MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elcls Structured version   Visualization version   GIF version

Theorem elcls 21826
Description: Membership in a closure. Theorem 6.5(a) of [Munkres] p. 95. (Contributed by NM, 22-Feb-2007.)
Hypothesis
Ref Expression
clscld.1 𝑋 = 𝐽
Assertion
Ref Expression
elcls ((𝐽 ∈ Top ∧ 𝑆𝑋𝑃𝑋) → (𝑃 ∈ ((cls‘𝐽)‘𝑆) ↔ ∀𝑥𝐽 (𝑃𝑥 → (𝑥𝑆) ≠ ∅)))
Distinct variable groups:   𝑥,𝐽   𝑥,𝑃   𝑥,𝑆   𝑥,𝑋

Proof of Theorem elcls
StepHypRef Expression
1 clscld.1 . . . . . . . 8 𝑋 = 𝐽
21cmclsopn 21815 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑋 ∖ ((cls‘𝐽)‘𝑆)) ∈ 𝐽)
323adant3 1133 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑃𝑋) → (𝑋 ∖ ((cls‘𝐽)‘𝑆)) ∈ 𝐽)
43adantr 484 . . . . 5 (((𝐽 ∈ Top ∧ 𝑆𝑋𝑃𝑋) ∧ ¬ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) → (𝑋 ∖ ((cls‘𝐽)‘𝑆)) ∈ 𝐽)
5 eldif 3853 . . . . . . 7 (𝑃 ∈ (𝑋 ∖ ((cls‘𝐽)‘𝑆)) ↔ (𝑃𝑋 ∧ ¬ 𝑃 ∈ ((cls‘𝐽)‘𝑆)))
65biimpri 231 . . . . . 6 ((𝑃𝑋 ∧ ¬ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) → 𝑃 ∈ (𝑋 ∖ ((cls‘𝐽)‘𝑆)))
763ad2antl3 1188 . . . . 5 (((𝐽 ∈ Top ∧ 𝑆𝑋𝑃𝑋) ∧ ¬ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) → 𝑃 ∈ (𝑋 ∖ ((cls‘𝐽)‘𝑆)))
8 simpr 488 . . . . . . . . . . 11 ((𝐽 ∈ Top ∧ 𝑆𝑋) → 𝑆𝑋)
91sscls 21809 . . . . . . . . . . 11 ((𝐽 ∈ Top ∧ 𝑆𝑋) → 𝑆 ⊆ ((cls‘𝐽)‘𝑆))
108, 9ssind 4123 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ 𝑆𝑋) → 𝑆 ⊆ (𝑋 ∩ ((cls‘𝐽)‘𝑆)))
11 dfin4 4158 . . . . . . . . . 10 (𝑋 ∩ ((cls‘𝐽)‘𝑆)) = (𝑋 ∖ (𝑋 ∖ ((cls‘𝐽)‘𝑆)))
1210, 11sseqtrdi 3927 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝑆𝑋) → 𝑆 ⊆ (𝑋 ∖ (𝑋 ∖ ((cls‘𝐽)‘𝑆))))
13 reldisj 4341 . . . . . . . . . 10 (𝑆𝑋 → ((𝑆 ∩ (𝑋 ∖ ((cls‘𝐽)‘𝑆))) = ∅ ↔ 𝑆 ⊆ (𝑋 ∖ (𝑋 ∖ ((cls‘𝐽)‘𝑆)))))
1413adantl 485 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((𝑆 ∩ (𝑋 ∖ ((cls‘𝐽)‘𝑆))) = ∅ ↔ 𝑆 ⊆ (𝑋 ∖ (𝑋 ∖ ((cls‘𝐽)‘𝑆)))))
1512, 14mpbird 260 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑆 ∩ (𝑋 ∖ ((cls‘𝐽)‘𝑆))) = ∅)
16 nne 2938 . . . . . . . . 9 (¬ ((𝑋 ∖ ((cls‘𝐽)‘𝑆)) ∩ 𝑆) ≠ ∅ ↔ ((𝑋 ∖ ((cls‘𝐽)‘𝑆)) ∩ 𝑆) = ∅)
17 incom 4091 . . . . . . . . . 10 ((𝑋 ∖ ((cls‘𝐽)‘𝑆)) ∩ 𝑆) = (𝑆 ∩ (𝑋 ∖ ((cls‘𝐽)‘𝑆)))
1817eqeq1i 2743 . . . . . . . . 9 (((𝑋 ∖ ((cls‘𝐽)‘𝑆)) ∩ 𝑆) = ∅ ↔ (𝑆 ∩ (𝑋 ∖ ((cls‘𝐽)‘𝑆))) = ∅)
1916, 18bitri 278 . . . . . . . 8 (¬ ((𝑋 ∖ ((cls‘𝐽)‘𝑆)) ∩ 𝑆) ≠ ∅ ↔ (𝑆 ∩ (𝑋 ∖ ((cls‘𝐽)‘𝑆))) = ∅)
2015, 19sylibr 237 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ¬ ((𝑋 ∖ ((cls‘𝐽)‘𝑆)) ∩ 𝑆) ≠ ∅)
