Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opropabco Structured version   Visualization version   GIF version

Theorem opropabco 37725
Description: Composition of an operator with a function abstraction. (Contributed by Jeff Madsen, 11-Jun-2010.)
Hypotheses
Ref Expression
opropabco.1 (𝑥𝐴𝐵𝑅)
opropabco.2 (𝑥𝐴𝐶𝑆)
opropabco.3 𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = ⟨𝐵, 𝐶⟩)}
opropabco.4 𝐺 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = (𝐵𝑀𝐶))}
Assertion
Ref Expression
opropabco (𝑀 Fn (𝑅 × 𝑆) → 𝐺 = (𝑀𝐹))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑦,𝐵   𝑦,𝐶   𝑥,𝑀,𝑦   𝑥,𝑅,𝑦   𝑥,𝑆,𝑦
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)

Proof of Theorem opropabco
StepHypRef Expression
1 opropabco.1 . . 3 (𝑥𝐴𝐵𝑅)
2 opropabco.2 . . 3 (𝑥𝐴𝐶𝑆)
3 opelxpi 5730 . . 3 ((𝐵𝑅𝐶𝑆) → ⟨𝐵, 𝐶⟩ ∈ (𝑅 × 𝑆))
41, 2, 3syl2anc 584 . 2 (𝑥𝐴 → ⟨𝐵, 𝐶⟩ ∈ (𝑅 × 𝑆))
5 opropabco.3 . 2 𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = ⟨𝐵, 𝐶⟩)}
6 opropabco.4 . . 3 𝐺 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = (𝐵𝑀𝐶))}
7 df-ov 7441 . . . . . 6 (𝐵𝑀𝐶) = (𝑀‘⟨𝐵, 𝐶⟩)
87eqeq2i 2750 . . . . 5 (𝑦 = (𝐵𝑀𝐶) ↔ 𝑦 = (𝑀‘⟨𝐵, 𝐶⟩))
98anbi2i 623 . . . 4 ((𝑥𝐴𝑦 = (𝐵𝑀𝐶)) ↔ (𝑥𝐴𝑦 = (𝑀‘⟨𝐵, 𝐶⟩)))
109opabbii 5218 . . 3 {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = (𝐵𝑀𝐶))} = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = (𝑀‘⟨𝐵, 𝐶⟩))}
116, 10eqtri 2765 . 2 𝐺 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = (𝑀‘⟨𝐵, 𝐶⟩))}
124, 5, 11fnopabco 37724 1 (𝑀 Fn (𝑅 × 𝑆) → 𝐺 = (𝑀𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  cop 4640  {copab 5213   × cxp 5691  ccom 5697   Fn wfn 6564  cfv 6569  (class class class)co 7438
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5305  ax-nul 5315  ax-pr 5441
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3483  df-sbc 3795  df-csb 3912  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-nul 4343  df-if 4535  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-br 5152  df-opab 5214  df-mpt 5235  df-id 5587  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-iota 6522  df-fun 6571  df-fn 6572  df-f 6573  df-fv 6577  df-ov 7441
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator