Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > opropabco | Structured version Visualization version GIF version |
Description: Composition of an operator with a function abstraction. (Contributed by Jeff Madsen, 11-Jun-2010.) |
Ref | Expression |
---|---|
opropabco.1 | ⊢ (𝑥 ∈ 𝐴 → 𝐵 ∈ 𝑅) |
opropabco.2 | ⊢ (𝑥 ∈ 𝐴 → 𝐶 ∈ 𝑆) |
opropabco.3 | ⊢ 𝐹 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 〈𝐵, 𝐶〉)} |
opropabco.4 | ⊢ 𝐺 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐵𝑀𝐶))} |
Ref | Expression |
---|---|
opropabco | ⊢ (𝑀 Fn (𝑅 × 𝑆) → 𝐺 = (𝑀 ∘ 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opropabco.1 | . . 3 ⊢ (𝑥 ∈ 𝐴 → 𝐵 ∈ 𝑅) | |
2 | opropabco.2 | . . 3 ⊢ (𝑥 ∈ 𝐴 → 𝐶 ∈ 𝑆) | |
3 | opelxpi 5617 | . . 3 ⊢ ((𝐵 ∈ 𝑅 ∧ 𝐶 ∈ 𝑆) → 〈𝐵, 𝐶〉 ∈ (𝑅 × 𝑆)) | |
4 | 1, 2, 3 | syl2anc 583 | . 2 ⊢ (𝑥 ∈ 𝐴 → 〈𝐵, 𝐶〉 ∈ (𝑅 × 𝑆)) |
5 | opropabco.3 | . 2 ⊢ 𝐹 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 〈𝐵, 𝐶〉)} | |
6 | opropabco.4 | . . 3 ⊢ 𝐺 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐵𝑀𝐶))} | |
7 | df-ov 7258 | . . . . . 6 ⊢ (𝐵𝑀𝐶) = (𝑀‘〈𝐵, 𝐶〉) | |
8 | 7 | eqeq2i 2751 | . . . . 5 ⊢ (𝑦 = (𝐵𝑀𝐶) ↔ 𝑦 = (𝑀‘〈𝐵, 𝐶〉)) |
9 | 8 | anbi2i 622 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐵𝑀𝐶)) ↔ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝑀‘〈𝐵, 𝐶〉))) |
10 | 9 | opabbii 5137 | . . 3 ⊢ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐵𝑀𝐶))} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝑀‘〈𝐵, 𝐶〉))} |
11 | 6, 10 | eqtri 2766 | . 2 ⊢ 𝐺 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝑀‘〈𝐵, 𝐶〉))} |
12 | 4, 5, 11 | fnopabco 35808 | 1 ⊢ (𝑀 Fn (𝑅 × 𝑆) → 𝐺 = (𝑀 ∘ 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 〈cop 4564 {copab 5132 × cxp 5578 ∘ ccom 5584 Fn wfn 6413 ‘cfv 6418 (class class class)co 7255 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fv 6426 df-ov 7258 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |