MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supxrbnd2 Structured version   Visualization version   GIF version

Theorem supxrbnd2 13289
Description: The supremum of a bounded-above set of extended reals is less than infinity. (Contributed by NM, 30-Jan-2006.)
Assertion
Ref Expression
supxrbnd2 (𝐴 ⊆ ℝ* → (∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥 ↔ sup(𝐴, ℝ*, < ) < +∞))
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem supxrbnd2
StepHypRef Expression
1 ralnex 3056 . . . 4 (∀𝑥 ∈ ℝ ¬ ∀𝑦𝐴 𝑦𝑥 ↔ ¬ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥)
2 ssel2 3944 . . . . . . . . 9 ((𝐴 ⊆ ℝ*𝑦𝐴) → 𝑦 ∈ ℝ*)
3 rexr 11227 . . . . . . . . 9 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*)
4 xrlenlt 11246 . . . . . . . . . 10 ((𝑦 ∈ ℝ*𝑥 ∈ ℝ*) → (𝑦𝑥 ↔ ¬ 𝑥 < 𝑦))
54con2bid 354 . . . . . . . . 9 ((𝑦 ∈ ℝ*𝑥 ∈ ℝ*) → (𝑥 < 𝑦 ↔ ¬ 𝑦𝑥))
62, 3, 5syl2an 596 . . . . . . . 8 (((𝐴 ⊆ ℝ*𝑦𝐴) ∧ 𝑥 ∈ ℝ) → (𝑥 < 𝑦 ↔ ¬ 𝑦𝑥))
76an32s 652 . . . . . . 7 (((𝐴 ⊆ ℝ*𝑥 ∈ ℝ) ∧ 𝑦𝐴) → (𝑥 < 𝑦 ↔ ¬ 𝑦𝑥))
87rexbidva 3156 . . . . . 6 ((𝐴 ⊆ ℝ*𝑥 ∈ ℝ) → (∃𝑦𝐴 𝑥 < 𝑦 ↔ ∃𝑦𝐴 ¬ 𝑦𝑥))
9 rexnal 3083 . . . . . 6 (∃𝑦𝐴 ¬ 𝑦𝑥 ↔ ¬ ∀𝑦𝐴 𝑦𝑥)
108, 9bitr2di 288 . . . . 5 ((𝐴 ⊆ ℝ*𝑥 ∈ ℝ) → (¬ ∀𝑦𝐴 𝑦𝑥 ↔ ∃𝑦𝐴 𝑥 < 𝑦))
1110ralbidva 3155 . . . 4 (𝐴 ⊆ ℝ* → (∀𝑥 ∈ ℝ ¬ ∀𝑦𝐴 𝑦𝑥 ↔ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥 < 𝑦))
121, 11bitr3id 285 . . 3 (𝐴 ⊆ ℝ* → (¬ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥 ↔ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥 < 𝑦))
13 supxrunb2 13287 . . 3 (𝐴 ⊆ ℝ* → (∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥 < 𝑦 ↔ sup(𝐴, ℝ*, < ) = +∞))
14 supxrcl 13282 . . . 4 (𝐴 ⊆ ℝ* → sup(𝐴, ℝ*, < ) ∈ ℝ*)
15 nltpnft 13131 . . . 4 (sup(𝐴, ℝ*, < ) ∈ ℝ* → (sup(𝐴, ℝ*, < ) = +∞ ↔ ¬ sup(𝐴, ℝ*, < ) < +∞))
1614, 15syl 17 . . 3 (𝐴 ⊆ ℝ* → (sup(𝐴, ℝ*, < ) = +∞ ↔ ¬ sup(𝐴, ℝ*, < ) < +∞))
1712, 13, 163bitrd 305 . 2 (𝐴 ⊆ ℝ* → (¬ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥 ↔ ¬ sup(𝐴, ℝ*, < ) < +∞))
1817con4bid 317 1 (𝐴 ⊆ ℝ* → (∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥 ↔ sup(𝐴, ℝ*, < ) < +∞))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3045  wrex 3054  wss 3917   class class class wbr 5110  supcsup 9398  cr 11074  +∞cpnf 11212  *cxr 11214   < clt 11215  cle 11216
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-po 5549  df-so 5550  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-sup 9400  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415
This theorem is referenced by:  ovolunlem1  25405  supxrre3  45328
  Copyright terms: Public domain W3C validator