MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coi2 Structured version   Visualization version   GIF version

Theorem coi2 6236
Description: Composition with the identity relation. Part of Theorem 3.7(i) of [Monk1] p. 36. (Contributed by NM, 22-Apr-2004.)
Assertion
Ref Expression
coi2 (Rel 𝐴 → ( I ∘ 𝐴) = 𝐴)

Proof of Theorem coi2
StepHypRef Expression
1 dfrel2 6162 . 2 (Rel 𝐴𝐴 = 𝐴)
2 cnvco 5849 . . . 4 (𝐴 ∘ I ) = ( I ∘ 𝐴)
3 relcnv 6075 . . . . . 6 Rel 𝐴
4 coi1 6235 . . . . . 6 (Rel 𝐴 → (𝐴 ∘ I ) = 𝐴)
53, 4ax-mp 5 . . . . 5 (𝐴 ∘ I ) = 𝐴
65cnveqi 5838 . . . 4 (𝐴 ∘ I ) = 𝐴
72, 6eqtr3i 2754 . . 3 ( I ∘ 𝐴) = 𝐴
8 cnvi 6114 . . . 4 I = I
9 coeq2 5822 . . . . 5 (𝐴 = 𝐴 → ( I ∘ 𝐴) = ( I ∘ 𝐴))
10 coeq1 5821 . . . . 5 ( I = I → ( I ∘ 𝐴) = ( I ∘ 𝐴))
119, 10sylan9eq 2784 . . . 4 ((𝐴 = 𝐴 I = I ) → ( I ∘ 𝐴) = ( I ∘ 𝐴))
128, 11mpan2 691 . . 3 (𝐴 = 𝐴 → ( I ∘ 𝐴) = ( I ∘ 𝐴))
13 id 22 . . 3 (𝐴 = 𝐴𝐴 = 𝐴)
147, 12, 133eqtr3a 2788 . 2 (𝐴 = 𝐴 → ( I ∘ 𝐴) = 𝐴)
151, 14sylbi 217 1 (Rel 𝐴 → ( I ∘ 𝐴) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540   I cid 5532  ccnv 5637  ccom 5642  Rel wrel 5643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647
This theorem is referenced by:  relcoi2  6250  funi  6548  fcoi2  6735
  Copyright terms: Public domain W3C validator