MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  icc0 Structured version   Visualization version   GIF version

Theorem icc0 12948
Description: An empty closed interval of extended reals. (Contributed by FL, 30-May-2014.)
Assertion
Ref Expression
icc0 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴[,]𝐵) = ∅ ↔ 𝐵 < 𝐴))

Proof of Theorem icc0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 iccval 12939 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴[,]𝐵) = {𝑥 ∈ ℝ* ∣ (𝐴𝑥𝑥𝐵)})
21eqeq1d 2738 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴[,]𝐵) = ∅ ↔ {𝑥 ∈ ℝ* ∣ (𝐴𝑥𝑥𝐵)} = ∅))
3 df-ne 2933 . . . . . 6 ({𝑥 ∈ ℝ* ∣ (𝐴𝑥𝑥𝐵)} ≠ ∅ ↔ ¬ {𝑥 ∈ ℝ* ∣ (𝐴𝑥𝑥𝐵)} = ∅)
4 rabn0 4286 . . . . . 6 ({𝑥 ∈ ℝ* ∣ (𝐴𝑥𝑥𝐵)} ≠ ∅ ↔ ∃𝑥 ∈ ℝ* (𝐴𝑥𝑥𝐵))
53, 4bitr3i 280 . . . . 5 (¬ {𝑥 ∈ ℝ* ∣ (𝐴𝑥𝑥𝐵)} = ∅ ↔ ∃𝑥 ∈ ℝ* (𝐴𝑥𝑥𝐵))
6 xrletr 12713 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝑥 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴𝑥𝑥𝐵) → 𝐴𝐵))
763com23 1128 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑥 ∈ ℝ*) → ((𝐴𝑥𝑥𝐵) → 𝐴𝐵))
873expa 1120 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ℝ*) → ((𝐴𝑥𝑥𝐵) → 𝐴𝐵))
98rexlimdva 3193 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (∃𝑥 ∈ ℝ* (𝐴𝑥𝑥𝐵) → 𝐴𝐵))
10 simp2 1139 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐵 ∈ ℝ*)
11 simp3 1140 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐴𝐵)
12 xrleid 12706 . . . . . . . . 9 (𝐵 ∈ ℝ*𝐵𝐵)
13123ad2ant2 1136 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐵𝐵)
14 breq2 5043 . . . . . . . . . 10 (𝑥 = 𝐵 → (𝐴𝑥𝐴𝐵))
15 breq1 5042 . . . . . . . . . 10 (𝑥 = 𝐵 → (𝑥𝐵𝐵𝐵))
1614, 15anbi12d 634 . . . . . . . . 9 (𝑥 = 𝐵 → ((𝐴𝑥𝑥𝐵) ↔ (𝐴𝐵𝐵𝐵)))
1716rspcev 3527 . . . . . . . 8 ((𝐵 ∈ ℝ* ∧ (𝐴𝐵𝐵𝐵)) → ∃𝑥 ∈ ℝ* (𝐴𝑥𝑥𝐵))
1810, 11, 13, 17syl12anc 837 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → ∃𝑥 ∈ ℝ* (𝐴𝑥𝑥𝐵))
19183expia 1123 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴𝐵 → ∃𝑥 ∈ ℝ* (𝐴𝑥𝑥𝐵)))
209, 19impbid 215 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (∃𝑥 ∈ ℝ* (𝐴𝑥𝑥𝐵) ↔ 𝐴𝐵))
215, 20syl5bb 286 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (¬ {𝑥 ∈ ℝ* ∣ (𝐴𝑥𝑥𝐵)} = ∅ ↔ 𝐴𝐵))
22 xrlenlt 10863 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴𝐵 ↔ ¬ 𝐵 < 𝐴))
2321, 22bitrd 282 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (¬ {𝑥 ∈ ℝ* ∣ (𝐴𝑥𝑥𝐵)} = ∅ ↔ ¬ 𝐵 < 𝐴))
2423con4bid 320 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ({𝑥 ∈ ℝ* ∣ (𝐴𝑥𝑥𝐵)} = ∅ ↔ 𝐵 < 𝐴))
252, 24bitrd 282 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴[,]𝐵) = ∅ ↔ 𝐵 < 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2112  wne 2932  wrex 3052  {crab 3055  c0 4223   class class class wbr 5039  (class class class)co 7191  *cxr 10831   < clt 10832  cle 10833  [,]cicc 12903
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-cnex 10750  ax-resscn 10751  ax-pre-lttri 10768  ax-pre-lttrn 10769
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-op 4534  df-uni 4806  df-br 5040  df-opab 5102  df-mpt 5121  df-id 5440  df-po 5453  df-so 5454  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-ov 7194  df-oprab 7195  df-mpo 7196  df-er 8369  df-en 8605  df-dom 8606  df-sdom 8607  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-icc 12907
This theorem is referenced by:  iccntr  23672  icccmp  23676  cniccbdd  24312  iccvolcl  24418  itgioo  24667  c1lip1  24848  pserulm  25268  iccdifprioo  42670  cncfiooicc  43053  ibliooicc  43130  voliccico  43158  vonicc  43841
  Copyright terms: Public domain W3C validator