| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ioo0 | Structured version Visualization version GIF version | ||
| Description: An empty open interval of extended reals. (Contributed by NM, 6-Feb-2007.) |
| Ref | Expression |
|---|---|
| ioo0 | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((𝐴(,)𝐵) = ∅ ↔ 𝐵 ≤ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iooval 13271 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴(,)𝐵) = {𝑥 ∈ ℝ* ∣ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)}) | |
| 2 | 1 | eqeq1d 2735 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((𝐴(,)𝐵) = ∅ ↔ {𝑥 ∈ ℝ* ∣ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)} = ∅)) |
| 3 | df-ne 2930 | . . . . . 6 ⊢ ({𝑥 ∈ ℝ* ∣ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)} ≠ ∅ ↔ ¬ {𝑥 ∈ ℝ* ∣ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)} = ∅) | |
| 4 | rabn0 4338 | . . . . . 6 ⊢ ({𝑥 ∈ ℝ* ∣ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)} ≠ ∅ ↔ ∃𝑥 ∈ ℝ* (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)) | |
| 5 | 3, 4 | bitr3i 277 | . . . . 5 ⊢ (¬ {𝑥 ∈ ℝ* ∣ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)} = ∅ ↔ ∃𝑥 ∈ ℝ* (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)) |
| 6 | xrlttr 13041 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((𝐴 < 𝑥 ∧ 𝑥 < 𝐵) → 𝐴 < 𝐵)) | |
| 7 | 6 | 3com23 1126 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝑥 ∈ ℝ*) → ((𝐴 < 𝑥 ∧ 𝑥 < 𝐵) → 𝐴 < 𝐵)) |
| 8 | 7 | 3expa 1118 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ℝ*) → ((𝐴 < 𝑥 ∧ 𝑥 < 𝐵) → 𝐴 < 𝐵)) |
| 9 | 8 | rexlimdva 3134 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (∃𝑥 ∈ ℝ* (𝐴 < 𝑥 ∧ 𝑥 < 𝐵) → 𝐴 < 𝐵)) |
| 10 | qbtwnxr 13101 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)) | |
| 11 | qre 12853 | . . . . . . . . . . 11 ⊢ (𝑥 ∈ ℚ → 𝑥 ∈ ℝ) | |
| 12 | 11 | rexrd 11169 | . . . . . . . . . 10 ⊢ (𝑥 ∈ ℚ → 𝑥 ∈ ℝ*) |
| 13 | 12 | anim1i 615 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ℚ ∧ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)) → (𝑥 ∈ ℝ* ∧ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵))) |
| 14 | 13 | reximi2 3066 | . . . . . . . 8 ⊢ (∃𝑥 ∈ ℚ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵) → ∃𝑥 ∈ ℝ* (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)) |
| 15 | 10, 14 | syl 17 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵) → ∃𝑥 ∈ ℝ* (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)) |
| 16 | 15 | 3expia 1121 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 → ∃𝑥 ∈ ℝ* (𝐴 < 𝑥 ∧ 𝑥 < 𝐵))) |
| 17 | 9, 16 | impbid 212 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (∃𝑥 ∈ ℝ* (𝐴 < 𝑥 ∧ 𝑥 < 𝐵) ↔ 𝐴 < 𝐵)) |
| 18 | 5, 17 | bitrid 283 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (¬ {𝑥 ∈ ℝ* ∣ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)} = ∅ ↔ 𝐴 < 𝐵)) |
| 19 | xrltnle 11186 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴)) | |
| 20 | 18, 19 | bitrd 279 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (¬ {𝑥 ∈ ℝ* ∣ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)} = ∅ ↔ ¬ 𝐵 ≤ 𝐴)) |
| 21 | 20 | con4bid 317 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ({𝑥 ∈ ℝ* ∣ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)} = ∅ ↔ 𝐵 ≤ 𝐴)) |
| 22 | 2, 21 | bitrd 279 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((𝐴(,)𝐵) = ∅ ↔ 𝐵 ≤ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 ∃wrex 3057 {crab 3396 ∅c0 4282 class class class wbr 5093 (class class class)co 7352 ℝ*cxr 11152 < clt 11153 ≤ cle 11154 ℚcq 12848 (,)cioo 13247 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 ax-pre-sup 11091 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-sup 9333 df-inf 9334 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-div 11782 df-nn 12133 df-n0 12389 df-z 12476 df-uz 12739 df-q 12849 df-ioo 13251 |
| This theorem is referenced by: ioon0 13273 iooid 13275 bndth 24885 ioombl 25494 ioovolcl 25499 itgsubstlem 25983 iccdifprioo 45640 qinioo 45659 ioodvbdlimc1 46055 ioodvbdlimc2 46057 volioore 46112 voliooico 46114 ovolval4lem1 46771 vonioo 46804 |
| Copyright terms: Public domain | W3C validator |