Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cocnv Structured version   Visualization version   GIF version

Theorem cocnv 35810
Description: Composition with a function and then with the converse. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
cocnv ((Fun 𝐹 ∧ Fun 𝐺) → ((𝐹𝐺) ∘ 𝐺) = (𝐹 ↾ ran 𝐺))

Proof of Theorem cocnv
StepHypRef Expression
1 coass 6158 . 2 ((𝐹𝐺) ∘ 𝐺) = (𝐹 ∘ (𝐺𝐺))
2 funcocnv2 6724 . . . . 5 (Fun 𝐺 → (𝐺𝐺) = ( I ↾ ran 𝐺))
32adantl 481 . . . 4 ((Fun 𝐹 ∧ Fun 𝐺) → (𝐺𝐺) = ( I ↾ ran 𝐺))
43coeq2d 5760 . . 3 ((Fun 𝐹 ∧ Fun 𝐺) → (𝐹 ∘ (𝐺𝐺)) = (𝐹 ∘ ( I ↾ ran 𝐺)))
5 resco 6143 . . . 4 ((𝐹 ∘ I ) ↾ ran 𝐺) = (𝐹 ∘ ( I ↾ ran 𝐺))
6 funrel 6435 . . . . . . 7 (Fun 𝐹 → Rel 𝐹)
7 coi1 6155 . . . . . . 7 (Rel 𝐹 → (𝐹 ∘ I ) = 𝐹)
86, 7syl 17 . . . . . 6 (Fun 𝐹 → (𝐹 ∘ I ) = 𝐹)
98reseq1d 5879 . . . . 5 (Fun 𝐹 → ((𝐹 ∘ I ) ↾ ran 𝐺) = (𝐹 ↾ ran 𝐺))
109adantr 480 . . . 4 ((Fun 𝐹 ∧ Fun 𝐺) → ((𝐹 ∘ I ) ↾ ran 𝐺) = (𝐹 ↾ ran 𝐺))
115, 10eqtr3id 2793 . . 3 ((Fun 𝐹 ∧ Fun 𝐺) → (𝐹 ∘ ( I ↾ ran 𝐺)) = (𝐹 ↾ ran 𝐺))
124, 11eqtrd 2778 . 2 ((Fun 𝐹 ∧ Fun 𝐺) → (𝐹 ∘ (𝐺𝐺)) = (𝐹 ↾ ran 𝐺))
131, 12syl5eq 2791 1 ((Fun 𝐹 ∧ Fun 𝐺) → ((𝐹𝐺) ∘ 𝐺) = (𝐹 ↾ ran 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539   I cid 5479  ccnv 5579  ran crn 5581  cres 5582  ccom 5584  Rel wrel 5585  Fun wfun 6412
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-fun 6420
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator