![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > supxrbnd2 | Structured version Visualization version GIF version |
Description: The supremum of a bounded-above set of extended reals is less than infinity. (Contributed by NM, 30-Jan-2006.) |
Ref | Expression |
---|---|
supxrbnd2 | ⊢ (𝐴 ⊆ ℝ* → (∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ↔ sup(𝐴, ℝ*, < ) < +∞)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralnex 3069 | . . . 4 ⊢ (∀𝑥 ∈ ℝ ¬ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ↔ ¬ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) | |
2 | ssel2 3975 | . . . . . . . . 9 ⊢ ((𝐴 ⊆ ℝ* ∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ ℝ*) | |
3 | rexr 11291 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*) | |
4 | xrlenlt 11310 | . . . . . . . . . 10 ⊢ ((𝑦 ∈ ℝ* ∧ 𝑥 ∈ ℝ*) → (𝑦 ≤ 𝑥 ↔ ¬ 𝑥 < 𝑦)) | |
5 | 4 | con2bid 354 | . . . . . . . . 9 ⊢ ((𝑦 ∈ ℝ* ∧ 𝑥 ∈ ℝ*) → (𝑥 < 𝑦 ↔ ¬ 𝑦 ≤ 𝑥)) |
6 | 2, 3, 5 | syl2an 595 | . . . . . . . 8 ⊢ (((𝐴 ⊆ ℝ* ∧ 𝑦 ∈ 𝐴) ∧ 𝑥 ∈ ℝ) → (𝑥 < 𝑦 ↔ ¬ 𝑦 ≤ 𝑥)) |
7 | 6 | an32s 651 | . . . . . . 7 ⊢ (((𝐴 ⊆ ℝ* ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ 𝐴) → (𝑥 < 𝑦 ↔ ¬ 𝑦 ≤ 𝑥)) |
8 | 7 | rexbidva 3173 | . . . . . 6 ⊢ ((𝐴 ⊆ ℝ* ∧ 𝑥 ∈ ℝ) → (∃𝑦 ∈ 𝐴 𝑥 < 𝑦 ↔ ∃𝑦 ∈ 𝐴 ¬ 𝑦 ≤ 𝑥)) |
9 | rexnal 3097 | . . . . . 6 ⊢ (∃𝑦 ∈ 𝐴 ¬ 𝑦 ≤ 𝑥 ↔ ¬ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) | |
10 | 8, 9 | bitr2di 288 | . . . . 5 ⊢ ((𝐴 ⊆ ℝ* ∧ 𝑥 ∈ ℝ) → (¬ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ↔ ∃𝑦 ∈ 𝐴 𝑥 < 𝑦)) |
11 | 10 | ralbidva 3172 | . . . 4 ⊢ (𝐴 ⊆ ℝ* → (∀𝑥 ∈ ℝ ¬ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ↔ ∀𝑥 ∈ ℝ ∃𝑦 ∈ 𝐴 𝑥 < 𝑦)) |
12 | 1, 11 | bitr3id 285 | . . 3 ⊢ (𝐴 ⊆ ℝ* → (¬ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ↔ ∀𝑥 ∈ ℝ ∃𝑦 ∈ 𝐴 𝑥 < 𝑦)) |
13 | supxrunb2 13332 | . . 3 ⊢ (𝐴 ⊆ ℝ* → (∀𝑥 ∈ ℝ ∃𝑦 ∈ 𝐴 𝑥 < 𝑦 ↔ sup(𝐴, ℝ*, < ) = +∞)) | |
14 | supxrcl 13327 | . . . 4 ⊢ (𝐴 ⊆ ℝ* → sup(𝐴, ℝ*, < ) ∈ ℝ*) | |
15 | nltpnft 13176 | . . . 4 ⊢ (sup(𝐴, ℝ*, < ) ∈ ℝ* → (sup(𝐴, ℝ*, < ) = +∞ ↔ ¬ sup(𝐴, ℝ*, < ) < +∞)) | |
16 | 14, 15 | syl 17 | . . 3 ⊢ (𝐴 ⊆ ℝ* → (sup(𝐴, ℝ*, < ) = +∞ ↔ ¬ sup(𝐴, ℝ*, < ) < +∞)) |
17 | 12, 13, 16 | 3bitrd 305 | . 2 ⊢ (𝐴 ⊆ ℝ* → (¬ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ↔ ¬ sup(𝐴, ℝ*, < ) < +∞)) |
18 | 17 | con4bid 317 | 1 ⊢ (𝐴 ⊆ ℝ* → (∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ↔ sup(𝐴, ℝ*, < ) < +∞)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ∀wral 3058 ∃wrex 3067 ⊆ wss 3947 class class class wbr 5148 supcsup 9464 ℝcr 11138 +∞cpnf 11276 ℝ*cxr 11278 < clt 11279 ≤ cle 11280 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-cnex 11195 ax-resscn 11196 ax-1cn 11197 ax-icn 11198 ax-addcl 11199 ax-addrcl 11200 ax-mulcl 11201 ax-mulrcl 11202 ax-mulcom 11203 ax-addass 11204 ax-mulass 11205 ax-distr 11206 ax-i2m1 11207 ax-1ne0 11208 ax-1rid 11209 ax-rnegex 11210 ax-rrecex 11211 ax-cnre 11212 ax-pre-lttri 11213 ax-pre-lttrn 11214 ax-pre-ltadd 11215 ax-pre-mulgt0 11216 ax-pre-sup 11217 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3373 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5576 df-po 5590 df-so 5591 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-sup 9466 df-pnf 11281 df-mnf 11282 df-xr 11283 df-ltxr 11284 df-le 11285 df-sub 11477 df-neg 11478 |
This theorem is referenced by: ovolunlem1 25439 supxrre3 44707 |
Copyright terms: Public domain | W3C validator |