MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elcls Structured version   Visualization version   GIF version

Theorem elcls 22967
Description: Membership in a closure. Theorem 6.5(a) of [Munkres] p. 95. (Contributed by NM, 22-Feb-2007.)
Hypothesis
Ref Expression
clscld.1 𝑋 = 𝐽
Assertion
Ref Expression
elcls ((𝐽 ∈ Top ∧ 𝑆𝑋𝑃𝑋) → (𝑃 ∈ ((cls‘𝐽)‘𝑆) ↔ ∀𝑥𝐽 (𝑃𝑥 → (𝑥𝑆) ≠ ∅)))
Distinct variable groups:   𝑥,𝐽   𝑥,𝑃   𝑥,𝑆   𝑥,𝑋

Proof of Theorem elcls
StepHypRef Expression
1 clscld.1 . . . . . . . 8 𝑋 = 𝐽
21cmclsopn 22956 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑋 ∖ ((cls‘𝐽)‘𝑆)) ∈ 𝐽)
323adant3 1132 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑃𝑋) → (𝑋 ∖ ((cls‘𝐽)‘𝑆)) ∈ 𝐽)
43adantr 480 . . . . 5 (((𝐽 ∈ Top ∧ 𝑆𝑋𝑃𝑋) ∧ ¬ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) → (𝑋 ∖ ((cls‘𝐽)‘𝑆)) ∈ 𝐽)
5 eldif 3927 . . . . . . 7 (𝑃 ∈ (𝑋 ∖ ((cls‘𝐽)‘𝑆)) ↔ (𝑃𝑋 ∧ ¬ 𝑃 ∈ ((cls‘𝐽)‘𝑆)))
65biimpri 228 . . . . . 6 ((𝑃𝑋 ∧ ¬ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) → 𝑃 ∈ (𝑋 ∖ ((cls‘𝐽)‘𝑆)))
763ad2antl3 1188 . . . . 5 (((𝐽 ∈ Top ∧ 𝑆𝑋𝑃𝑋) ∧ ¬ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) → 𝑃 ∈ (𝑋 ∖ ((cls‘𝐽)‘𝑆)))
8 simpr 484 . . . . . . . . . . 11 ((𝐽 ∈ Top ∧ 𝑆𝑋) → 𝑆𝑋)
91sscls 22950 . . . . . . . . . . 11 ((𝐽 ∈ Top ∧ 𝑆𝑋) → 𝑆 ⊆ ((cls‘𝐽)‘𝑆))
108, 9ssind 4207 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ 𝑆𝑋) → 𝑆 ⊆ (𝑋 ∩ ((cls‘𝐽)‘𝑆)))
11 dfin4 4244 . . . . . . . . . 10 (𝑋 ∩ ((cls‘𝐽)‘𝑆)) = (𝑋 ∖ (𝑋 ∖ ((cls‘𝐽)‘𝑆)))
1210, 11sseqtrdi 3990 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝑆𝑋) → 𝑆 ⊆ (𝑋 ∖ (𝑋 ∖ ((cls‘𝐽)‘𝑆))))
13 reldisj 4419 . . . . . . . . . 10 (𝑆𝑋 → ((𝑆 ∩ (𝑋 ∖ ((cls‘𝐽)‘𝑆))) = ∅ ↔ 𝑆 ⊆ (𝑋 ∖ (𝑋 ∖ ((cls‘𝐽)‘𝑆)))))
1413adantl 481 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((𝑆 ∩ (𝑋 ∖ ((cls‘𝐽)‘𝑆))) = ∅ ↔ 𝑆 ⊆ (𝑋 ∖ (𝑋 ∖ ((cls‘𝐽)‘𝑆)))))
1512, 14mpbird 257 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑆 ∩ (𝑋 ∖ ((cls‘𝐽)‘𝑆))) = ∅)
16 nne 2930 . . . . . . . . 9 (¬ ((𝑋 ∖ ((cls‘𝐽)‘𝑆)) ∩ 𝑆) ≠ ∅ ↔ ((𝑋 ∖ ((cls‘𝐽)‘𝑆)) ∩ 𝑆) = ∅)
17 incom 4175 . . . . . . . . . 10 ((𝑋 ∖ ((cls‘𝐽)‘𝑆)) ∩ 𝑆) = (𝑆 ∩ (𝑋 ∖ ((cls‘𝐽)‘𝑆)))
1817eqeq1i 2735 . . . . . . . . 9 (((𝑋 ∖ ((cls‘𝐽)‘𝑆)) ∩ 𝑆) = ∅ ↔ (𝑆 ∩ (𝑋 ∖ ((cls‘𝐽)‘𝑆))) = ∅)
1916, 18bitri 275 . . . . . . . 8 (¬ ((𝑋 ∖ ((cls‘𝐽)‘𝑆)) ∩ 𝑆) ≠ ∅ ↔ (𝑆 ∩ (𝑋 ∖ ((cls‘𝐽)‘𝑆))) = ∅)
2015, 19sylibr 234 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ¬ ((𝑋 ∖ ((cls‘𝐽)‘𝑆)) ∩ 𝑆) ≠ ∅)
21203adant3 1132 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑃𝑋) → ¬ ((𝑋 ∖ ((cls‘𝐽)‘𝑆)) ∩ 𝑆) ≠ ∅)
2221adantr 480 . . . . 5 (((𝐽 ∈ Top ∧ 𝑆𝑋𝑃𝑋) ∧ ¬ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) → ¬ ((𝑋 ∖ ((cls‘𝐽)‘𝑆)) ∩ 𝑆) ≠ ∅)
23 eleq2 2818 . . . . . . 7 (𝑥 = (𝑋 ∖ ((cls‘𝐽)‘𝑆)) → (𝑃𝑥𝑃 ∈ (𝑋 ∖ ((cls‘𝐽)‘𝑆))))
24 ineq1 4179 . . . . . . . . 9 (𝑥 = (𝑋 ∖ ((cls‘𝐽)‘𝑆)) → (𝑥𝑆) = ((𝑋 ∖ ((cls‘𝐽)‘𝑆)) ∩ 𝑆))
2524neeq1d 2985 . . . . . . . 8 (𝑥 = (𝑋 ∖ ((cls‘𝐽)‘𝑆)) → ((𝑥𝑆) ≠ ∅ ↔ ((𝑋 ∖ ((cls‘𝐽)‘𝑆)) ∩ 𝑆) ≠ ∅))
2625notbid 318 . . . . . . 7 (𝑥 = (𝑋 ∖ ((cls‘𝐽)‘𝑆)) → (¬ (𝑥𝑆) ≠ ∅ ↔ ¬ ((𝑋 ∖ ((cls‘𝐽)‘𝑆)) ∩ 𝑆) ≠ ∅))
2723, 26anbi12d 632 . . . . . 6 (𝑥 = (𝑋 ∖ ((cls‘𝐽)‘𝑆)) → ((𝑃𝑥 ∧ ¬ (𝑥𝑆) ≠ ∅) ↔ (𝑃 ∈ (𝑋 ∖ ((cls‘𝐽)‘𝑆)) ∧ ¬ ((𝑋 ∖ ((cls‘𝐽)‘𝑆)) ∩ 𝑆) ≠ ∅)))
2827rspcev 3591 . . . . 5 (((𝑋 ∖ ((cls‘𝐽)‘𝑆)) ∈ 𝐽 ∧ (𝑃 ∈ (𝑋 ∖ ((cls‘𝐽)‘𝑆)) ∧ ¬ ((𝑋 ∖ ((cls‘𝐽)‘𝑆)) ∩ 𝑆) ≠ ∅)) → ∃𝑥𝐽 (𝑃𝑥 ∧ ¬ (𝑥𝑆) ≠ ∅))
294, 7, 22, 28syl12anc 836 . . . 4 (((𝐽 ∈ Top ∧ 𝑆𝑋𝑃𝑋) ∧ ¬ 𝑃 ∈ ((cls‘𝐽)‘𝑆)) → ∃𝑥𝐽 (𝑃𝑥 ∧ ¬ (𝑥𝑆) ≠ ∅))
30 incom 4175 . . . . . . . . . . . . 13 (𝑆𝑥) = (𝑥𝑆)
3130eqeq1i 2735 . . . . . . . . . . . 12 ((𝑆𝑥) = ∅ ↔ (𝑥𝑆) = ∅)
32 df-ne 2927 . . . . . . . . . . . . 13 ((𝑥𝑆) ≠ ∅ ↔ ¬ (𝑥𝑆) = ∅)
3332con2bii 357 . . . . . . . . . . . 12 ((𝑥𝑆) = ∅ ↔ ¬ (𝑥𝑆) ≠ ∅)
3431, 33bitri 275 . . . . . . . . . . 11 ((𝑆𝑥) = ∅ ↔ ¬ (𝑥𝑆) ≠ ∅)
351opncld 22927 . . . . . . . . . . . . . . . 16 ((𝐽 ∈ Top ∧ 𝑥𝐽) → (𝑋𝑥) ∈ (Clsd‘𝐽))
3635adantlr 715 . . . . . . . . . . . . . . 15 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑥𝐽) → (𝑋𝑥) ∈ (Clsd‘𝐽))
37 reldisj 4419 . . . . . . . . . . . . . . . . 17 (𝑆𝑋 → ((𝑆𝑥) = ∅ ↔ 𝑆 ⊆ (𝑋𝑥)))
3837biimpa 476 . . . . . . . . . . . . . . . 16 ((𝑆𝑋 ∧ (𝑆𝑥) = ∅) → 𝑆 ⊆ (𝑋𝑥))
3938ad4ant24 754 . . . . . . . . . . . . . . 15 ((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑥𝐽) ∧ (𝑆𝑥) = ∅) → 𝑆 ⊆ (𝑋𝑥))
401clsss2 22966 . . . . . . . . . . . . . . 15 (((𝑋𝑥) ∈ (Clsd‘𝐽) ∧ 𝑆 ⊆ (𝑋𝑥)) → ((cls‘𝐽)‘𝑆) ⊆ (𝑋𝑥))
4136, 39, 40syl2an2r 685 . . . . . . . . . . . . . 14 ((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑥𝐽) ∧ (𝑆𝑥) = ∅) → ((cls‘𝐽)‘𝑆) ⊆ (𝑋𝑥))
