| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > coi2 | Structured version Visualization version GIF version | ||
| Description: Composition with the identity relation. Part of Theorem 3.7(i) of [Monk1] p. 36. (Contributed by NM, 22-Apr-2004.) |
| Ref | Expression |
|---|---|
| coi2 | ⊢ (Rel 𝐴 → ( I ∘ 𝐴) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfrel2 6141 | . 2 ⊢ (Rel 𝐴 ↔ ◡◡𝐴 = 𝐴) | |
| 2 | cnvco 5829 | . . . 4 ⊢ ◡(◡𝐴 ∘ I ) = (◡ I ∘ ◡◡𝐴) | |
| 3 | relcnv 6057 | . . . . . 6 ⊢ Rel ◡𝐴 | |
| 4 | coi1 6215 | . . . . . 6 ⊢ (Rel ◡𝐴 → (◡𝐴 ∘ I ) = ◡𝐴) | |
| 5 | 3, 4 | ax-mp 5 | . . . . 5 ⊢ (◡𝐴 ∘ I ) = ◡𝐴 |
| 6 | 5 | cnveqi 5818 | . . . 4 ⊢ ◡(◡𝐴 ∘ I ) = ◡◡𝐴 |
| 7 | 2, 6 | eqtr3i 2758 | . . 3 ⊢ (◡ I ∘ ◡◡𝐴) = ◡◡𝐴 |
| 8 | cnvi 6093 | . . . 4 ⊢ ◡ I = I | |
| 9 | coeq2 5802 | . . . . 5 ⊢ (◡◡𝐴 = 𝐴 → (◡ I ∘ ◡◡𝐴) = (◡ I ∘ 𝐴)) | |
| 10 | coeq1 5801 | . . . . 5 ⊢ (◡ I = I → (◡ I ∘ 𝐴) = ( I ∘ 𝐴)) | |
| 11 | 9, 10 | sylan9eq 2788 | . . . 4 ⊢ ((◡◡𝐴 = 𝐴 ∧ ◡ I = I ) → (◡ I ∘ ◡◡𝐴) = ( I ∘ 𝐴)) |
| 12 | 8, 11 | mpan2 691 | . . 3 ⊢ (◡◡𝐴 = 𝐴 → (◡ I ∘ ◡◡𝐴) = ( I ∘ 𝐴)) |
| 13 | id 22 | . . 3 ⊢ (◡◡𝐴 = 𝐴 → ◡◡𝐴 = 𝐴) | |
| 14 | 7, 12, 13 | 3eqtr3a 2792 | . 2 ⊢ (◡◡𝐴 = 𝐴 → ( I ∘ 𝐴) = 𝐴) |
| 15 | 1, 14 | sylbi 217 | 1 ⊢ (Rel 𝐴 → ( I ∘ 𝐴) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 I cid 5513 ◡ccnv 5618 ∘ ccom 5623 Rel wrel 5624 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-br 5094 df-opab 5156 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 |
| This theorem is referenced by: relcoi2 6229 funi 6518 fcoi2 6703 |
| Copyright terms: Public domain | W3C validator |