| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > opropabco | Structured version Visualization version GIF version | ||
| Description: Composition of an operator with a function abstraction. (Contributed by Jeff Madsen, 11-Jun-2010.) |
| Ref | Expression |
|---|---|
| opropabco.1 | ⊢ (𝑥 ∈ 𝐴 → 𝐵 ∈ 𝑅) |
| opropabco.2 | ⊢ (𝑥 ∈ 𝐴 → 𝐶 ∈ 𝑆) |
| opropabco.3 | ⊢ 𝐹 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 〈𝐵, 𝐶〉)} |
| opropabco.4 | ⊢ 𝐺 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐵𝑀𝐶))} |
| Ref | Expression |
|---|---|
| opropabco | ⊢ (𝑀 Fn (𝑅 × 𝑆) → 𝐺 = (𝑀 ∘ 𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opropabco.1 | . . 3 ⊢ (𝑥 ∈ 𝐴 → 𝐵 ∈ 𝑅) | |
| 2 | opropabco.2 | . . 3 ⊢ (𝑥 ∈ 𝐴 → 𝐶 ∈ 𝑆) | |
| 3 | opelxpi 5675 | . . 3 ⊢ ((𝐵 ∈ 𝑅 ∧ 𝐶 ∈ 𝑆) → 〈𝐵, 𝐶〉 ∈ (𝑅 × 𝑆)) | |
| 4 | 1, 2, 3 | syl2anc 584 | . 2 ⊢ (𝑥 ∈ 𝐴 → 〈𝐵, 𝐶〉 ∈ (𝑅 × 𝑆)) |
| 5 | opropabco.3 | . 2 ⊢ 𝐹 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 〈𝐵, 𝐶〉)} | |
| 6 | opropabco.4 | . . 3 ⊢ 𝐺 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐵𝑀𝐶))} | |
| 7 | df-ov 7390 | . . . . . 6 ⊢ (𝐵𝑀𝐶) = (𝑀‘〈𝐵, 𝐶〉) | |
| 8 | 7 | eqeq2i 2742 | . . . . 5 ⊢ (𝑦 = (𝐵𝑀𝐶) ↔ 𝑦 = (𝑀‘〈𝐵, 𝐶〉)) |
| 9 | 8 | anbi2i 623 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐵𝑀𝐶)) ↔ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝑀‘〈𝐵, 𝐶〉))) |
| 10 | 9 | opabbii 5174 | . . 3 ⊢ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐵𝑀𝐶))} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝑀‘〈𝐵, 𝐶〉))} |
| 11 | 6, 10 | eqtri 2752 | . 2 ⊢ 𝐺 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝑀‘〈𝐵, 𝐶〉))} |
| 12 | 4, 5, 11 | fnopabco 37717 | 1 ⊢ (𝑀 Fn (𝑅 × 𝑆) → 𝐺 = (𝑀 ∘ 𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 〈cop 4595 {copab 5169 × cxp 5636 ∘ ccom 5642 Fn wfn 6506 ‘cfv 6511 (class class class)co 7387 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fv 6519 df-ov 7390 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |