Proof of Theorem elcls
Step | Hyp | Ref
| Expression |
1 | | clscld.1 |
. . . . . . . 8
⊢ 𝑋 = ∪
𝐽 |
2 | 1 | cmclsopn 22121 |
. . . . . . 7
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑋 ∖ ((cls‘𝐽)‘𝑆)) ∈ 𝐽) |
3 | 2 | 3adant3 1130 |
. . . . . 6
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑃 ∈ 𝑋) → (𝑋 ∖ ((cls‘𝐽)‘𝑆)) ∈ 𝐽) |
4 | 3 | adantr 480 |
. . . . 5
⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑃 ∈ 𝑋) ∧ ¬ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) → (𝑋 ∖ ((cls‘𝐽)‘𝑆)) ∈ 𝐽) |
5 | | eldif 3893 |
. . . . . . 7
⊢ (𝑃 ∈ (𝑋 ∖ ((cls‘𝐽)‘𝑆)) ↔ (𝑃 ∈ 𝑋 ∧ ¬ 𝑃 ∈ ((cls‘𝐽)‘𝑆))) |
6 | 5 | biimpri 227 |
. . . . . 6
⊢ ((𝑃 ∈ 𝑋 ∧ ¬ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) → 𝑃 ∈ (𝑋 ∖ ((cls‘𝐽)‘𝑆))) |
7 | 6 | 3ad2antl3 1185 |
. . . . 5
⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑃 ∈ 𝑋) ∧ ¬ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) → 𝑃 ∈ (𝑋 ∖ ((cls‘𝐽)‘𝑆))) |
8 | | simpr 484 |
. . . . . . . . . . 11
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → 𝑆 ⊆ 𝑋) |
9 | 1 | sscls 22115 |
. . . . . . . . . . 11
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → 𝑆 ⊆ ((cls‘𝐽)‘𝑆)) |
10 | 8, 9 | ssind 4163 |
. . . . . . . . . 10
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → 𝑆 ⊆ (𝑋 ∩ ((cls‘𝐽)‘𝑆))) |
11 | | dfin4 4198 |
. . . . . . . . . 10
⊢ (𝑋 ∩ ((cls‘𝐽)‘𝑆)) = (𝑋 ∖ (𝑋 ∖ ((cls‘𝐽)‘𝑆))) |
12 | 10, 11 | sseqtrdi 3967 |
. . . . . . . . 9
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → 𝑆 ⊆ (𝑋 ∖ (𝑋 ∖ ((cls‘𝐽)‘𝑆)))) |
13 | | reldisj 4382 |
. . . . . . . . . 10
⊢ (𝑆 ⊆ 𝑋 → ((𝑆 ∩ (𝑋 ∖ ((cls‘𝐽)‘𝑆))) = ∅ ↔ 𝑆 ⊆ (𝑋 ∖ (𝑋 ∖ ((cls‘𝐽)‘𝑆))))) |
14 | 13 | adantl 481 |
. . . . . . . . 9
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((𝑆 ∩ (𝑋 ∖ ((cls‘𝐽)‘𝑆))) = ∅ ↔ 𝑆 ⊆ (𝑋 ∖ (𝑋 ∖ ((cls‘𝐽)‘𝑆))))) |
15 | 12, 14 | mpbird 256 |
. . . . . . . 8
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑆 ∩ (𝑋 ∖ ((cls‘𝐽)‘𝑆))) = ∅) |
16 | | nne 2946 |
. . . . . . . . 9
⊢ (¬
((𝑋 ∖
((cls‘𝐽)‘𝑆)) ∩ 𝑆) ≠ ∅ ↔ ((𝑋 ∖ ((cls‘𝐽)‘𝑆)) ∩ 𝑆) = ∅) |
17 | | incom 4131 |
. . . . . . . . . 10
⊢ ((𝑋 ∖ ((cls‘𝐽)‘𝑆)) ∩ 𝑆) = (𝑆 ∩ (𝑋 ∖ ((cls‘𝐽)‘𝑆))) |
18 | 17 | eqeq1i 2743 |
. . . . . . . . 9
⊢ (((𝑋 ∖ ((cls‘𝐽)‘𝑆)) ∩ 𝑆) = ∅ ↔ (𝑆 ∩ (𝑋 ∖ ((cls‘𝐽)‘𝑆))) = ∅) |
19 | 16, 18 | bitri 274 |
. . . . . . . 8
⊢ (¬
((𝑋 ∖
((cls‘𝐽)‘𝑆)) ∩ 𝑆) ≠ ∅ ↔ (𝑆 ∩ (𝑋 ∖ ((cls‘𝐽)‘𝑆))) = ∅) |
20 | 15, 19 | sylibr 233 |
. . . . . . 7
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ¬ ((𝑋 ∖ ((cls‘𝐽)‘𝑆)) ∩ 𝑆) ≠ ∅) |
21 | 20 | 3adant3 1130 |
. . . . . 6
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑃 ∈ 𝑋) → ¬ ((𝑋 ∖ ((cls‘𝐽)‘𝑆)) ∩ 𝑆) ≠ ∅) |
22 | 21 | adantr 480 |
. . . . 5
⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑃 ∈ 𝑋) ∧ ¬ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) → ¬ ((𝑋 ∖ ((cls‘𝐽)‘𝑆)) ∩ 𝑆) ≠ ∅) |
23 | | eleq2 2827 |
. . . . . . 7
⊢ (𝑥 = (𝑋 ∖ ((cls‘𝐽)‘𝑆)) → (𝑃 ∈ 𝑥 ↔ 𝑃 ∈ (𝑋 ∖ ((cls‘𝐽)‘𝑆)))) |
24 | | ineq1 4136 |
. . . . . . . . 9
⊢ (𝑥 = (𝑋 ∖ ((cls‘𝐽)‘𝑆)) → (𝑥 ∩ 𝑆) = ((𝑋 ∖ ((cls‘𝐽)‘𝑆)) ∩ 𝑆)) |
25 | 24 | neeq1d 3002 |
. . . . . . . 8
⊢ (𝑥 = (𝑋 ∖ ((cls‘𝐽)‘𝑆)) → ((𝑥 ∩ 𝑆) ≠ ∅ ↔ ((𝑋 ∖ ((cls‘𝐽)‘𝑆)) ∩ 𝑆) ≠ ∅)) |
26 | 25 | notbid 317 |
. . . . . . 7
⊢ (𝑥 = (𝑋 ∖ ((cls‘𝐽)‘𝑆)) → (¬ (𝑥 ∩ 𝑆) ≠ ∅ ↔ ¬ ((𝑋 ∖ ((cls‘𝐽)‘𝑆)) ∩ 𝑆) ≠ ∅)) |
27 | 23, 26 | anbi12d 630 |
. . . . . 6
⊢ (𝑥 = (𝑋 ∖ ((cls‘𝐽)‘𝑆)) → ((𝑃 ∈ 𝑥 ∧ ¬ (𝑥 ∩ 𝑆) ≠ ∅) ↔ (𝑃 ∈ (𝑋 ∖ ((cls‘𝐽)‘𝑆)) ∧ ¬ ((𝑋 ∖ ((cls‘𝐽)‘𝑆)) ∩ 𝑆) ≠ ∅))) |
28 | 27 | rspcev 3552 |
. . . . 5
⊢ (((𝑋 ∖ ((cls‘𝐽)‘𝑆)) ∈ 𝐽 ∧ (𝑃 ∈ (𝑋 ∖ ((cls‘𝐽)‘𝑆)) ∧ ¬ ((𝑋 ∖ ((cls‘𝐽)‘𝑆)) ∩ 𝑆) ≠ ∅)) → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ ¬ (𝑥 ∩ 𝑆) ≠ ∅)) |
29 | 4, 7, 22, 28 | syl12anc 833 |
. . . 4
⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑃 ∈ 𝑋) ∧ ¬ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ ¬ (𝑥 ∩ 𝑆) ≠ ∅)) |
30 | | incom 4131 |
. . . . . . . . . . . . 13
⊢ (𝑆 ∩ 𝑥) = (𝑥 ∩ 𝑆) |
31 | 30 | eqeq1i 2743 |
. . . . . . . . . . . 12
⊢ ((𝑆 ∩ 𝑥) = ∅ ↔ (𝑥 ∩ 𝑆) = ∅) |
32 | | df-ne 2943 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∩ 𝑆) ≠ ∅ ↔ ¬ (𝑥 ∩ 𝑆) = ∅) |
33 | 32 | con2bii 357 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∩ 𝑆) = ∅ ↔ ¬ (𝑥 ∩ 𝑆) ≠ ∅) |
34 | 31, 33 | bitri 274 |
. . . . . . . . . . 11
⊢ ((𝑆 ∩ 𝑥) = ∅ ↔ ¬ (𝑥 ∩ 𝑆) ≠ ∅) |
35 | 1 | opncld 22092 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽) → (𝑋 ∖ 𝑥) ∈ (Clsd‘𝐽)) |
36 | 35 | adantlr 711 |
. . . . . . . . . . . . . . 15
⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) ∧ 𝑥 ∈ 𝐽) → (𝑋 ∖ 𝑥) ∈ (Clsd‘𝐽)) |
37 | | reldisj 4382 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑆 ⊆ 𝑋 → ((𝑆 ∩ 𝑥) = ∅ ↔ 𝑆 ⊆ (𝑋 ∖ 𝑥))) |
38 | 37 | biimpa 476 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑆 ⊆ 𝑋 ∧ (𝑆 ∩ 𝑥) = ∅) → 𝑆 ⊆ (𝑋 ∖ 𝑥)) |
39 | 38 | ad4ant24 750 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) ∧ 𝑥 ∈ 𝐽) ∧ (𝑆 ∩ 𝑥) = ∅) → 𝑆 ⊆ (𝑋 ∖ 𝑥)) |
40 | 1 | clsss2 22131 |
. . . . . . . . . . . . . . 15
⊢ (((𝑋 ∖ 𝑥) ∈ (Clsd‘𝐽) ∧ 𝑆 ⊆ (𝑋 ∖ 𝑥)) → ((cls‘𝐽)‘𝑆) ⊆ (𝑋 ∖ 𝑥)) |
41 | 36, 39, 40 | syl2an2r 681 |
. . . . . . . . . . . . . 14
⊢ ((((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) ∧ 𝑥 ∈ 𝐽) ∧ (𝑆 ∩ 𝑥) = ∅) → ((cls‘𝐽)‘𝑆) ⊆ (𝑋 ∖ 𝑥)) |
42 | 41 | sseld 3916 |
. . . . . . . . . . . . 13
⊢ ((((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) ∧ 𝑥 ∈ 𝐽) ∧ (𝑆 ∩ 𝑥) = ∅) → (𝑃 ∈ ((cls‘𝐽)‘𝑆) → 𝑃 ∈ (𝑋 ∖ 𝑥))) |
43 | | eldifn 4058 |
. . . . . . . . . . . . 13
⊢ (𝑃 ∈ (𝑋 ∖ 𝑥) → ¬ 𝑃 ∈ 𝑥) |
44 | 42, 43 | syl6 35 |
. . . . . . . . . . . 12
⊢ ((((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) ∧ 𝑥 ∈ 𝐽) ∧ (𝑆 ∩ 𝑥) = ∅) → (𝑃 ∈ ((cls‘𝐽)‘𝑆) → ¬ 𝑃 ∈ 𝑥)) |
45 | 44 | con2d 134 |
. . . . . . . . . . 11
⊢ ((((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) ∧ 𝑥 ∈ 𝐽) ∧ (𝑆 ∩ 𝑥) = ∅) → (𝑃 ∈ 𝑥 → ¬ 𝑃 ∈ ((cls‘𝐽)‘𝑆))) |
46 | 34, 45 | sylan2br 594 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) ∧ 𝑥 ∈ 𝐽) ∧ ¬ (𝑥 ∩ 𝑆) ≠ ∅) → (𝑃 ∈ 𝑥 → ¬ 𝑃 ∈ ((cls‘𝐽)‘𝑆))) |
47 | 46 | exp31 419 |
. . . . . . . . 9
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑥 ∈ 𝐽 → (¬ (𝑥 ∩ 𝑆) ≠ ∅ → (𝑃 ∈ 𝑥 → ¬ 𝑃 ∈ ((cls‘𝐽)‘𝑆))))) |
48 | 47 | com34 91 |
. . . . . . . 8
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑥 ∈ 𝐽 → (𝑃 ∈ 𝑥 → (¬ (𝑥 ∩ 𝑆) ≠ ∅ → ¬ 𝑃 ∈ ((cls‘𝐽)‘𝑆))))) |
49 | 48 | imp4a 422 |
. . . . . . 7
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑥 ∈ 𝐽 → ((𝑃 ∈ 𝑥 ∧ ¬ (𝑥 ∩ 𝑆) ≠ ∅) → ¬ 𝑃 ∈ ((cls‘𝐽)‘𝑆)))) |
50 | 49 | rexlimdv 3211 |
. . . . . 6
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ ¬ (𝑥 ∩ 𝑆) ≠ ∅) → ¬ 𝑃 ∈ ((cls‘𝐽)‘𝑆))) |
51 | 50 | imp 406 |
. . . . 5
⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) ∧ ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ ¬ (𝑥 ∩ 𝑆) ≠ ∅)) → ¬ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) |
52 | 51 | 3adantl3 1166 |
. . . 4
⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑃 ∈ 𝑋) ∧ ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ ¬ (𝑥 ∩ 𝑆) ≠ ∅)) → ¬ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) |
53 | 29, 52 | impbida 797 |
. . 3
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑃 ∈ 𝑋) → (¬ 𝑃 ∈ ((cls‘𝐽)‘𝑆) ↔ ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ ¬ (𝑥 ∩ 𝑆) ≠ ∅))) |
54 | | rexanali 3191 |
. . 3
⊢
(∃𝑥 ∈
𝐽 (𝑃 ∈ 𝑥 ∧ ¬ (𝑥 ∩ 𝑆) ≠ ∅) ↔ ¬ ∀𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 → (𝑥 ∩ 𝑆) ≠ ∅)) |
55 | 53, 54 | bitrdi 286 |
. 2
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑃 ∈ 𝑋) → (¬ 𝑃 ∈ ((cls‘𝐽)‘𝑆) ↔ ¬ ∀𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 → (𝑥 ∩ 𝑆) ≠ ∅))) |
56 | 55 | con4bid 316 |
1
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑃 ∈ 𝑋) → (𝑃 ∈ ((cls‘𝐽)‘𝑆) ↔ ∀𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 → (𝑥 ∩ 𝑆) ≠ ∅))) |