MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elcls Structured version   Visualization version   GIF version

Theorem elcls 22132
Description: Membership in a closure. Theorem 6.5(a) of [Munkres] p. 95. (Contributed by NM, 22-Feb-2007.)
Hypothesis
Ref Expression
clscld.1 𝑋 = 𝐽
Assertion
Ref Expression
elcls ((𝐽 ∈ Top ∧ 𝑆𝑋𝑃𝑋) → (𝑃 ∈ ((cls‘𝐽)‘𝑆) ↔ ∀𝑥𝐽 (𝑃𝑥 → (𝑥𝑆) ≠ ∅)))
Distinct variable groups:   𝑥,𝐽   𝑥,𝑃   𝑥,𝑆   𝑥,𝑋

Proof of Theorem elcls
StepHypRef Expression
1 clscld.1 . . . . . . . 8 𝑋 = 𝐽
21cmclsopn 22121 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑋 ∖ ((cls‘𝐽)‘𝑆)) ∈ 𝐽)
323adant3 1130 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑃𝑋) → (𝑋 ∖ ((cls‘𝐽)‘𝑆)) ∈ 𝐽)
43adantr 480 . . . . 5 (((𝐽 ∈ Top ∧ 𝑆𝑋𝑃𝑋) ∧ ¬ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) → (𝑋 ∖ ((cls‘𝐽)‘𝑆)) ∈ 𝐽)
5 eldif 3893 . . . . . . 7 (𝑃 ∈ (𝑋 ∖ ((cls‘𝐽)‘𝑆)) ↔ (𝑃𝑋 ∧ ¬ 𝑃 ∈ ((cls‘𝐽)‘𝑆)))
65biimpri 227 . . . . . 6 ((𝑃𝑋 ∧ ¬ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) → 𝑃 ∈ (𝑋 ∖ ((cls‘𝐽)‘𝑆)))
763ad2antl3 1185 . . . . 5 (((𝐽 ∈ Top ∧ 𝑆𝑋𝑃𝑋) ∧ ¬ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) → 𝑃 ∈ (𝑋 ∖ ((cls‘𝐽)‘𝑆)))
8 simpr 484 . . . . . . . . . . 11 ((𝐽 ∈ Top ∧ 𝑆𝑋) → 𝑆𝑋)
91sscls 22115 . . . . . . . . . . 11 ((𝐽 ∈ Top ∧ 𝑆𝑋) → 𝑆 ⊆ ((cls‘𝐽)‘𝑆))
108, 9ssind 4163 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ 𝑆𝑋) → 𝑆 ⊆ (𝑋 ∩ ((cls‘𝐽)‘𝑆)))
11 dfin4 4198 . . . . . . . . . 10 (𝑋 ∩ ((cls‘𝐽)‘𝑆)) = (𝑋 ∖ (𝑋 ∖ ((cls‘𝐽)‘𝑆)))
1210, 11sseqtrdi 3967 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝑆𝑋) → 𝑆 ⊆ (𝑋 ∖ (𝑋 ∖ ((cls‘𝐽)‘𝑆))))
13 reldisj 4382 . . . . . . . . . 10 (𝑆𝑋 → ((𝑆 ∩ (𝑋 ∖ ((cls‘𝐽)‘𝑆))) = ∅ ↔ 𝑆 ⊆ (𝑋 ∖ (𝑋 ∖ ((cls‘𝐽)‘𝑆)))))
1413adantl 481 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((𝑆 ∩ (𝑋 ∖ ((cls‘𝐽)‘𝑆))) = ∅ ↔ 𝑆 ⊆ (𝑋 ∖ (𝑋 ∖ ((cls‘𝐽)‘𝑆)))))
1512, 14mpbird 256 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑆 ∩ (𝑋 ∖ ((cls‘𝐽)‘𝑆))) = ∅)
16 nne 2946 . . . . . . . . 9 (¬ ((𝑋 ∖ ((cls‘𝐽)‘𝑆)) ∩ 𝑆) ≠ ∅ ↔ ((𝑋 ∖ ((cls‘𝐽)‘𝑆)) ∩ 𝑆) = ∅)
17 incom 4131 . . . . . . . . . 10 ((𝑋 ∖ ((cls‘𝐽)‘𝑆)) ∩ 𝑆) = (𝑆 ∩ (𝑋 ∖ ((cls‘𝐽)‘𝑆)))
1817eqeq1i 2743 . . . . . . . . 9 (((𝑋 ∖ ((cls‘𝐽)‘𝑆)) ∩ 𝑆) = ∅ ↔ (𝑆 ∩ (𝑋 ∖ ((cls‘𝐽)‘𝑆))) = ∅)
1916, 18bitri 274 . . . . . . . 8 (¬ ((𝑋 ∖ ((cls‘𝐽)‘𝑆)) ∩ 𝑆) ≠ ∅ ↔ (𝑆 ∩ (𝑋 ∖ ((cls‘𝐽)‘𝑆))) = ∅)
2015, 19sylibr 233 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ¬ ((𝑋 ∖ ((cls‘𝐽)‘𝑆)) ∩ 𝑆) ≠ ∅)
21203adant3 1130 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑃𝑋) → ¬ ((𝑋 ∖ ((cls‘𝐽)‘𝑆)) ∩ 𝑆) ≠ ∅)
2221adantr 480 . . . . 5 (((𝐽 ∈ Top ∧ 𝑆𝑋𝑃𝑋) ∧ ¬ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) → ¬ ((𝑋 ∖ ((cls‘𝐽)‘𝑆)) ∩ 𝑆) ≠ ∅)
23 eleq2 2827 . . . . . . 7 (𝑥 = (𝑋 ∖ ((cls‘𝐽)‘𝑆)) → (𝑃𝑥𝑃 ∈ (𝑋 ∖ ((cls‘𝐽)‘𝑆))))
24 ineq1 4136 . . . . . . . . 9 (𝑥 = (𝑋 ∖ ((cls‘𝐽)‘𝑆)) → (𝑥𝑆) = ((𝑋 ∖ ((cls‘𝐽)‘𝑆)) ∩ 𝑆))
2524neeq1d 3002 . . . . . . . 8 (𝑥 = (𝑋 ∖ ((cls‘𝐽)‘𝑆)) → ((𝑥𝑆) ≠ ∅ ↔ ((𝑋 ∖ ((cls‘𝐽)‘𝑆)) ∩ 𝑆) ≠ ∅))
2625notbid 317 . . . . . . 7 (𝑥 = (𝑋 ∖ ((cls‘𝐽)‘𝑆)) → (¬ (𝑥𝑆) ≠ ∅ ↔ ¬ ((𝑋 ∖ ((cls‘𝐽)‘𝑆)) ∩ 𝑆) ≠ ∅))
2723, 26anbi12d 630 . . . . . 6 (𝑥 = (𝑋 ∖ ((cls‘𝐽)‘𝑆)) → ((𝑃𝑥 ∧ ¬ (𝑥𝑆) ≠ ∅) ↔ (𝑃 ∈ (𝑋 ∖ ((cls‘𝐽)‘𝑆)) ∧ ¬ ((𝑋 ∖ ((cls‘𝐽)‘𝑆)) ∩ 𝑆) ≠ ∅)))
2827rspcev 3552 . . . . 5 (((𝑋 ∖ ((cls‘𝐽)‘𝑆)) ∈ 𝐽 ∧ (𝑃 ∈ (𝑋 ∖ ((cls‘𝐽)‘𝑆)) ∧ ¬ ((𝑋 ∖ ((cls‘𝐽)‘𝑆)) ∩ 𝑆) ≠ ∅)) → ∃𝑥𝐽 (𝑃𝑥 ∧ ¬ (𝑥𝑆) ≠ ∅))
294, 7, 22, 28syl12anc 833 . . . 4 (((𝐽 ∈ Top ∧ 𝑆𝑋𝑃𝑋) ∧ ¬ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) → ∃𝑥𝐽 (𝑃𝑥 ∧ ¬ (𝑥𝑆) ≠ ∅))
30 incom 4131 . . . . . . . . . . . . 13 (𝑆𝑥) = (𝑥𝑆)
3130eqeq1i 2743 . . . . . . . . . . . 12 ((𝑆𝑥) = ∅ ↔ (𝑥𝑆) = ∅)
32 df-ne 2943 . . . . . . . . . . . . 13 ((𝑥𝑆) ≠ ∅ ↔ ¬ (𝑥𝑆) = ∅)
3332con2bii 357 . . . . . . . . . . . 12 ((𝑥𝑆) = ∅ ↔ ¬ (𝑥𝑆) ≠ ∅)
3431, 33bitri 274 . . . . . . . . . . 11 ((𝑆𝑥) = ∅ ↔ ¬ (𝑥𝑆) ≠ ∅)
351opncld 22092 . . . . . . . . . . . . . . . 16 ((𝐽 ∈ Top ∧ 𝑥𝐽) → (𝑋𝑥) ∈ (Clsd‘𝐽))
3635adantlr 711 . . . . . . . . . . . . . . 15 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑥𝐽) → (𝑋𝑥) ∈ (Clsd‘𝐽))
37 reldisj 4382 . . . . . . . . . . . . . . . . 17 (𝑆𝑋 → ((𝑆𝑥) = ∅ ↔ 𝑆 ⊆ (𝑋𝑥)))
3837biimpa 476 . . . . . . . . . . . . . . . 16 ((𝑆𝑋 ∧ (𝑆𝑥) = ∅) → 𝑆 ⊆ (𝑋𝑥))
3938ad4ant24 750 . . . . . . . . . . . . . . 15 ((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑥𝐽) ∧ (𝑆𝑥) = ∅) → 𝑆 ⊆ (𝑋𝑥))
401clsss2 22131 . . . . . . . . . . . . . . 15 (((𝑋𝑥) ∈ (Clsd‘𝐽) ∧ 𝑆 ⊆ (𝑋𝑥)) → ((cls‘𝐽)‘𝑆) ⊆ (𝑋𝑥))
4136, 39, 40syl2an2r 681 . . . . . . . . . . . . . 14 ((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑥𝐽) ∧ (𝑆𝑥) = ∅) → ((cls‘𝐽)‘𝑆) ⊆ (𝑋𝑥))
4241sseld 3916 . . . . . . . . . . . . 13 ((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑥𝐽) ∧ (𝑆𝑥) = ∅) → (𝑃 ∈ ((cls‘𝐽)‘𝑆) → 𝑃 ∈ (𝑋𝑥)))
43 eldifn 4058 . . . . . . . . . . . . 13 (𝑃 ∈ (𝑋𝑥) → ¬ 𝑃𝑥)
4442, 43syl6 35 . . . . . . . . . . . 12 ((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑥𝐽) ∧ (𝑆𝑥) = ∅) → (𝑃 ∈ ((cls‘𝐽)‘𝑆) → ¬ 𝑃𝑥))
4544con2d 134 . . . . . . . . . . 11 ((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑥𝐽) ∧ (𝑆𝑥) = ∅) → (𝑃𝑥 → ¬ 𝑃 ∈ ((cls‘𝐽)‘𝑆)))
4634, 45sylan2br 594 . . . . . . . . . 10 ((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑥𝐽) ∧ ¬ (𝑥𝑆) ≠ ∅) → (𝑃𝑥 → ¬ 𝑃 ∈ ((cls‘𝐽)‘𝑆)))
4746exp31 419 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑥𝐽 → (¬ (𝑥𝑆) ≠ ∅ → (𝑃𝑥 → ¬ 𝑃 ∈ ((cls‘𝐽)‘𝑆)))))
4847com34 91 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑥𝐽 → (𝑃𝑥 → (¬ (𝑥𝑆) ≠ ∅ → ¬ 𝑃 ∈ ((cls‘𝐽)‘𝑆)))))
4948imp4a 422 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑥𝐽 → ((𝑃𝑥 ∧ ¬ (𝑥𝑆) ≠ ∅) → ¬ 𝑃 ∈ ((cls‘𝐽)‘𝑆))))
5049rexlimdv 3211 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (∃𝑥𝐽 (𝑃𝑥 ∧ ¬ (𝑥𝑆) ≠ ∅) → ¬ 𝑃 ∈ ((cls‘𝐽)‘𝑆)))
5150imp 406 . . . . 5 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ ∃𝑥𝐽 (𝑃𝑥 ∧ ¬ (𝑥𝑆) ≠ ∅)) → ¬ 𝑃 ∈ ((cls‘𝐽)‘𝑆))
52513adantl3 1166 . . . 4 (((𝐽 ∈ Top ∧ 𝑆𝑋𝑃𝑋) ∧ ∃𝑥𝐽 (𝑃𝑥 ∧ ¬ (𝑥𝑆) ≠ ∅)) → ¬ 𝑃 ∈ ((cls‘𝐽)‘𝑆))
5329, 52impbida 797 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑃𝑋) → (¬ 𝑃 ∈ ((cls‘𝐽)‘𝑆) ↔ ∃𝑥𝐽 (𝑃𝑥 ∧ ¬ (𝑥𝑆) ≠ ∅)))
54 rexanali 3191 . . 3 (∃𝑥𝐽 (𝑃𝑥 ∧ ¬ (𝑥𝑆) ≠ ∅) ↔ ¬ ∀𝑥𝐽 (𝑃𝑥 → (𝑥𝑆) ≠ ∅))
5553, 54bitrdi 286 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑃𝑋) → (¬ 𝑃 ∈ ((cls‘𝐽)‘𝑆) ↔ ¬ ∀𝑥𝐽 (𝑃𝑥 → (𝑥𝑆) ≠ ∅)))
5655con4bid 316 1 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑃𝑋) → (𝑃 ∈ ((cls‘𝐽)‘𝑆) ↔ ∀𝑥𝐽 (𝑃𝑥 → (𝑥𝑆) ≠ ∅)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wral 3063  wrex 3064  cdif 3880  cin 3882  wss 3883  c0 4253   cuni 4836  cfv 6418  Topctop 21950  Clsdccld 22075  clsccl 22077
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-top 21951  df-cld 22078  df-ntr 22079  df-cls 22080
This theorem is referenced by:  elcls2  22133  clsndisj  22134  elcls3  22142  neindisj2  22182  islp3  22205  lmcls  22361  1stccnp  22521  txcls  22663  dfac14lem  22676  fclsopn  23073  metdseq0  23923  qndenserrn  43730
  Copyright terms: Public domain W3C validator