![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > f1ocan1fv | Structured version Visualization version GIF version |
Description: Cancel a composition by a bijection by preapplying the converse. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 27-Dec-2014.) |
Ref | Expression |
---|---|
f1ocan1fv | ⊢ ((Fun 𝐹 ∧ 𝐺:𝐴–1-1-onto→𝐵 ∧ 𝑋 ∈ 𝐵) → ((𝐹 ∘ 𝐺)‘(◡𝐺‘𝑋)) = (𝐹‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1of 6356 | . . . 4 ⊢ (𝐺:𝐴–1-1-onto→𝐵 → 𝐺:𝐴⟶𝐵) | |
2 | 1 | 3ad2ant2 1165 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐺:𝐴–1-1-onto→𝐵 ∧ 𝑋 ∈ 𝐵) → 𝐺:𝐴⟶𝐵) |
3 | f1ocnv 6368 | . . . . . 6 ⊢ (𝐺:𝐴–1-1-onto→𝐵 → ◡𝐺:𝐵–1-1-onto→𝐴) | |
4 | f1of 6356 | . . . . . 6 ⊢ (◡𝐺:𝐵–1-1-onto→𝐴 → ◡𝐺:𝐵⟶𝐴) | |
5 | 3, 4 | syl 17 | . . . . 5 ⊢ (𝐺:𝐴–1-1-onto→𝐵 → ◡𝐺:𝐵⟶𝐴) |
6 | 5 | 3ad2ant2 1165 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝐺:𝐴–1-1-onto→𝐵 ∧ 𝑋 ∈ 𝐵) → ◡𝐺:𝐵⟶𝐴) |
7 | simp3 1169 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝐺:𝐴–1-1-onto→𝐵 ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
8 | 6, 7 | ffvelrnd 6586 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐺:𝐴–1-1-onto→𝐵 ∧ 𝑋 ∈ 𝐵) → (◡𝐺‘𝑋) ∈ 𝐴) |
9 | fvco3 6500 | . . 3 ⊢ ((𝐺:𝐴⟶𝐵 ∧ (◡𝐺‘𝑋) ∈ 𝐴) → ((𝐹 ∘ 𝐺)‘(◡𝐺‘𝑋)) = (𝐹‘(𝐺‘(◡𝐺‘𝑋)))) | |
10 | 2, 8, 9 | syl2anc 580 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐺:𝐴–1-1-onto→𝐵 ∧ 𝑋 ∈ 𝐵) → ((𝐹 ∘ 𝐺)‘(◡𝐺‘𝑋)) = (𝐹‘(𝐺‘(◡𝐺‘𝑋)))) |
11 | f1ocnvfv2 6761 | . . . 4 ⊢ ((𝐺:𝐴–1-1-onto→𝐵 ∧ 𝑋 ∈ 𝐵) → (𝐺‘(◡𝐺‘𝑋)) = 𝑋) | |
12 | 11 | 3adant1 1161 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐺:𝐴–1-1-onto→𝐵 ∧ 𝑋 ∈ 𝐵) → (𝐺‘(◡𝐺‘𝑋)) = 𝑋) |
13 | 12 | fveq2d 6415 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐺:𝐴–1-1-onto→𝐵 ∧ 𝑋 ∈ 𝐵) → (𝐹‘(𝐺‘(◡𝐺‘𝑋))) = (𝐹‘𝑋)) |
14 | 10, 13 | eqtrd 2833 | 1 ⊢ ((Fun 𝐹 ∧ 𝐺:𝐴–1-1-onto→𝐵 ∧ 𝑋 ∈ 𝐵) → ((𝐹 ∘ 𝐺)‘(◡𝐺‘𝑋)) = (𝐹‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1108 = wceq 1653 ∈ wcel 2157 ◡ccnv 5311 ∘ ccom 5316 Fun wfun 6095 ⟶wf 6097 –1-1-onto→wf1o 6100 ‘cfv 6101 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3387 df-sbc 3634 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-sn 4369 df-pr 4371 df-op 4375 df-uni 4629 df-br 4844 df-opab 4906 df-id 5220 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 |
This theorem is referenced by: f1ocan2fv 34010 |
Copyright terms: Public domain | W3C validator |