Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  f1ocan1fv Structured version   Visualization version   GIF version

Theorem f1ocan1fv 37692
Description: Cancel a composition by a bijection by preapplying the converse. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 27-Dec-2014.)
Assertion
Ref Expression
f1ocan1fv ((Fun 𝐹𝐺:𝐴1-1-onto𝐵𝑋𝐵) → ((𝐹𝐺)‘(𝐺𝑋)) = (𝐹𝑋))

Proof of Theorem f1ocan1fv
StepHypRef Expression
1 f1of 6828 . . . 4 (𝐺:𝐴1-1-onto𝐵𝐺:𝐴𝐵)
213ad2ant2 1134 . . 3 ((Fun 𝐹𝐺:𝐴1-1-onto𝐵𝑋𝐵) → 𝐺:𝐴𝐵)
3 f1ocnv 6840 . . . . . 6 (𝐺:𝐴1-1-onto𝐵𝐺:𝐵1-1-onto𝐴)
4 f1of 6828 . . . . . 6 (𝐺:𝐵1-1-onto𝐴𝐺:𝐵𝐴)
53, 4syl 17 . . . . 5 (𝐺:𝐴1-1-onto𝐵𝐺:𝐵𝐴)
653ad2ant2 1134 . . . 4 ((Fun 𝐹𝐺:𝐴1-1-onto𝐵𝑋𝐵) → 𝐺:𝐵𝐴)
7 simp3 1138 . . . 4 ((Fun 𝐹𝐺:𝐴1-1-onto𝐵𝑋𝐵) → 𝑋𝐵)
86, 7ffvelcdmd 7085 . . 3 ((Fun 𝐹𝐺:𝐴1-1-onto𝐵𝑋𝐵) → (𝐺𝑋) ∈ 𝐴)
9 fvco3 6988 . . 3 ((𝐺:𝐴𝐵 ∧ (𝐺𝑋) ∈ 𝐴) → ((𝐹𝐺)‘(𝐺𝑋)) = (𝐹‘(𝐺‘(𝐺𝑋))))
102, 8, 9syl2anc 584 . 2 ((Fun 𝐹𝐺:𝐴1-1-onto𝐵𝑋𝐵) → ((𝐹𝐺)‘(𝐺𝑋)) = (𝐹‘(𝐺‘(𝐺𝑋))))
11 f1ocnvfv2 7279 . . . 4 ((𝐺:𝐴1-1-onto𝐵𝑋𝐵) → (𝐺‘(𝐺𝑋)) = 𝑋)
12113adant1 1130 . . 3 ((Fun 𝐹𝐺:𝐴1-1-onto𝐵𝑋𝐵) → (𝐺‘(𝐺𝑋)) = 𝑋)
1312fveq2d 6890 . 2 ((Fun 𝐹𝐺:𝐴1-1-onto𝐵𝑋𝐵) → (𝐹‘(𝐺‘(𝐺𝑋))) = (𝐹𝑋))
1410, 13eqtrd 2769 1 ((Fun 𝐹𝐺:𝐴1-1-onto𝐵𝑋𝐵) → ((𝐹𝐺)‘(𝐺𝑋)) = (𝐹𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1539  wcel 2107  ccnv 5664  ccom 5669  Fun wfun 6535  wf 6537  1-1-ontowf1o 6540  cfv 6541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-opab 5186  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549
This theorem is referenced by:  f1ocan2fv  37693
  Copyright terms: Public domain W3C validator