Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cocnv Structured version   Visualization version   GIF version

Theorem cocnv 37775
Description: Composition with a function and then with the converse. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
cocnv ((Fun 𝐹 ∧ Fun 𝐺) → ((𝐹𝐺) ∘ 𝐺) = (𝐹 ↾ ran 𝐺))

Proof of Theorem cocnv
StepHypRef Expression
1 coass 6213 . 2 ((𝐹𝐺) ∘ 𝐺) = (𝐹 ∘ (𝐺𝐺))
2 funcocnv2 6788 . . . . 5 (Fun 𝐺 → (𝐺𝐺) = ( I ↾ ran 𝐺))
32adantl 481 . . . 4 ((Fun 𝐹 ∧ Fun 𝐺) → (𝐺𝐺) = ( I ↾ ran 𝐺))
43coeq2d 5801 . . 3 ((Fun 𝐹 ∧ Fun 𝐺) → (𝐹 ∘ (𝐺𝐺)) = (𝐹 ∘ ( I ↾ ran 𝐺)))
5 resco 6197 . . . 4 ((𝐹 ∘ I ) ↾ ran 𝐺) = (𝐹 ∘ ( I ↾ ran 𝐺))
6 funrel 6498 . . . . . . 7 (Fun 𝐹 → Rel 𝐹)
7 coi1 6210 . . . . . . 7 (Rel 𝐹 → (𝐹 ∘ I ) = 𝐹)
86, 7syl 17 . . . . . 6 (Fun 𝐹 → (𝐹 ∘ I ) = 𝐹)
98reseq1d 5926 . . . . 5 (Fun 𝐹 → ((𝐹 ∘ I ) ↾ ran 𝐺) = (𝐹 ↾ ran 𝐺))
109adantr 480 . . . 4 ((Fun 𝐹 ∧ Fun 𝐺) → ((𝐹 ∘ I ) ↾ ran 𝐺) = (𝐹 ↾ ran 𝐺))
115, 10eqtr3id 2780 . . 3 ((Fun 𝐹 ∧ Fun 𝐺) → (𝐹 ∘ ( I ↾ ran 𝐺)) = (𝐹 ↾ ran 𝐺))
124, 11eqtrd 2766 . 2 ((Fun 𝐹 ∧ Fun 𝐺) → (𝐹 ∘ (𝐺𝐺)) = (𝐹 ↾ ran 𝐺))
131, 12eqtrid 2778 1 ((Fun 𝐹 ∧ Fun 𝐺) → ((𝐹𝐺) ∘ 𝐺) = (𝐹 ↾ ran 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541   I cid 5508  ccnv 5613  ran crn 5615  cres 5616  ccom 5618  Rel wrel 5619  Fun wfun 6475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-11 2160  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-br 5090  df-opab 5152  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-fun 6483
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator