Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opropabco Structured version   Visualization version   GIF version

Theorem opropabco 36592
Description: Composition of an operator with a function abstraction. (Contributed by Jeff Madsen, 11-Jun-2010.)
Hypotheses
Ref Expression
opropabco.1 (𝑥𝐴𝐵𝑅)
opropabco.2 (𝑥𝐴𝐶𝑆)
opropabco.3 𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = ⟨𝐵, 𝐶⟩)}
opropabco.4 𝐺 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = (𝐵𝑀𝐶))}
Assertion
Ref Expression
opropabco (𝑀 Fn (𝑅 × 𝑆) → 𝐺 = (𝑀𝐹))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑦,𝐵   𝑦,𝐶   𝑥,𝑀,𝑦   𝑥,𝑅,𝑦   𝑥,𝑆,𝑦
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)

Proof of Theorem opropabco
StepHypRef Expression
1 opropabco.1 . . 3 (𝑥𝐴𝐵𝑅)
2 opropabco.2 . . 3 (𝑥𝐴𝐶𝑆)
3 opelxpi 5714 . . 3 ((𝐵𝑅𝐶𝑆) → ⟨𝐵, 𝐶⟩ ∈ (𝑅 × 𝑆))
41, 2, 3syl2anc 585 . 2 (𝑥𝐴 → ⟨𝐵, 𝐶⟩ ∈ (𝑅 × 𝑆))
5 opropabco.3 . 2 𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = ⟨𝐵, 𝐶⟩)}
6 opropabco.4 . . 3 𝐺 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = (𝐵𝑀𝐶))}
7 df-ov 7412 . . . . . 6 (𝐵𝑀𝐶) = (𝑀‘⟨𝐵, 𝐶⟩)
87eqeq2i 2746 . . . . 5 (𝑦 = (𝐵𝑀𝐶) ↔ 𝑦 = (𝑀‘⟨𝐵, 𝐶⟩))
98anbi2i 624 . . . 4 ((𝑥𝐴𝑦 = (𝐵𝑀𝐶)) ↔ (𝑥𝐴𝑦 = (𝑀‘⟨𝐵, 𝐶⟩)))
109opabbii 5216 . . 3 {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = (𝐵𝑀𝐶))} = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = (𝑀‘⟨𝐵, 𝐶⟩))}
116, 10eqtri 2761 . 2 𝐺 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = (𝑀‘⟨𝐵, 𝐶⟩))}
124, 5, 11fnopabco 36591 1 (𝑀 Fn (𝑅 × 𝑆) → 𝐺 = (𝑀𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  cop 4635  {copab 5211   × cxp 5675  ccom 5681   Fn wfn 6539  cfv 6544  (class class class)co 7409
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-fv 6552  df-ov 7412
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator