Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  f1ocan1fv Structured version   Visualization version   GIF version

Theorem f1ocan1fv 37727
Description: Cancel a composition by a bijection by preapplying the converse. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 27-Dec-2014.)
Assertion
Ref Expression
f1ocan1fv ((Fun 𝐹𝐺:𝐴1-1-onto𝐵𝑋𝐵) → ((𝐹𝐺)‘(𝐺𝑋)) = (𝐹𝑋))

Proof of Theorem f1ocan1fv
StepHypRef Expression
1 f1of 6856 . . . 4 (𝐺:𝐴1-1-onto𝐵𝐺:𝐴𝐵)
213ad2ant2 1135 . . 3 ((Fun 𝐹𝐺:𝐴1-1-onto𝐵𝑋𝐵) → 𝐺:𝐴𝐵)
3 f1ocnv 6868 . . . . . 6 (𝐺:𝐴1-1-onto𝐵𝐺:𝐵1-1-onto𝐴)
4 f1of 6856 . . . . . 6 (𝐺:𝐵1-1-onto𝐴𝐺:𝐵𝐴)
53, 4syl 17 . . . . 5 (𝐺:𝐴1-1-onto𝐵𝐺:𝐵𝐴)
653ad2ant2 1135 . . . 4 ((Fun 𝐹𝐺:𝐴1-1-onto𝐵𝑋𝐵) → 𝐺:𝐵𝐴)
7 simp3 1139 . . . 4 ((Fun 𝐹𝐺:𝐴1-1-onto𝐵𝑋𝐵) → 𝑋𝐵)
86, 7ffvelcdmd 7112 . . 3 ((Fun 𝐹𝐺:𝐴1-1-onto𝐵𝑋𝐵) → (𝐺𝑋) ∈ 𝐴)
9 fvco3 7015 . . 3 ((𝐺:𝐴𝐵 ∧ (𝐺𝑋) ∈ 𝐴) → ((𝐹𝐺)‘(𝐺𝑋)) = (𝐹‘(𝐺‘(𝐺𝑋))))
102, 8, 9syl2anc 584 . 2 ((Fun 𝐹𝐺:𝐴1-1-onto𝐵𝑋𝐵) → ((𝐹𝐺)‘(𝐺𝑋)) = (𝐹‘(𝐺‘(𝐺𝑋))))
11 f1ocnvfv2 7304 . . . 4 ((𝐺:𝐴1-1-onto𝐵𝑋𝐵) → (𝐺‘(𝐺𝑋)) = 𝑋)
12113adant1 1131 . . 3 ((Fun 𝐹𝐺:𝐴1-1-onto𝐵𝑋𝐵) → (𝐺‘(𝐺𝑋)) = 𝑋)
1312fveq2d 6918 . 2 ((Fun 𝐹𝐺:𝐴1-1-onto𝐵𝑋𝐵) → (𝐹‘(𝐺‘(𝐺𝑋))) = (𝐹𝑋))
1410, 13eqtrd 2777 1 ((Fun 𝐹𝐺:𝐴1-1-onto𝐵𝑋𝐵) → ((𝐹𝐺)‘(𝐺𝑋)) = (𝐹𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1087   = wceq 1539  wcel 2108  ccnv 5692  ccom 5697  Fun wfun 6563  wf 6565  1-1-ontowf1o 6568  cfv 6569
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5305  ax-nul 5315  ax-pr 5441
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3483  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-nul 4343  df-if 4535  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-br 5152  df-opab 5214  df-id 5587  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-iota 6522  df-fun 6571  df-fn 6572  df-f 6573  df-f1 6574  df-fo 6575  df-f1o 6576  df-fv 6577
This theorem is referenced by:  f1ocan2fv  37728
  Copyright terms: Public domain W3C validator