MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coi2 Structured version   Visualization version   GIF version

Theorem coi2 6211
Description: Composition with the identity relation. Part of Theorem 3.7(i) of [Monk1] p. 36. (Contributed by NM, 22-Apr-2004.)
Assertion
Ref Expression
coi2 (Rel 𝐴 → ( I ∘ 𝐴) = 𝐴)

Proof of Theorem coi2
StepHypRef Expression
1 dfrel2 6136 . 2 (Rel 𝐴𝐴 = 𝐴)
2 cnvco 5825 . . . 4 (𝐴 ∘ I ) = ( I ∘ 𝐴)
3 relcnv 6053 . . . . . 6 Rel 𝐴
4 coi1 6210 . . . . . 6 (Rel 𝐴 → (𝐴 ∘ I ) = 𝐴)
53, 4ax-mp 5 . . . . 5 (𝐴 ∘ I ) = 𝐴
65cnveqi 5814 . . . 4 (𝐴 ∘ I ) = 𝐴
72, 6eqtr3i 2756 . . 3 ( I ∘ 𝐴) = 𝐴
8 cnvi 6088 . . . 4 I = I
9 coeq2 5798 . . . . 5 (𝐴 = 𝐴 → ( I ∘ 𝐴) = ( I ∘ 𝐴))
10 coeq1 5797 . . . . 5 ( I = I → ( I ∘ 𝐴) = ( I ∘ 𝐴))
119, 10sylan9eq 2786 . . . 4 ((𝐴 = 𝐴 I = I ) → ( I ∘ 𝐴) = ( I ∘ 𝐴))
128, 11mpan2 691 . . 3 (𝐴 = 𝐴 → ( I ∘ 𝐴) = ( I ∘ 𝐴))
13 id 22 . . 3 (𝐴 = 𝐴𝐴 = 𝐴)
147, 12, 133eqtr3a 2790 . 2 (𝐴 = 𝐴 → ( I ∘ 𝐴) = 𝐴)
151, 14sylbi 217 1 (Rel 𝐴 → ( I ∘ 𝐴) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541   I cid 5510  ccnv 5615  ccom 5620  Rel wrel 5621
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-br 5092  df-opab 5154  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625
This theorem is referenced by:  relcoi2  6224  funi  6513  fcoi2  6698
  Copyright terms: Public domain W3C validator