4241sseld 3948 . . . . . . . . . . . . 13 ((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑥𝐽) ∧ (𝑆𝑥) = ∅) → (𝑃 ∈ ((cls‘𝐽)‘𝑆) → 𝑃 ∈ (𝑋𝑥)))
43 eldifn 4098 . . . . . . . . . . . . 13 (𝑃 ∈ (𝑋𝑥) → ¬ 𝑃𝑥)
4442, 43syl6 35 . . . . . . . . . . . 12 ((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑥𝐽) ∧ (𝑆𝑥) = ∅) → (𝑃 ∈ ((cls‘𝐽)‘𝑆) → ¬ 𝑃𝑥))
4544con2d 134 . . . . . . . . . . 11 ((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑥𝐽) ∧ (𝑆𝑥) = ∅) → (𝑃𝑥 → ¬ 𝑃 ∈ ((cls‘𝐽)‘𝑆)))
4634, 45sylan2br 595 . . . . . . . . . 10 ((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑥𝐽) ∧ ¬ (𝑥𝑆) ≠ ∅) → (𝑃𝑥 → ¬ 𝑃 ∈ ((cls‘𝐽)‘𝑆)))
4746exp31 419 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑥𝐽 → (¬ (𝑥𝑆) ≠ ∅ → (𝑃𝑥 → ¬ 𝑃 ∈ ((cls‘𝐽)‘𝑆)))))
4847com34 91 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑥𝐽 → (𝑃𝑥 → (¬ (𝑥𝑆) ≠ ∅ → ¬ 𝑃 ∈ ((cls‘𝐽)‘𝑆)))))
4948imp4a 422 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑥𝐽 → ((𝑃𝑥 ∧ ¬ (𝑥𝑆) ≠ ∅) → ¬ 𝑃 ∈ ((cls‘𝐽)‘𝑆))))
5049rexlimdv 3133 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (∃𝑥𝐽 (𝑃𝑥 ∧ ¬ (𝑥𝑆) ≠ ∅) → ¬ 𝑃 ∈ ((cls‘𝐽)‘𝑆)))
5150imp 406 . . . . 5 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ ∃𝑥𝐽 (𝑃𝑥 ∧ ¬ (𝑥𝑆) ≠ ∅)) → ¬ 𝑃 ∈ ((cls‘𝐽)‘𝑆))
52513adantl3 1169 . . . 4 (((𝐽 ∈ Top ∧ 𝑆𝑋𝑃𝑋) ∧ ∃𝑥𝐽 (𝑃𝑥 ∧ ¬ (𝑥𝑆) ≠ ∅)) → ¬ 𝑃 ∈ ((cls‘𝐽)‘𝑆))
5329, 52impbida 800 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑃𝑋) → (¬ 𝑃 ∈ ((cls‘𝐽)‘𝑆) ↔ ∃𝑥𝐽 (𝑃𝑥 ∧ ¬ (𝑥𝑆) ≠ ∅)))
54 rexanali 3085 . . 3 (∃𝑥𝐽 (𝑃𝑥 ∧ ¬ (𝑥𝑆) ≠ ∅) ↔ ¬ ∀𝑥𝐽 (𝑃𝑥 → (𝑥𝑆) ≠ ∅))
5553, 54bitrdi 287 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑃𝑋) → (¬ 𝑃 ∈ ((cls‘𝐽)‘𝑆) ↔ ¬ ∀𝑥𝐽 (𝑃𝑥 → (𝑥𝑆) ≠ ∅)))
5655con4bid 317 1 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑃𝑋) → (𝑃 ∈ ((cls‘𝐽)‘𝑆) ↔ ∀𝑥𝐽 (𝑃𝑥 → (𝑥𝑆) ≠ ∅)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wral 3045  wrex 3054  cdif 3914  cin 3916  wss 3917  c0 4299   cuni 4874  cfv 6514  Topctop 22787  Clsdccld 22910  clsccl 22912
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-top 22788  df-cld 22913  df-ntr 22914  df-cls 22915
This theorem is referenced by:  elcls2  22968  clsndisj  22969  elcls3  22977  neindisj2  23017  islp3  23040  lmcls  23196  1stccnp  23356  txcls  23498  dfac14lem  23511  fclsopn  23908  metdseq0  24750  qndenserrn  46304
  Copyright terms: Public domain W3C validator