MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coi2 Structured version   Visualization version   GIF version

Theorem coi2 6167
Description: Composition with the identity relation. Part of Theorem 3.7(i) of [Monk1] p. 36. (Contributed by NM, 22-Apr-2004.)
Assertion
Ref Expression
coi2 (Rel 𝐴 → ( I ∘ 𝐴) = 𝐴)

Proof of Theorem coi2
StepHypRef Expression
1 dfrel2 6092 . 2 (Rel 𝐴𝐴 = 𝐴)
2 cnvco 5794 . . . 4 (𝐴 ∘ I ) = ( I ∘ 𝐴)
3 relcnv 6012 . . . . . 6 Rel 𝐴
4 coi1 6166 . . . . . 6 (Rel 𝐴 → (𝐴 ∘ I ) = 𝐴)
53, 4ax-mp 5 . . . . 5 (𝐴 ∘ I ) = 𝐴
65cnveqi 5783 . . . 4 (𝐴 ∘ I ) = 𝐴
72, 6eqtr3i 2768 . . 3 ( I ∘ 𝐴) = 𝐴
8 cnvi 6045 . . . 4 I = I
9 coeq2 5767 . . . . 5 (𝐴 = 𝐴 → ( I ∘ 𝐴) = ( I ∘ 𝐴))
10 coeq1 5766 . . . . 5 ( I = I → ( I ∘ 𝐴) = ( I ∘ 𝐴))
119, 10sylan9eq 2798 . . . 4 ((𝐴 = 𝐴 I = I ) → ( I ∘ 𝐴) = ( I ∘ 𝐴))
128, 11mpan2 688 . . 3 (𝐴 = 𝐴 → ( I ∘ 𝐴) = ( I ∘ 𝐴))
13 id 22 . . 3 (𝐴 = 𝐴𝐴 = 𝐴)
147, 12, 133eqtr3a 2802 . 2 (𝐴 = 𝐴 → ( I ∘ 𝐴) = 𝐴)
151, 14sylbi 216 1 (Rel 𝐴 → ( I ∘ 𝐴) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539   I cid 5488  ccnv 5588  ccom 5593  Rel wrel 5594
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598
This theorem is referenced by:  relcoi2  6180  funi  6466  fcoi2  6649
  Copyright terms: Public domain W3C validator