21203adant3 1133 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑃𝑋) → ¬ ((𝑋 ∖ ((cls‘𝐽)‘𝑆)) ∩ 𝑆) ≠ ∅)
2221adantr 484 . . . . 5 (((𝐽 ∈ Top ∧ 𝑆𝑋𝑃𝑋) ∧ ¬ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) → ¬ ((𝑋 ∖ ((cls‘𝐽)‘𝑆)) ∩ 𝑆) ≠ ∅)
23 eleq2 2821 . . . . . . 7 (𝑥 = (𝑋 ∖ ((cls‘𝐽)‘𝑆)) → (𝑃𝑥𝑃 ∈ (𝑋 ∖ ((cls‘𝐽)‘𝑆))))
24 ineq1 4096 . . . . . . . . 9 (𝑥 = (𝑋 ∖ ((cls‘𝐽)‘𝑆)) → (𝑥𝑆) = ((𝑋 ∖ ((cls‘𝐽)‘𝑆)) ∩ 𝑆))
2524neeq1d 2993 . . . . . . . 8 (𝑥 = (𝑋 ∖ ((cls‘𝐽)‘𝑆)) → ((𝑥𝑆) ≠ ∅ ↔ ((𝑋 ∖ ((cls‘𝐽)‘𝑆)) ∩ 𝑆) ≠ ∅))
2625notbid 321 . . . . . . 7 (𝑥 = (𝑋 ∖ ((cls‘𝐽)‘𝑆)) → (¬ (𝑥𝑆) ≠ ∅ ↔ ¬ ((𝑋 ∖ ((cls‘𝐽)‘𝑆)) ∩ 𝑆) ≠ ∅))
2723, 26anbi12d 634 . . . . . 6 (𝑥 = (𝑋 ∖ ((cls‘𝐽)‘𝑆)) → ((𝑃𝑥 ∧ ¬ (𝑥𝑆) ≠ ∅) ↔ (𝑃 ∈ (𝑋 ∖ ((cls‘𝐽)‘𝑆)) ∧ ¬ ((𝑋 ∖ ((cls‘𝐽)‘𝑆)) ∩ 𝑆) ≠ ∅)))
2827rspcev 3526 . . . . 5 (((𝑋 ∖ ((cls‘𝐽)‘𝑆)) ∈ 𝐽 ∧ (𝑃 ∈ (𝑋 ∖ ((cls‘𝐽)‘𝑆)) ∧ ¬ ((𝑋 ∖ ((cls‘𝐽)‘𝑆)) ∩ 𝑆) ≠ ∅)) → ∃𝑥𝐽 (𝑃𝑥 ∧ ¬ (𝑥𝑆) ≠ ∅))
294, 7, 22, 28syl12anc 836 . . . 4 (((𝐽 ∈ Top ∧ 𝑆𝑋𝑃𝑋) ∧ ¬ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) → ∃𝑥𝐽 (𝑃𝑥 ∧ ¬ (𝑥𝑆) ≠ ∅))
30 incom 4091 . . . . . . . . . . . . 13 (𝑆𝑥) = (𝑥𝑆)
3130eqeq1i 2743 . . . . . . . . . . . 12 ((𝑆𝑥) = ∅ ↔ (𝑥𝑆) = ∅)
32 df-ne 2935 . . . . . . . . . . . . 13 ((𝑥𝑆) ≠ ∅ ↔ ¬ (𝑥𝑆) = ∅)
3332con2bii 361 . . . . . . . . . . . 12 ((𝑥𝑆) = ∅ ↔ ¬ (𝑥𝑆) ≠ ∅)
3431, 33bitri 278 . . . . . . . . . . 11 ((𝑆𝑥) = ∅ ↔ ¬ (𝑥𝑆) ≠ ∅)
351opncld 21786 . . . . . . . . . . . . . . . 16 ((𝐽 ∈ Top ∧ 𝑥𝐽) → (𝑋𝑥) ∈ (Clsd‘𝐽))
3635adantlr 715 . . . . . . . . . . . . . . 15 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑥𝐽) → (𝑋𝑥) ∈ (Clsd‘𝐽))
37 reldisj 4341 . . . . . . . . . . . . . . . . 17 (𝑆𝑋 → ((𝑆𝑥) = ∅ ↔ 𝑆 ⊆ (𝑋𝑥)))
3837biimpa 480 . . . . . . . . . . . . . . . 16 ((𝑆𝑋 ∧ (𝑆𝑥) = ∅) → 𝑆 ⊆ (𝑋𝑥))
3938ad4ant24 754 . . . . . . . . . . . . . . 15 ((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑥𝐽) ∧ (𝑆𝑥) = ∅) → 𝑆 ⊆ (𝑋𝑥))
401clsss2 21825 . . . . . . . . . . . . . . 15 (((𝑋𝑥) ∈ (Clsd‘𝐽) ∧ 𝑆 ⊆ (𝑋𝑥)) → ((cls‘𝐽)‘𝑆) ⊆ (𝑋𝑥))
4136, 39, 40syl2an2r 685 . . . . . . . . . . . . . 14 ((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑥𝐽) ∧ (𝑆𝑥) = ∅) → ((cls‘𝐽)‘𝑆) ⊆ (𝑋𝑥))
4241sseld 3876 . . . . . . . . . . . . 13 ((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑥𝐽) ∧ (𝑆𝑥) = ∅) → (𝑃 ∈ ((cls‘𝐽)‘𝑆) → 𝑃 ∈ (𝑋𝑥)))
43 eldifn 4018 . . . . . . . . . . . . 13 (𝑃 ∈ (𝑋𝑥) → ¬ 𝑃𝑥)
4442, 43syl6 35 . . . . . . . . . . . 12 ((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑥𝐽) ∧ (𝑆𝑥) = ∅) → (𝑃 ∈ ((cls‘𝐽)‘𝑆) → ¬ 𝑃𝑥))
4544con2d 136 . . . . . . . . . . 11 ((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑥𝐽) ∧ (𝑆𝑥) = ∅) → (𝑃𝑥 → ¬ 𝑃 ∈ ((cls‘𝐽)‘𝑆)))
4634, 45sylan2br 598 . . . . . . . . . 10 ((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑥𝐽) ∧ ¬ (𝑥𝑆) ≠ ∅) → (𝑃𝑥 → ¬ 𝑃 ∈ ((cls‘𝐽)‘𝑆)))
4746exp31 423 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑥𝐽 → (¬ (𝑥𝑆) ≠ ∅ → (𝑃𝑥 → ¬ 𝑃 ∈ ((cls‘𝐽)‘𝑆)))))
4847com34 91 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑥𝐽 → (𝑃𝑥 → (¬ (𝑥𝑆) ≠ ∅ → ¬ 𝑃 ∈ ((cls‘𝐽)‘𝑆)))))
4948imp4a 426 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑥𝐽 → ((𝑃𝑥 ∧ ¬ (𝑥𝑆) ≠ ∅) → ¬ 𝑃 ∈ ((cls‘𝐽)‘𝑆))))
5049rexlimdv 3193 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (∃𝑥𝐽 (𝑃𝑥 ∧ ¬ (𝑥𝑆) ≠ ∅) → ¬ 𝑃 ∈ ((cls‘𝐽)‘𝑆)))
5150imp 410 . . . . 5 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ ∃𝑥𝐽 (𝑃𝑥 ∧ ¬ (𝑥𝑆) ≠ ∅)) → ¬ 𝑃 ∈ ((cls‘𝐽)‘𝑆))
52513adantl3 1169 . . . 4 (((𝐽 ∈ Top ∧ 𝑆𝑋𝑃𝑋) ∧ ∃𝑥𝐽 (𝑃𝑥 ∧ ¬ (𝑥𝑆) ≠ ∅)) → ¬ 𝑃 ∈ ((cls‘𝐽)‘𝑆))
5329, 52impbida 801 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑃𝑋) → (¬ 𝑃 ∈ ((cls‘𝐽)‘𝑆) ↔ ∃𝑥𝐽 (𝑃𝑥 ∧ ¬ (𝑥𝑆) ≠ ∅)))
54 rexanali 3175 . . 3 (∃𝑥𝐽 (𝑃𝑥 ∧ ¬ (𝑥𝑆) ≠ ∅) ↔ ¬ ∀𝑥𝐽 (𝑃𝑥 → (𝑥𝑆) ≠ ∅))
5553, 54bitrdi 290 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑃𝑋) → (¬ 𝑃 ∈ ((cls‘𝐽)‘𝑆) ↔ ¬ ∀𝑥𝐽 (𝑃𝑥 → (𝑥𝑆) ≠ ∅)))
5655con4bid 320 1 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑃𝑋) → (𝑃 ∈ ((cls‘𝐽)‘𝑆) ↔ ∀𝑥𝐽 (𝑃𝑥 → (𝑥𝑆) ≠ ∅)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1088   = wceq 1542  wcel 2114  wne 2934  wral 3053  wrex 3054  cdif 3840  cin 3842  wss 3843  c0 4211   cuni 4796  cfv 6339  Topctop 21646  Clsdccld 21769  clsccl 21771
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7481
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-ral 3058  df-rex 3059  df-reu 3060  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-op 4523  df-uni 4797  df-int 4837  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5429  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-top 21647  df-cld 21772  df-ntr 21773  df-cls 21774
This theorem is referenced by:  elcls2  21827  clsndisj  21828  elcls3  21836  neindisj2  21876  islp3  21899  lmcls  22055  1stccnp  22215  txcls  22357  dfac14lem  22370  fclsopn  22767  metdseq0  23608  qndenserrn  43404
  Copyright terms: Public domain W3C validator