Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cocnv | Structured version Visualization version GIF version |
Description: Composition with a function and then with the converse. (Contributed by Jeff Madsen, 2-Sep-2009.) |
Ref | Expression |
---|---|
cocnv | ⊢ ((Fun 𝐹 ∧ Fun 𝐺) → ((𝐹 ∘ 𝐺) ∘ ◡𝐺) = (𝐹 ↾ ran 𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | coass 6098 | . 2 ⊢ ((𝐹 ∘ 𝐺) ∘ ◡𝐺) = (𝐹 ∘ (𝐺 ∘ ◡𝐺)) | |
2 | funcocnv2 6642 | . . . . 5 ⊢ (Fun 𝐺 → (𝐺 ∘ ◡𝐺) = ( I ↾ ran 𝐺)) | |
3 | 2 | adantl 485 | . . . 4 ⊢ ((Fun 𝐹 ∧ Fun 𝐺) → (𝐺 ∘ ◡𝐺) = ( I ↾ ran 𝐺)) |
4 | 3 | coeq2d 5705 | . . 3 ⊢ ((Fun 𝐹 ∧ Fun 𝐺) → (𝐹 ∘ (𝐺 ∘ ◡𝐺)) = (𝐹 ∘ ( I ↾ ran 𝐺))) |
5 | resco 6083 | . . . 4 ⊢ ((𝐹 ∘ I ) ↾ ran 𝐺) = (𝐹 ∘ ( I ↾ ran 𝐺)) | |
6 | funrel 6356 | . . . . . . 7 ⊢ (Fun 𝐹 → Rel 𝐹) | |
7 | coi1 6095 | . . . . . . 7 ⊢ (Rel 𝐹 → (𝐹 ∘ I ) = 𝐹) | |
8 | 6, 7 | syl 17 | . . . . . 6 ⊢ (Fun 𝐹 → (𝐹 ∘ I ) = 𝐹) |
9 | 8 | reseq1d 5824 | . . . . 5 ⊢ (Fun 𝐹 → ((𝐹 ∘ I ) ↾ ran 𝐺) = (𝐹 ↾ ran 𝐺)) |
10 | 9 | adantr 484 | . . . 4 ⊢ ((Fun 𝐹 ∧ Fun 𝐺) → ((𝐹 ∘ I ) ↾ ran 𝐺) = (𝐹 ↾ ran 𝐺)) |
11 | 5, 10 | eqtr3id 2787 | . . 3 ⊢ ((Fun 𝐹 ∧ Fun 𝐺) → (𝐹 ∘ ( I ↾ ran 𝐺)) = (𝐹 ↾ ran 𝐺)) |
12 | 4, 11 | eqtrd 2773 | . 2 ⊢ ((Fun 𝐹 ∧ Fun 𝐺) → (𝐹 ∘ (𝐺 ∘ ◡𝐺)) = (𝐹 ↾ ran 𝐺)) |
13 | 1, 12 | syl5eq 2785 | 1 ⊢ ((Fun 𝐹 ∧ Fun 𝐺) → ((𝐹 ∘ 𝐺) ∘ ◡𝐺) = (𝐹 ↾ ran 𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1542 I cid 5428 ◡ccnv 5524 ran crn 5526 ↾ cres 5527 ∘ ccom 5529 Rel wrel 5530 Fun wfun 6333 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-sep 5167 ax-nul 5174 ax-pr 5296 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-clab 2717 df-cleq 2730 df-clel 2811 df-ral 3058 df-rex 3059 df-rab 3062 df-v 3400 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-nul 4212 df-if 4415 df-sn 4517 df-pr 4519 df-op 4523 df-br 5031 df-opab 5093 df-id 5429 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-fun 6341 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |