Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  f1ocan1fv Structured version   Visualization version   GIF version

Theorem f1ocan1fv 37774
Description: Cancel a composition by a bijection by preapplying the converse. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 27-Dec-2014.)
Assertion
Ref Expression
f1ocan1fv ((Fun 𝐹𝐺:𝐴1-1-onto𝐵𝑋𝐵) → ((𝐹𝐺)‘(𝐺𝑋)) = (𝐹𝑋))

Proof of Theorem f1ocan1fv
StepHypRef Expression
1 f1of 6763 . . . 4 (𝐺:𝐴1-1-onto𝐵𝐺:𝐴𝐵)
213ad2ant2 1134 . . 3 ((Fun 𝐹𝐺:𝐴1-1-onto𝐵𝑋𝐵) → 𝐺:𝐴𝐵)
3 f1ocnv 6775 . . . . . 6 (𝐺:𝐴1-1-onto𝐵𝐺:𝐵1-1-onto𝐴)
4 f1of 6763 . . . . . 6 (𝐺:𝐵1-1-onto𝐴𝐺:𝐵𝐴)
53, 4syl 17 . . . . 5 (𝐺:𝐴1-1-onto𝐵𝐺:𝐵𝐴)
653ad2ant2 1134 . . . 4 ((Fun 𝐹𝐺:𝐴1-1-onto𝐵𝑋𝐵) → 𝐺:𝐵𝐴)
7 simp3 1138 . . . 4 ((Fun 𝐹𝐺:𝐴1-1-onto𝐵𝑋𝐵) → 𝑋𝐵)
86, 7ffvelcdmd 7018 . . 3 ((Fun 𝐹𝐺:𝐴1-1-onto𝐵𝑋𝐵) → (𝐺𝑋) ∈ 𝐴)
9 fvco3 6921 . . 3 ((𝐺:𝐴𝐵 ∧ (𝐺𝑋) ∈ 𝐴) → ((𝐹𝐺)‘(𝐺𝑋)) = (𝐹‘(𝐺‘(𝐺𝑋))))
102, 8, 9syl2anc 584 . 2 ((Fun 𝐹𝐺:𝐴1-1-onto𝐵𝑋𝐵) → ((𝐹𝐺)‘(𝐺𝑋)) = (𝐹‘(𝐺‘(𝐺𝑋))))
11 f1ocnvfv2 7211 . . . 4 ((𝐺:𝐴1-1-onto𝐵𝑋𝐵) → (𝐺‘(𝐺𝑋)) = 𝑋)
12113adant1 1130 . . 3 ((Fun 𝐹𝐺:𝐴1-1-onto𝐵𝑋𝐵) → (𝐺‘(𝐺𝑋)) = 𝑋)
1312fveq2d 6826 . 2 ((Fun 𝐹𝐺:𝐴1-1-onto𝐵𝑋𝐵) → (𝐹‘(𝐺‘(𝐺𝑋))) = (𝐹𝑋))
1410, 13eqtrd 2766 1 ((Fun 𝐹𝐺:𝐴1-1-onto𝐵𝑋𝐵) → ((𝐹𝐺)‘(𝐺𝑋)) = (𝐹𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1541  wcel 2111  ccnv 5613  ccom 5618  Fun wfun 6475  wf 6477  1-1-ontowf1o 6480  cfv 6481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489
This theorem is referenced by:  f1ocan2fv  37775
  Copyright terms: Public domain W3C validator