Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cocnv Structured version   Visualization version   GIF version

Theorem cocnv 37712
Description: Composition with a function and then with the converse. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
cocnv ((Fun 𝐹 ∧ Fun 𝐺) → ((𝐹𝐺) ∘ 𝐺) = (𝐹 ↾ ran 𝐺))

Proof of Theorem cocnv
StepHypRef Expression
1 coass 6287 . 2 ((𝐹𝐺) ∘ 𝐺) = (𝐹 ∘ (𝐺𝐺))
2 funcocnv2 6874 . . . . 5 (Fun 𝐺 → (𝐺𝐺) = ( I ↾ ran 𝐺))
32adantl 481 . . . 4 ((Fun 𝐹 ∧ Fun 𝐺) → (𝐺𝐺) = ( I ↾ ran 𝐺))
43coeq2d 5876 . . 3 ((Fun 𝐹 ∧ Fun 𝐺) → (𝐹 ∘ (𝐺𝐺)) = (𝐹 ∘ ( I ↾ ran 𝐺)))
5 resco 6272 . . . 4 ((𝐹 ∘ I ) ↾ ran 𝐺) = (𝐹 ∘ ( I ↾ ran 𝐺))
6 funrel 6585 . . . . . . 7 (Fun 𝐹 → Rel 𝐹)
7 coi1 6284 . . . . . . 7 (Rel 𝐹 → (𝐹 ∘ I ) = 𝐹)
86, 7syl 17 . . . . . 6 (Fun 𝐹 → (𝐹 ∘ I ) = 𝐹)
98reseq1d 5999 . . . . 5 (Fun 𝐹 → ((𝐹 ∘ I ) ↾ ran 𝐺) = (𝐹 ↾ ran 𝐺))
109adantr 480 . . . 4 ((Fun 𝐹 ∧ Fun 𝐺) → ((𝐹 ∘ I ) ↾ ran 𝐺) = (𝐹 ↾ ran 𝐺))
115, 10eqtr3id 2789 . . 3 ((Fun 𝐹 ∧ Fun 𝐺) → (𝐹 ∘ ( I ↾ ran 𝐺)) = (𝐹 ↾ ran 𝐺))
124, 11eqtrd 2775 . 2 ((Fun 𝐹 ∧ Fun 𝐺) → (𝐹 ∘ (𝐺𝐺)) = (𝐹 ↾ ran 𝐺))
131, 12eqtrid 2787 1 ((Fun 𝐹 ∧ Fun 𝐺) → ((𝐹𝐺) ∘ 𝐺) = (𝐹 ↾ ran 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537   I cid 5582  ccnv 5688  ran crn 5690  cres 5691  ccom 5693  Rel wrel 5694  Fun wfun 6557
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-br 5149  df-opab 5211  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-fun 6565
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator