![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > supxrbnd2 | Structured version Visualization version GIF version |
Description: The supremum of a bounded-above set of extended reals is less than infinity. (Contributed by NM, 30-Jan-2006.) |
Ref | Expression |
---|---|
supxrbnd2 | ⊢ (𝐴 ⊆ ℝ* → (∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ↔ sup(𝐴, ℝ*, < ) < +∞)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralnex 3070 | . . . 4 ⊢ (∀𝑥 ∈ ℝ ¬ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ↔ ¬ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) | |
2 | ssel2 3990 | . . . . . . . . 9 ⊢ ((𝐴 ⊆ ℝ* ∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ ℝ*) | |
3 | rexr 11305 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*) | |
4 | xrlenlt 11324 | . . . . . . . . . 10 ⊢ ((𝑦 ∈ ℝ* ∧ 𝑥 ∈ ℝ*) → (𝑦 ≤ 𝑥 ↔ ¬ 𝑥 < 𝑦)) | |
5 | 4 | con2bid 354 | . . . . . . . . 9 ⊢ ((𝑦 ∈ ℝ* ∧ 𝑥 ∈ ℝ*) → (𝑥 < 𝑦 ↔ ¬ 𝑦 ≤ 𝑥)) |
6 | 2, 3, 5 | syl2an 596 | . . . . . . . 8 ⊢ (((𝐴 ⊆ ℝ* ∧ 𝑦 ∈ 𝐴) ∧ 𝑥 ∈ ℝ) → (𝑥 < 𝑦 ↔ ¬ 𝑦 ≤ 𝑥)) |
7 | 6 | an32s 652 | . . . . . . 7 ⊢ (((𝐴 ⊆ ℝ* ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ 𝐴) → (𝑥 < 𝑦 ↔ ¬ 𝑦 ≤ 𝑥)) |
8 | 7 | rexbidva 3175 | . . . . . 6 ⊢ ((𝐴 ⊆ ℝ* ∧ 𝑥 ∈ ℝ) → (∃𝑦 ∈ 𝐴 𝑥 < 𝑦 ↔ ∃𝑦 ∈ 𝐴 ¬ 𝑦 ≤ 𝑥)) |
9 | rexnal 3098 | . . . . . 6 ⊢ (∃𝑦 ∈ 𝐴 ¬ 𝑦 ≤ 𝑥 ↔ ¬ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) | |
10 | 8, 9 | bitr2di 288 | . . . . 5 ⊢ ((𝐴 ⊆ ℝ* ∧ 𝑥 ∈ ℝ) → (¬ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ↔ ∃𝑦 ∈ 𝐴 𝑥 < 𝑦)) |
11 | 10 | ralbidva 3174 | . . . 4 ⊢ (𝐴 ⊆ ℝ* → (∀𝑥 ∈ ℝ ¬ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ↔ ∀𝑥 ∈ ℝ ∃𝑦 ∈ 𝐴 𝑥 < 𝑦)) |
12 | 1, 11 | bitr3id 285 | . . 3 ⊢ (𝐴 ⊆ ℝ* → (¬ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ↔ ∀𝑥 ∈ ℝ ∃𝑦 ∈ 𝐴 𝑥 < 𝑦)) |
13 | supxrunb2 13359 | . . 3 ⊢ (𝐴 ⊆ ℝ* → (∀𝑥 ∈ ℝ ∃𝑦 ∈ 𝐴 𝑥 < 𝑦 ↔ sup(𝐴, ℝ*, < ) = +∞)) | |
14 | supxrcl 13354 | . . . 4 ⊢ (𝐴 ⊆ ℝ* → sup(𝐴, ℝ*, < ) ∈ ℝ*) | |
15 | nltpnft 13203 | . . . 4 ⊢ (sup(𝐴, ℝ*, < ) ∈ ℝ* → (sup(𝐴, ℝ*, < ) = +∞ ↔ ¬ sup(𝐴, ℝ*, < ) < +∞)) | |
16 | 14, 15 | syl 17 | . . 3 ⊢ (𝐴 ⊆ ℝ* → (sup(𝐴, ℝ*, < ) = +∞ ↔ ¬ sup(𝐴, ℝ*, < ) < +∞)) |
17 | 12, 13, 16 | 3bitrd 305 | . 2 ⊢ (𝐴 ⊆ ℝ* → (¬ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ↔ ¬ sup(𝐴, ℝ*, < ) < +∞)) |
18 | 17 | con4bid 317 | 1 ⊢ (𝐴 ⊆ ℝ* → (∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ↔ sup(𝐴, ℝ*, < ) < +∞)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ∀wral 3059 ∃wrex 3068 ⊆ wss 3963 class class class wbr 5148 supcsup 9478 ℝcr 11152 +∞cpnf 11290 ℝ*cxr 11292 < clt 11293 ≤ cle 11294 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-po 5597 df-so 5598 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-sup 9480 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 |
This theorem is referenced by: ovolunlem1 25546 supxrre3 45275 |
Copyright terms: Public domain | W3C validator |