![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > supxrbnd2 | Structured version Visualization version GIF version |
Description: The supremum of a bounded-above set of extended reals is less than infinity. (Contributed by NM, 30-Jan-2006.) |
Ref | Expression |
---|---|
supxrbnd2 | ⊢ (𝐴 ⊆ ℝ* → (∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ↔ sup(𝐴, ℝ*, < ) < +∞)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralnex 3072 | . . . 4 ⊢ (∀𝑥 ∈ ℝ ¬ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ↔ ¬ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) | |
2 | ssel2 3943 | . . . . . . . . 9 ⊢ ((𝐴 ⊆ ℝ* ∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ ℝ*) | |
3 | rexr 11209 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*) | |
4 | xrlenlt 11228 | . . . . . . . . . 10 ⊢ ((𝑦 ∈ ℝ* ∧ 𝑥 ∈ ℝ*) → (𝑦 ≤ 𝑥 ↔ ¬ 𝑥 < 𝑦)) | |
5 | 4 | con2bid 355 | . . . . . . . . 9 ⊢ ((𝑦 ∈ ℝ* ∧ 𝑥 ∈ ℝ*) → (𝑥 < 𝑦 ↔ ¬ 𝑦 ≤ 𝑥)) |
6 | 2, 3, 5 | syl2an 597 | . . . . . . . 8 ⊢ (((𝐴 ⊆ ℝ* ∧ 𝑦 ∈ 𝐴) ∧ 𝑥 ∈ ℝ) → (𝑥 < 𝑦 ↔ ¬ 𝑦 ≤ 𝑥)) |
7 | 6 | an32s 651 | . . . . . . 7 ⊢ (((𝐴 ⊆ ℝ* ∧ 𝑥 ∈ ℝ) ∧ 𝑦 ∈ 𝐴) → (𝑥 < 𝑦 ↔ ¬ 𝑦 ≤ 𝑥)) |
8 | 7 | rexbidva 3170 | . . . . . 6 ⊢ ((𝐴 ⊆ ℝ* ∧ 𝑥 ∈ ℝ) → (∃𝑦 ∈ 𝐴 𝑥 < 𝑦 ↔ ∃𝑦 ∈ 𝐴 ¬ 𝑦 ≤ 𝑥)) |
9 | rexnal 3100 | . . . . . 6 ⊢ (∃𝑦 ∈ 𝐴 ¬ 𝑦 ≤ 𝑥 ↔ ¬ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) | |
10 | 8, 9 | bitr2di 288 | . . . . 5 ⊢ ((𝐴 ⊆ ℝ* ∧ 𝑥 ∈ ℝ) → (¬ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ↔ ∃𝑦 ∈ 𝐴 𝑥 < 𝑦)) |
11 | 10 | ralbidva 3169 | . . . 4 ⊢ (𝐴 ⊆ ℝ* → (∀𝑥 ∈ ℝ ¬ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ↔ ∀𝑥 ∈ ℝ ∃𝑦 ∈ 𝐴 𝑥 < 𝑦)) |
12 | 1, 11 | bitr3id 285 | . . 3 ⊢ (𝐴 ⊆ ℝ* → (¬ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ↔ ∀𝑥 ∈ ℝ ∃𝑦 ∈ 𝐴 𝑥 < 𝑦)) |
13 | supxrunb2 13248 | . . 3 ⊢ (𝐴 ⊆ ℝ* → (∀𝑥 ∈ ℝ ∃𝑦 ∈ 𝐴 𝑥 < 𝑦 ↔ sup(𝐴, ℝ*, < ) = +∞)) | |
14 | supxrcl 13243 | . . . 4 ⊢ (𝐴 ⊆ ℝ* → sup(𝐴, ℝ*, < ) ∈ ℝ*) | |
15 | nltpnft 13092 | . . . 4 ⊢ (sup(𝐴, ℝ*, < ) ∈ ℝ* → (sup(𝐴, ℝ*, < ) = +∞ ↔ ¬ sup(𝐴, ℝ*, < ) < +∞)) | |
16 | 14, 15 | syl 17 | . . 3 ⊢ (𝐴 ⊆ ℝ* → (sup(𝐴, ℝ*, < ) = +∞ ↔ ¬ sup(𝐴, ℝ*, < ) < +∞)) |
17 | 12, 13, 16 | 3bitrd 305 | . 2 ⊢ (𝐴 ⊆ ℝ* → (¬ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ↔ ¬ sup(𝐴, ℝ*, < ) < +∞)) |
18 | 17 | con4bid 317 | 1 ⊢ (𝐴 ⊆ ℝ* → (∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ↔ sup(𝐴, ℝ*, < ) < +∞)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ∀wral 3061 ∃wrex 3070 ⊆ wss 3914 class class class wbr 5109 supcsup 9384 ℝcr 11058 +∞cpnf 11194 ℝ*cxr 11196 < clt 11197 ≤ cle 11198 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5260 ax-nul 5267 ax-pow 5324 ax-pr 5388 ax-un 7676 ax-cnex 11115 ax-resscn 11116 ax-1cn 11117 ax-icn 11118 ax-addcl 11119 ax-addrcl 11120 ax-mulcl 11121 ax-mulrcl 11122 ax-mulcom 11123 ax-addass 11124 ax-mulass 11125 ax-distr 11126 ax-i2m1 11127 ax-1ne0 11128 ax-1rid 11129 ax-rnegex 11130 ax-rrecex 11131 ax-cnre 11132 ax-pre-lttri 11133 ax-pre-lttrn 11134 ax-pre-ltadd 11135 ax-pre-mulgt0 11136 ax-pre-sup 11137 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3352 df-reu 3353 df-rab 3407 df-v 3449 df-sbc 3744 df-csb 3860 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4287 df-if 4491 df-pw 4566 df-sn 4591 df-pr 4593 df-op 4597 df-uni 4870 df-br 5110 df-opab 5172 df-mpt 5193 df-id 5535 df-po 5549 df-so 5550 df-xp 5643 df-rel 5644 df-cnv 5645 df-co 5646 df-dm 5647 df-rn 5648 df-res 5649 df-ima 5650 df-iota 6452 df-fun 6502 df-fn 6503 df-f 6504 df-f1 6505 df-fo 6506 df-f1o 6507 df-fv 6508 df-riota 7317 df-ov 7364 df-oprab 7365 df-mpo 7366 df-er 8654 df-en 8890 df-dom 8891 df-sdom 8892 df-sup 9386 df-pnf 11199 df-mnf 11200 df-xr 11201 df-ltxr 11202 df-le 11203 df-sub 11395 df-neg 11396 |
This theorem is referenced by: ovolunlem1 24884 supxrre3 43650 |
Copyright terms: Public domain | W3C validator |