| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cocnv | Structured version Visualization version GIF version | ||
| Description: Composition with a function and then with the converse. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| Ref | Expression |
|---|---|
| cocnv | ⊢ ((Fun 𝐹 ∧ Fun 𝐺) → ((𝐹 ∘ 𝐺) ∘ ◡𝐺) = (𝐹 ↾ ran 𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coass 6238 | . 2 ⊢ ((𝐹 ∘ 𝐺) ∘ ◡𝐺) = (𝐹 ∘ (𝐺 ∘ ◡𝐺)) | |
| 2 | funcocnv2 6825 | . . . . 5 ⊢ (Fun 𝐺 → (𝐺 ∘ ◡𝐺) = ( I ↾ ran 𝐺)) | |
| 3 | 2 | adantl 481 | . . . 4 ⊢ ((Fun 𝐹 ∧ Fun 𝐺) → (𝐺 ∘ ◡𝐺) = ( I ↾ ran 𝐺)) |
| 4 | 3 | coeq2d 5826 | . . 3 ⊢ ((Fun 𝐹 ∧ Fun 𝐺) → (𝐹 ∘ (𝐺 ∘ ◡𝐺)) = (𝐹 ∘ ( I ↾ ran 𝐺))) |
| 5 | resco 6223 | . . . 4 ⊢ ((𝐹 ∘ I ) ↾ ran 𝐺) = (𝐹 ∘ ( I ↾ ran 𝐺)) | |
| 6 | funrel 6533 | . . . . . . 7 ⊢ (Fun 𝐹 → Rel 𝐹) | |
| 7 | coi1 6235 | . . . . . . 7 ⊢ (Rel 𝐹 → (𝐹 ∘ I ) = 𝐹) | |
| 8 | 6, 7 | syl 17 | . . . . . 6 ⊢ (Fun 𝐹 → (𝐹 ∘ I ) = 𝐹) |
| 9 | 8 | reseq1d 5949 | . . . . 5 ⊢ (Fun 𝐹 → ((𝐹 ∘ I ) ↾ ran 𝐺) = (𝐹 ↾ ran 𝐺)) |
| 10 | 9 | adantr 480 | . . . 4 ⊢ ((Fun 𝐹 ∧ Fun 𝐺) → ((𝐹 ∘ I ) ↾ ran 𝐺) = (𝐹 ↾ ran 𝐺)) |
| 11 | 5, 10 | eqtr3id 2778 | . . 3 ⊢ ((Fun 𝐹 ∧ Fun 𝐺) → (𝐹 ∘ ( I ↾ ran 𝐺)) = (𝐹 ↾ ran 𝐺)) |
| 12 | 4, 11 | eqtrd 2764 | . 2 ⊢ ((Fun 𝐹 ∧ Fun 𝐺) → (𝐹 ∘ (𝐺 ∘ ◡𝐺)) = (𝐹 ↾ ran 𝐺)) |
| 13 | 1, 12 | eqtrid 2776 | 1 ⊢ ((Fun 𝐹 ∧ Fun 𝐺) → ((𝐹 ∘ 𝐺) ∘ ◡𝐺) = (𝐹 ↾ ran 𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 I cid 5532 ◡ccnv 5637 ran crn 5639 ↾ cres 5640 ∘ ccom 5642 Rel wrel 5643 Fun wfun 6505 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-fun 6513 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |