | 9 | adantr 481 | . . . 4 ⊢ ((Fun 𝐹 ∧ Fun 𝐺) → ((𝐹 ∘ I ) ↾ ran 𝐺) = (𝐹 ↾ ran 𝐺)) |
11 | 5, 10 | eqtr3id 2792 | . . 3 ⊢ ((Fun 𝐹 ∧ Fun 𝐺) → (𝐹 ∘ ( I ↾ ran 𝐺)) = (𝐹 ↾ ran 𝐺)) |
12 | 4, 11 | eqtrd 2778 | . 2 ⊢ ((Fun 𝐹 ∧ Fun 𝐺) → (𝐹 ∘ (𝐺 ∘ ◡𝐺)) = (𝐹 ↾ ran 𝐺)) |
13 | 1, 12 | eqtrid 2790 | 1 ⊢ ((Fun 𝐹 ∧ Fun 𝐺) → ((𝐹 ∘ 𝐺) ∘ ◡𝐺) = (𝐹 ↾ ran 𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 I cid 5488 ◡ccnv 5588 ran crn 5590 ↾ cres 5591 ∘ ccom 5593 Rel wrel 5594 Fun wfun 6427 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-fun 6435 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |