| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > opropabco | Structured version Visualization version GIF version | ||
| Description: Composition of an operator with a function abstraction. (Contributed by Jeff Madsen, 11-Jun-2010.) |
| Ref | Expression |
|---|---|
| opropabco.1 | ⊢ (𝑥 ∈ 𝐴 → 𝐵 ∈ 𝑅) |
| opropabco.2 | ⊢ (𝑥 ∈ 𝐴 → 𝐶 ∈ 𝑆) |
| opropabco.3 | ⊢ 𝐹 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 〈𝐵, 𝐶〉)} |
| opropabco.4 | ⊢ 𝐺 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐵𝑀𝐶))} |
| Ref | Expression |
|---|---|
| opropabco | ⊢ (𝑀 Fn (𝑅 × 𝑆) → 𝐺 = (𝑀 ∘ 𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opropabco.1 | . . 3 ⊢ (𝑥 ∈ 𝐴 → 𝐵 ∈ 𝑅) | |
| 2 | opropabco.2 | . . 3 ⊢ (𝑥 ∈ 𝐴 → 𝐶 ∈ 𝑆) | |
| 3 | opelxpi 5653 | . . 3 ⊢ ((𝐵 ∈ 𝑅 ∧ 𝐶 ∈ 𝑆) → 〈𝐵, 𝐶〉 ∈ (𝑅 × 𝑆)) | |
| 4 | 1, 2, 3 | syl2anc 584 | . 2 ⊢ (𝑥 ∈ 𝐴 → 〈𝐵, 𝐶〉 ∈ (𝑅 × 𝑆)) |
| 5 | opropabco.3 | . 2 ⊢ 𝐹 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 〈𝐵, 𝐶〉)} | |
| 6 | opropabco.4 | . . 3 ⊢ 𝐺 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐵𝑀𝐶))} | |
| 7 | df-ov 7349 | . . . . . 6 ⊢ (𝐵𝑀𝐶) = (𝑀‘〈𝐵, 𝐶〉) | |
| 8 | 7 | eqeq2i 2744 | . . . . 5 ⊢ (𝑦 = (𝐵𝑀𝐶) ↔ 𝑦 = (𝑀‘〈𝐵, 𝐶〉)) |
| 9 | 8 | anbi2i 623 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐵𝑀𝐶)) ↔ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝑀‘〈𝐵, 𝐶〉))) |
| 10 | 9 | opabbii 5158 | . . 3 ⊢ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐵𝑀𝐶))} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝑀‘〈𝐵, 𝐶〉))} |
| 11 | 6, 10 | eqtri 2754 | . 2 ⊢ 𝐺 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝑀‘〈𝐵, 𝐶〉))} |
| 12 | 4, 5, 11 | fnopabco 37762 | 1 ⊢ (𝑀 Fn (𝑅 × 𝑆) → 𝐺 = (𝑀 ∘ 𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 〈cop 4582 {copab 5153 × cxp 5614 ∘ ccom 5620 Fn wfn 6476 ‘cfv 6481 (class class class)co 7346 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-ov 7349 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |