Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > icc0 | Structured version Visualization version GIF version |
Description: An empty closed interval of extended reals. (Contributed by FL, 30-May-2014.) |
Ref | Expression |
---|---|
icc0 | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((𝐴[,]𝐵) = ∅ ↔ 𝐵 < 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iccval 13118 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴[,]𝐵) = {𝑥 ∈ ℝ* ∣ (𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵)}) | |
2 | 1 | eqeq1d 2740 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((𝐴[,]𝐵) = ∅ ↔ {𝑥 ∈ ℝ* ∣ (𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵)} = ∅)) |
3 | df-ne 2944 | . . . . . 6 ⊢ ({𝑥 ∈ ℝ* ∣ (𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵)} ≠ ∅ ↔ ¬ {𝑥 ∈ ℝ* ∣ (𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵)} = ∅) | |
4 | rabn0 4319 | . . . . . 6 ⊢ ({𝑥 ∈ ℝ* ∣ (𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵)} ≠ ∅ ↔ ∃𝑥 ∈ ℝ* (𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵)) | |
5 | 3, 4 | bitr3i 276 | . . . . 5 ⊢ (¬ {𝑥 ∈ ℝ* ∣ (𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵)} = ∅ ↔ ∃𝑥 ∈ ℝ* (𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵)) |
6 | xrletr 12892 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵) → 𝐴 ≤ 𝐵)) | |
7 | 6 | 3com23 1125 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝑥 ∈ ℝ*) → ((𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵) → 𝐴 ≤ 𝐵)) |
8 | 7 | 3expa 1117 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ℝ*) → ((𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵) → 𝐴 ≤ 𝐵)) |
9 | 8 | rexlimdva 3213 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (∃𝑥 ∈ ℝ* (𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵) → 𝐴 ≤ 𝐵)) |
10 | simp2 1136 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → 𝐵 ∈ ℝ*) | |
11 | simp3 1137 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → 𝐴 ≤ 𝐵) | |
12 | xrleid 12885 | . . . . . . . . 9 ⊢ (𝐵 ∈ ℝ* → 𝐵 ≤ 𝐵) | |
13 | 12 | 3ad2ant2 1133 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → 𝐵 ≤ 𝐵) |
14 | breq2 5078 | . . . . . . . . . 10 ⊢ (𝑥 = 𝐵 → (𝐴 ≤ 𝑥 ↔ 𝐴 ≤ 𝐵)) | |
15 | breq1 5077 | . . . . . . . . . 10 ⊢ (𝑥 = 𝐵 → (𝑥 ≤ 𝐵 ↔ 𝐵 ≤ 𝐵)) | |
16 | 14, 15 | anbi12d 631 | . . . . . . . . 9 ⊢ (𝑥 = 𝐵 → ((𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵) ↔ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐵))) |
17 | 16 | rspcev 3561 | . . . . . . . 8 ⊢ ((𝐵 ∈ ℝ* ∧ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐵)) → ∃𝑥 ∈ ℝ* (𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵)) |
18 | 10, 11, 13, 17 | syl12anc 834 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → ∃𝑥 ∈ ℝ* (𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵)) |
19 | 18 | 3expia 1120 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 ≤ 𝐵 → ∃𝑥 ∈ ℝ* (𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵))) |
20 | 9, 19 | impbid 211 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (∃𝑥 ∈ ℝ* (𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵) ↔ 𝐴 ≤ 𝐵)) |
21 | 5, 20 | bitrid 282 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (¬ {𝑥 ∈ ℝ* ∣ (𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵)} = ∅ ↔ 𝐴 ≤ 𝐵)) |
22 | xrlenlt 11040 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) | |
23 | 21, 22 | bitrd 278 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (¬ {𝑥 ∈ ℝ* ∣ (𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵)} = ∅ ↔ ¬ 𝐵 < 𝐴)) |
24 | 23 | con4bid 317 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ({𝑥 ∈ ℝ* ∣ (𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵)} = ∅ ↔ 𝐵 < 𝐴)) |
25 | 2, 24 | bitrd 278 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((𝐴[,]𝐵) = ∅ ↔ 𝐵 < 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 ∃wrex 3065 {crab 3068 ∅c0 4256 class class class wbr 5074 (class class class)co 7275 ℝ*cxr 11008 < clt 11009 ≤ cle 11010 [,]cicc 13082 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-pre-lttri 10945 ax-pre-lttrn 10946 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-po 5503 df-so 5504 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-icc 13086 |
This theorem is referenced by: iccntr 23984 icccmp 23988 cniccbdd 24625 iccvolcl 24731 itgioo 24980 c1lip1 25161 pserulm 25581 iccdifprioo 43054 cncfiooicc 43435 ibliooicc 43512 voliccico 43540 vonicc 44223 |
Copyright terms: Public domain | W3C validator |