| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > coi2 | Structured version Visualization version GIF version | ||
| Description: Composition with the identity relation. Part of Theorem 3.7(i) of [Monk1] p. 36. (Contributed by NM, 22-Apr-2004.) |
| Ref | Expression |
|---|---|
| coi2 | ⊢ (Rel 𝐴 → ( I ∘ 𝐴) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfrel2 6142 | . 2 ⊢ (Rel 𝐴 ↔ ◡◡𝐴 = 𝐴) | |
| 2 | cnvco 5832 | . . . 4 ⊢ ◡(◡𝐴 ∘ I ) = (◡ I ∘ ◡◡𝐴) | |
| 3 | relcnv 6059 | . . . . . 6 ⊢ Rel ◡𝐴 | |
| 4 | coi1 6215 | . . . . . 6 ⊢ (Rel ◡𝐴 → (◡𝐴 ∘ I ) = ◡𝐴) | |
| 5 | 3, 4 | ax-mp 5 | . . . . 5 ⊢ (◡𝐴 ∘ I ) = ◡𝐴 |
| 6 | 5 | cnveqi 5821 | . . . 4 ⊢ ◡(◡𝐴 ∘ I ) = ◡◡𝐴 |
| 7 | 2, 6 | eqtr3i 2754 | . . 3 ⊢ (◡ I ∘ ◡◡𝐴) = ◡◡𝐴 |
| 8 | cnvi 6094 | . . . 4 ⊢ ◡ I = I | |
| 9 | coeq2 5805 | . . . . 5 ⊢ (◡◡𝐴 = 𝐴 → (◡ I ∘ ◡◡𝐴) = (◡ I ∘ 𝐴)) | |
| 10 | coeq1 5804 | . . . . 5 ⊢ (◡ I = I → (◡ I ∘ 𝐴) = ( I ∘ 𝐴)) | |
| 11 | 9, 10 | sylan9eq 2784 | . . . 4 ⊢ ((◡◡𝐴 = 𝐴 ∧ ◡ I = I ) → (◡ I ∘ ◡◡𝐴) = ( I ∘ 𝐴)) |
| 12 | 8, 11 | mpan2 691 | . . 3 ⊢ (◡◡𝐴 = 𝐴 → (◡ I ∘ ◡◡𝐴) = ( I ∘ 𝐴)) |
| 13 | id 22 | . . 3 ⊢ (◡◡𝐴 = 𝐴 → ◡◡𝐴 = 𝐴) | |
| 14 | 7, 12, 13 | 3eqtr3a 2788 | . 2 ⊢ (◡◡𝐴 = 𝐴 → ( I ∘ 𝐴) = 𝐴) |
| 15 | 1, 14 | sylbi 217 | 1 ⊢ (Rel 𝐴 → ( I ∘ 𝐴) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 I cid 5517 ◡ccnv 5622 ∘ ccom 5627 Rel wrel 5628 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-br 5096 df-opab 5158 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 |
| This theorem is referenced by: relcoi2 6229 funi 6518 fcoi2 6703 |
| Copyright terms: Public domain | W3C validator |