Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > f1ocan1fv | Structured version Visualization version GIF version |
Description: Cancel a composition by a bijection by preapplying the converse. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 27-Dec-2014.) |
Ref | Expression |
---|---|
f1ocan1fv | ⊢ ((Fun 𝐹 ∧ 𝐺:𝐴–1-1-onto→𝐵 ∧ 𝑋 ∈ 𝐵) → ((𝐹 ∘ 𝐺)‘(◡𝐺‘𝑋)) = (𝐹‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1of 6700 | . . . 4 ⊢ (𝐺:𝐴–1-1-onto→𝐵 → 𝐺:𝐴⟶𝐵) | |
2 | 1 | 3ad2ant2 1132 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐺:𝐴–1-1-onto→𝐵 ∧ 𝑋 ∈ 𝐵) → 𝐺:𝐴⟶𝐵) |
3 | f1ocnv 6712 | . . . . . 6 ⊢ (𝐺:𝐴–1-1-onto→𝐵 → ◡𝐺:𝐵–1-1-onto→𝐴) | |
4 | f1of 6700 | . . . . . 6 ⊢ (◡𝐺:𝐵–1-1-onto→𝐴 → ◡𝐺:𝐵⟶𝐴) | |
5 | 3, 4 | syl 17 | . . . . 5 ⊢ (𝐺:𝐴–1-1-onto→𝐵 → ◡𝐺:𝐵⟶𝐴) |
6 | 5 | 3ad2ant2 1132 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝐺:𝐴–1-1-onto→𝐵 ∧ 𝑋 ∈ 𝐵) → ◡𝐺:𝐵⟶𝐴) |
7 | simp3 1136 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝐺:𝐴–1-1-onto→𝐵 ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
8 | 6, 7 | ffvelrnd 6944 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐺:𝐴–1-1-onto→𝐵 ∧ 𝑋 ∈ 𝐵) → (◡𝐺‘𝑋) ∈ 𝐴) |
9 | fvco3 6849 | . . 3 ⊢ ((𝐺:𝐴⟶𝐵 ∧ (◡𝐺‘𝑋) ∈ 𝐴) → ((𝐹 ∘ 𝐺)‘(◡𝐺‘𝑋)) = (𝐹‘(𝐺‘(◡𝐺‘𝑋)))) | |
10 | 2, 8, 9 | syl2anc 583 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐺:𝐴–1-1-onto→𝐵 ∧ 𝑋 ∈ 𝐵) → ((𝐹 ∘ 𝐺)‘(◡𝐺‘𝑋)) = (𝐹‘(𝐺‘(◡𝐺‘𝑋)))) |
11 | f1ocnvfv2 7130 | . . . 4 ⊢ ((𝐺:𝐴–1-1-onto→𝐵 ∧ 𝑋 ∈ 𝐵) → (𝐺‘(◡𝐺‘𝑋)) = 𝑋) | |
12 | 11 | 3adant1 1128 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐺:𝐴–1-1-onto→𝐵 ∧ 𝑋 ∈ 𝐵) → (𝐺‘(◡𝐺‘𝑋)) = 𝑋) |
13 | 12 | fveq2d 6760 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐺:𝐴–1-1-onto→𝐵 ∧ 𝑋 ∈ 𝐵) → (𝐹‘(𝐺‘(◡𝐺‘𝑋))) = (𝐹‘𝑋)) |
14 | 10, 13 | eqtrd 2778 | 1 ⊢ ((Fun 𝐹 ∧ 𝐺:𝐴–1-1-onto→𝐵 ∧ 𝑋 ∈ 𝐵) → ((𝐹 ∘ 𝐺)‘(◡𝐺‘𝑋)) = (𝐹‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ◡ccnv 5579 ∘ ccom 5584 Fun wfun 6412 ⟶wf 6414 –1-1-onto→wf1o 6417 ‘cfv 6418 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 |
This theorem is referenced by: f1ocan2fv 35812 |
Copyright terms: Public domain | W3C validator |