Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > coi2 | Structured version Visualization version GIF version |
Description: Composition with the identity relation. Part of Theorem 3.7(i) of [Monk1] p. 36. (Contributed by NM, 22-Apr-2004.) |
Ref | Expression |
---|---|
coi2 | ⊢ (Rel 𝐴 → ( I ∘ 𝐴) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfrel2 6081 | . 2 ⊢ (Rel 𝐴 ↔ ◡◡𝐴 = 𝐴) | |
2 | cnvco 5783 | . . . 4 ⊢ ◡(◡𝐴 ∘ I ) = (◡ I ∘ ◡◡𝐴) | |
3 | relcnv 6001 | . . . . . 6 ⊢ Rel ◡𝐴 | |
4 | coi1 6155 | . . . . . 6 ⊢ (Rel ◡𝐴 → (◡𝐴 ∘ I ) = ◡𝐴) | |
5 | 3, 4 | ax-mp 5 | . . . . 5 ⊢ (◡𝐴 ∘ I ) = ◡𝐴 |
6 | 5 | cnveqi 5772 | . . . 4 ⊢ ◡(◡𝐴 ∘ I ) = ◡◡𝐴 |
7 | 2, 6 | eqtr3i 2768 | . . 3 ⊢ (◡ I ∘ ◡◡𝐴) = ◡◡𝐴 |
8 | cnvi 6034 | . . . 4 ⊢ ◡ I = I | |
9 | coeq2 5756 | . . . . 5 ⊢ (◡◡𝐴 = 𝐴 → (◡ I ∘ ◡◡𝐴) = (◡ I ∘ 𝐴)) | |
10 | coeq1 5755 | . . . . 5 ⊢ (◡ I = I → (◡ I ∘ 𝐴) = ( I ∘ 𝐴)) | |
11 | 9, 10 | sylan9eq 2799 | . . . 4 ⊢ ((◡◡𝐴 = 𝐴 ∧ ◡ I = I ) → (◡ I ∘ ◡◡𝐴) = ( I ∘ 𝐴)) |
12 | 8, 11 | mpan2 687 | . . 3 ⊢ (◡◡𝐴 = 𝐴 → (◡ I ∘ ◡◡𝐴) = ( I ∘ 𝐴)) |
13 | id 22 | . . 3 ⊢ (◡◡𝐴 = 𝐴 → ◡◡𝐴 = 𝐴) | |
14 | 7, 12, 13 | 3eqtr3a 2803 | . 2 ⊢ (◡◡𝐴 = 𝐴 → ( I ∘ 𝐴) = 𝐴) |
15 | 1, 14 | sylbi 216 | 1 ⊢ (Rel 𝐴 → ( I ∘ 𝐴) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 I cid 5479 ◡ccnv 5579 ∘ ccom 5584 Rel wrel 5585 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 |
This theorem is referenced by: relcoi2 6169 funi 6450 fcoi2 6633 |
Copyright terms: Public domain | W3C validator |