Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opropabco Structured version   Visualization version   GIF version

Theorem opropabco 35162
Description: Composition of an operator with a function abstraction. (Contributed by Jeff Madsen, 11-Jun-2010.)
Hypotheses
Ref Expression
opropabco.1 (𝑥𝐴𝐵𝑅)
opropabco.2 (𝑥𝐴𝐶𝑆)
opropabco.3 𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = ⟨𝐵, 𝐶⟩)}
opropabco.4 𝐺 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = (𝐵𝑀𝐶))}
Assertion
Ref Expression
opropabco (𝑀 Fn (𝑅 × 𝑆) → 𝐺 = (𝑀𝐹))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑦,𝐵   𝑦,𝐶   𝑥,𝑀,𝑦   𝑥,𝑅,𝑦   𝑥,𝑆,𝑦
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)

Proof of Theorem opropabco
StepHypRef Expression
1 opropabco.1 . . 3 (𝑥𝐴𝐵𝑅)
2 opropabco.2 . . 3 (𝑥𝐴𝐶𝑆)
3 opelxpi 5556 . . 3 ((𝐵𝑅𝐶𝑆) → ⟨𝐵, 𝐶⟩ ∈ (𝑅 × 𝑆))
41, 2, 3syl2anc 587 . 2 (𝑥𝐴 → ⟨𝐵, 𝐶⟩ ∈ (𝑅 × 𝑆))
5 opropabco.3 . 2 𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = ⟨𝐵, 𝐶⟩)}
6 opropabco.4 . . 3 𝐺 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = (𝐵𝑀𝐶))}
7 df-ov 7138 . . . . . 6 (𝐵𝑀𝐶) = (𝑀‘⟨𝐵, 𝐶⟩)
87eqeq2i 2811 . . . . 5 (𝑦 = (𝐵𝑀𝐶) ↔ 𝑦 = (𝑀‘⟨𝐵, 𝐶⟩))
98anbi2i 625 . . . 4 ((𝑥𝐴𝑦 = (𝐵𝑀𝐶)) ↔ (𝑥𝐴𝑦 = (𝑀‘⟨𝐵, 𝐶⟩)))
109opabbii 5097 . . 3 {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = (𝐵𝑀𝐶))} = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = (𝑀‘⟨𝐵, 𝐶⟩))}
116, 10eqtri 2821 . 2 𝐺 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = (𝑀‘⟨𝐵, 𝐶⟩))}
124, 5, 11fnopabco 35161 1 (𝑀 Fn (𝑅 × 𝑆) → 𝐺 = (𝑀𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  cop 4531  {copab 5092   × cxp 5517  ccom 5523   Fn wfn 6319  cfv 6324  (class class class)co 7135
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-fv 6332  df-ov 7138
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator