![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cocnv | Structured version Visualization version GIF version |
Description: Composition with a function and then with the converse. (Contributed by Jeff Madsen, 2-Sep-2009.) |
Ref | Expression |
---|---|
cocnv | ⊢ ((Fun 𝐹 ∧ Fun 𝐺) → ((𝐹 ∘ 𝐺) ∘ ◡𝐺) = (𝐹 ↾ ran 𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | coass 6287 | . 2 ⊢ ((𝐹 ∘ 𝐺) ∘ ◡𝐺) = (𝐹 ∘ (𝐺 ∘ ◡𝐺)) | |
2 | funcocnv2 6874 | . . . . 5 ⊢ (Fun 𝐺 → (𝐺 ∘ ◡𝐺) = ( I ↾ ran 𝐺)) | |
3 | 2 | adantl 481 | . . . 4 ⊢ ((Fun 𝐹 ∧ Fun 𝐺) → (𝐺 ∘ ◡𝐺) = ( I ↾ ran 𝐺)) |
4 | 3 | coeq2d 5876 | . . 3 ⊢ ((Fun 𝐹 ∧ Fun 𝐺) → (𝐹 ∘ (𝐺 ∘ ◡𝐺)) = (𝐹 ∘ ( I ↾ ran 𝐺))) |
5 | resco 6272 | . . . 4 ⊢ ((𝐹 ∘ I ) ↾ ran 𝐺) = (𝐹 ∘ ( I ↾ ran 𝐺)) | |
6 | funrel 6585 | . . . . . . 7 ⊢ (Fun 𝐹 → Rel 𝐹) | |
7 | coi1 6284 | . . . . . . 7 ⊢ (Rel 𝐹 → (𝐹 ∘ I ) = 𝐹) | |
8 | 6, 7 | syl 17 | . . . . . 6 ⊢ (Fun 𝐹 → (𝐹 ∘ I ) = 𝐹) |
9 | 8 | reseq1d 5999 | . . . . 5 ⊢ (Fun 𝐹 → ((𝐹 ∘ I ) ↾ ran 𝐺) = (𝐹 ↾ ran 𝐺)) |
10 | 9 | adantr 480 | . . . 4 ⊢ ((Fun 𝐹 ∧ Fun 𝐺) → ((𝐹 ∘ I ) ↾ ran 𝐺) = (𝐹 ↾ ran 𝐺)) |
11 | 5, 10 | eqtr3id 2789 | . . 3 ⊢ ((Fun 𝐹 ∧ Fun 𝐺) → (𝐹 ∘ ( I ↾ ran 𝐺)) = (𝐹 ↾ ran 𝐺)) |
12 | 4, 11 | eqtrd 2775 | . 2 ⊢ ((Fun 𝐹 ∧ Fun 𝐺) → (𝐹 ∘ (𝐺 ∘ ◡𝐺)) = (𝐹 ↾ ran 𝐺)) |
13 | 1, 12 | eqtrid 2787 | 1 ⊢ ((Fun 𝐹 ∧ Fun 𝐺) → ((𝐹 ∘ 𝐺) ∘ ◡𝐺) = (𝐹 ↾ ran 𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 I cid 5582 ◡ccnv 5688 ran crn 5690 ↾ cres 5691 ∘ ccom 5693 Rel wrel 5694 Fun wfun 6557 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-opab 5211 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-fun 6565 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |