| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > opropabco | Structured version Visualization version GIF version | ||
| Description: Composition of an operator with a function abstraction. (Contributed by Jeff Madsen, 11-Jun-2010.) |
| Ref | Expression |
|---|---|
| opropabco.1 | ⊢ (𝑥 ∈ 𝐴 → 𝐵 ∈ 𝑅) |
| opropabco.2 | ⊢ (𝑥 ∈ 𝐴 → 𝐶 ∈ 𝑆) |
| opropabco.3 | ⊢ 𝐹 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 〈𝐵, 𝐶〉)} |
| opropabco.4 | ⊢ 𝐺 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐵𝑀𝐶))} |
| Ref | Expression |
|---|---|
| opropabco | ⊢ (𝑀 Fn (𝑅 × 𝑆) → 𝐺 = (𝑀 ∘ 𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opropabco.1 | . . 3 ⊢ (𝑥 ∈ 𝐴 → 𝐵 ∈ 𝑅) | |
| 2 | opropabco.2 | . . 3 ⊢ (𝑥 ∈ 𝐴 → 𝐶 ∈ 𝑆) | |
| 3 | opelxpi 5656 | . . 3 ⊢ ((𝐵 ∈ 𝑅 ∧ 𝐶 ∈ 𝑆) → 〈𝐵, 𝐶〉 ∈ (𝑅 × 𝑆)) | |
| 4 | 1, 2, 3 | syl2anc 584 | . 2 ⊢ (𝑥 ∈ 𝐴 → 〈𝐵, 𝐶〉 ∈ (𝑅 × 𝑆)) |
| 5 | opropabco.3 | . 2 ⊢ 𝐹 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 〈𝐵, 𝐶〉)} | |
| 6 | opropabco.4 | . . 3 ⊢ 𝐺 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐵𝑀𝐶))} | |
| 7 | df-ov 7355 | . . . . . 6 ⊢ (𝐵𝑀𝐶) = (𝑀‘〈𝐵, 𝐶〉) | |
| 8 | 7 | eqeq2i 2746 | . . . . 5 ⊢ (𝑦 = (𝐵𝑀𝐶) ↔ 𝑦 = (𝑀‘〈𝐵, 𝐶〉)) |
| 9 | 8 | anbi2i 623 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐵𝑀𝐶)) ↔ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝑀‘〈𝐵, 𝐶〉))) |
| 10 | 9 | opabbii 5160 | . . 3 ⊢ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝐵𝑀𝐶))} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝑀‘〈𝐵, 𝐶〉))} |
| 11 | 6, 10 | eqtri 2756 | . 2 ⊢ 𝐺 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = (𝑀‘〈𝐵, 𝐶〉))} |
| 12 | 4, 5, 11 | fnopabco 37784 | 1 ⊢ (𝑀 Fn (𝑅 × 𝑆) → 𝐺 = (𝑀 ∘ 𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 〈cop 4581 {copab 5155 × cxp 5617 ∘ ccom 5623 Fn wfn 6481 ‘cfv 6486 (class class class)co 7352 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-fv 6494 df-ov 7355 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |