MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supxrbnd2 Structured version   Visualization version   GIF version

Theorem supxrbnd2 13365
Description: The supremum of a bounded-above set of extended reals is less than infinity. (Contributed by NM, 30-Jan-2006.)
Assertion
Ref Expression
supxrbnd2 (𝐴 ⊆ ℝ* → (∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥 ↔ sup(𝐴, ℝ*, < ) < +∞))
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem supxrbnd2
StepHypRef Expression
1 ralnex 3071 . . . 4 (∀𝑥 ∈ ℝ ¬ ∀𝑦𝐴 𝑦𝑥 ↔ ¬ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥)
2 ssel2 3977 . . . . . . . . 9 ((𝐴 ⊆ ℝ*𝑦𝐴) → 𝑦 ∈ ℝ*)
3 rexr 11308 . . . . . . . . 9 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*)
4 xrlenlt 11327 . . . . . . . . . 10 ((𝑦 ∈ ℝ*𝑥 ∈ ℝ*) → (𝑦𝑥 ↔ ¬ 𝑥 < 𝑦))
54con2bid 354 . . . . . . . . 9 ((𝑦 ∈ ℝ*𝑥 ∈ ℝ*) → (𝑥 < 𝑦 ↔ ¬ 𝑦𝑥))
62, 3, 5syl2an 596 . . . . . . . 8 (((𝐴 ⊆ ℝ*𝑦𝐴) ∧ 𝑥 ∈ ℝ) → (𝑥 < 𝑦 ↔ ¬ 𝑦𝑥))
76an32s 652 . . . . . . 7 (((𝐴 ⊆ ℝ*𝑥 ∈ ℝ) ∧ 𝑦𝐴) → (𝑥 < 𝑦 ↔ ¬ 𝑦𝑥))
87rexbidva 3176 . . . . . 6 ((𝐴 ⊆ ℝ*𝑥 ∈ ℝ) → (∃𝑦𝐴 𝑥 < 𝑦 ↔ ∃𝑦𝐴 ¬ 𝑦𝑥))
9 rexnal 3099 . . . . . 6 (∃𝑦𝐴 ¬ 𝑦𝑥 ↔ ¬ ∀𝑦𝐴 𝑦𝑥)
108, 9bitr2di 288 . . . . 5 ((𝐴 ⊆ ℝ*𝑥 ∈ ℝ) → (¬ ∀𝑦𝐴 𝑦𝑥 ↔ ∃𝑦𝐴 𝑥 < 𝑦))
1110ralbidva 3175 . . . 4 (𝐴 ⊆ ℝ* → (∀𝑥 ∈ ℝ ¬ ∀𝑦𝐴 𝑦𝑥 ↔ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥 < 𝑦))
121, 11bitr3id 285 . . 3 (𝐴 ⊆ ℝ* → (¬ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥 ↔ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥 < 𝑦))
13 supxrunb2 13363 . . 3 (𝐴 ⊆ ℝ* → (∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥 < 𝑦 ↔ sup(𝐴, ℝ*, < ) = +∞))
14 supxrcl 13358 . . . 4 (𝐴 ⊆ ℝ* → sup(𝐴, ℝ*, < ) ∈ ℝ*)
15 nltpnft 13207 . . . 4 (sup(𝐴, ℝ*, < ) ∈ ℝ* → (sup(𝐴, ℝ*, < ) = +∞ ↔ ¬ sup(𝐴, ℝ*, < ) < +∞))
1614, 15syl 17 . . 3 (𝐴 ⊆ ℝ* → (sup(𝐴, ℝ*, < ) = +∞ ↔ ¬ sup(𝐴, ℝ*, < ) < +∞))
1712, 13, 163bitrd 305 . 2 (𝐴 ⊆ ℝ* → (¬ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥 ↔ ¬ sup(𝐴, ℝ*, < ) < +∞))
1817con4bid 317 1 (𝐴 ⊆ ℝ* → (∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥 ↔ sup(𝐴, ℝ*, < ) < +∞))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  wral 3060  wrex 3069  wss 3950   class class class wbr 5142  supcsup 9481  cr 11155  +∞cpnf 11293  *cxr 11295   < clt 11296  cle 11297
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233  ax-pre-sup 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-br 5143  df-opab 5205  df-mpt 5225  df-id 5577  df-po 5591  df-so 5592  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-er 8746  df-en 8987  df-dom 8988  df-sdom 8989  df-sup 9483  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496
This theorem is referenced by:  ovolunlem1  25533  supxrre3  45341
  Copyright terms: Public domain W3C validator