MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coi2 Structured version   Visualization version   GIF version

Theorem coi2 6195
Description: Composition with the identity relation. Part of Theorem 3.7(i) of [Monk1] p. 36. (Contributed by NM, 22-Apr-2004.)
Assertion
Ref Expression
coi2 (Rel 𝐴 → ( I ∘ 𝐴) = 𝐴)

Proof of Theorem coi2
StepHypRef Expression
1 dfrel2 6121 . 2 (Rel 𝐴𝐴 = 𝐴)
2 cnvco 5821 . . . 4 (𝐴 ∘ I ) = ( I ∘ 𝐴)
3 relcnv 6036 . . . . . 6 Rel 𝐴
4 coi1 6194 . . . . . 6 (Rel 𝐴 → (𝐴 ∘ I ) = 𝐴)
53, 4ax-mp 5 . . . . 5 (𝐴 ∘ I ) = 𝐴
65cnveqi 5810 . . . 4 (𝐴 ∘ I ) = 𝐴
72, 6eqtr3i 2766 . . 3 ( I ∘ 𝐴) = 𝐴
8 cnvi 6074 . . . 4 I = I
9 coeq2 5794 . . . . 5 (𝐴 = 𝐴 → ( I ∘ 𝐴) = ( I ∘ 𝐴))
10 coeq1 5793 . . . . 5 ( I = I → ( I ∘ 𝐴) = ( I ∘ 𝐴))
119, 10sylan9eq 2796 . . . 4 ((𝐴 = 𝐴 I = I ) → ( I ∘ 𝐴) = ( I ∘ 𝐴))
128, 11mpan2 688 . . 3 (𝐴 = 𝐴 → ( I ∘ 𝐴) = ( I ∘ 𝐴))
13 id 22 . . 3 (𝐴 = 𝐴𝐴 = 𝐴)
147, 12, 133eqtr3a 2800 . 2 (𝐴 = 𝐴 → ( I ∘ 𝐴) = 𝐴)
151, 14sylbi 216 1 (Rel 𝐴 → ( I ∘ 𝐴) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540   I cid 5511  ccnv 5613  ccom 5618  Rel wrel 5619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2707  ax-sep 5240  ax-nul 5247  ax-pr 5369
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2714  df-cleq 2728  df-clel 2814  df-ral 3062  df-rex 3071  df-rab 3404  df-v 3443  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4269  df-if 4473  df-sn 4573  df-pr 4575  df-op 4579  df-br 5090  df-opab 5152  df-id 5512  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623
This theorem is referenced by:  relcoi2  6209  funi  6510  fcoi2  6694
  Copyright terms: Public domain W3C validator