| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cocnv | Structured version Visualization version GIF version | ||
| Description: Composition with a function and then with the converse. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| Ref | Expression |
|---|---|
| cocnv | ⊢ ((Fun 𝐹 ∧ Fun 𝐺) → ((𝐹 ∘ 𝐺) ∘ ◡𝐺) = (𝐹 ↾ ran 𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coass 6285 | . 2 ⊢ ((𝐹 ∘ 𝐺) ∘ ◡𝐺) = (𝐹 ∘ (𝐺 ∘ ◡𝐺)) | |
| 2 | funcocnv2 6873 | . . . . 5 ⊢ (Fun 𝐺 → (𝐺 ∘ ◡𝐺) = ( I ↾ ran 𝐺)) | |
| 3 | 2 | adantl 481 | . . . 4 ⊢ ((Fun 𝐹 ∧ Fun 𝐺) → (𝐺 ∘ ◡𝐺) = ( I ↾ ran 𝐺)) |
| 4 | 3 | coeq2d 5873 | . . 3 ⊢ ((Fun 𝐹 ∧ Fun 𝐺) → (𝐹 ∘ (𝐺 ∘ ◡𝐺)) = (𝐹 ∘ ( I ↾ ran 𝐺))) |
| 5 | resco 6270 | . . . 4 ⊢ ((𝐹 ∘ I ) ↾ ran 𝐺) = (𝐹 ∘ ( I ↾ ran 𝐺)) | |
| 6 | funrel 6583 | . . . . . . 7 ⊢ (Fun 𝐹 → Rel 𝐹) | |
| 7 | coi1 6282 | . . . . . . 7 ⊢ (Rel 𝐹 → (𝐹 ∘ I ) = 𝐹) | |
| 8 | 6, 7 | syl 17 | . . . . . 6 ⊢ (Fun 𝐹 → (𝐹 ∘ I ) = 𝐹) |
| 9 | 8 | reseq1d 5996 | . . . . 5 ⊢ (Fun 𝐹 → ((𝐹 ∘ I ) ↾ ran 𝐺) = (𝐹 ↾ ran 𝐺)) |
| 10 | 9 | adantr 480 | . . . 4 ⊢ ((Fun 𝐹 ∧ Fun 𝐺) → ((𝐹 ∘ I ) ↾ ran 𝐺) = (𝐹 ↾ ran 𝐺)) |
| 11 | 5, 10 | eqtr3id 2791 | . . 3 ⊢ ((Fun 𝐹 ∧ Fun 𝐺) → (𝐹 ∘ ( I ↾ ran 𝐺)) = (𝐹 ↾ ran 𝐺)) |
| 12 | 4, 11 | eqtrd 2777 | . 2 ⊢ ((Fun 𝐹 ∧ Fun 𝐺) → (𝐹 ∘ (𝐺 ∘ ◡𝐺)) = (𝐹 ↾ ran 𝐺)) |
| 13 | 1, 12 | eqtrid 2789 | 1 ⊢ ((Fun 𝐹 ∧ Fun 𝐺) → ((𝐹 ∘ 𝐺) ∘ ◡𝐺) = (𝐹 ↾ ran 𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 I cid 5577 ◡ccnv 5684 ran crn 5686 ↾ cres 5687 ∘ ccom 5689 Rel wrel 5690 Fun wfun 6555 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-br 5144 df-opab 5206 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-fun 6563 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |