| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > icc0 | Structured version Visualization version GIF version | ||
| Description: An empty closed interval of extended reals. (Contributed by FL, 30-May-2014.) |
| Ref | Expression |
|---|---|
| icc0 | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((𝐴[,]𝐵) = ∅ ↔ 𝐵 < 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iccval 13305 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴[,]𝐵) = {𝑥 ∈ ℝ* ∣ (𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵)}) | |
| 2 | 1 | eqeq1d 2731 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((𝐴[,]𝐵) = ∅ ↔ {𝑥 ∈ ℝ* ∣ (𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵)} = ∅)) |
| 3 | df-ne 2926 | . . . . . 6 ⊢ ({𝑥 ∈ ℝ* ∣ (𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵)} ≠ ∅ ↔ ¬ {𝑥 ∈ ℝ* ∣ (𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵)} = ∅) | |
| 4 | rabn0 4342 | . . . . . 6 ⊢ ({𝑥 ∈ ℝ* ∣ (𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵)} ≠ ∅ ↔ ∃𝑥 ∈ ℝ* (𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵)) | |
| 5 | 3, 4 | bitr3i 277 | . . . . 5 ⊢ (¬ {𝑥 ∈ ℝ* ∣ (𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵)} = ∅ ↔ ∃𝑥 ∈ ℝ* (𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵)) |
| 6 | xrletr 13078 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵) → 𝐴 ≤ 𝐵)) | |
| 7 | 6 | 3com23 1126 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝑥 ∈ ℝ*) → ((𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵) → 𝐴 ≤ 𝐵)) |
| 8 | 7 | 3expa 1118 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ℝ*) → ((𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵) → 𝐴 ≤ 𝐵)) |
| 9 | 8 | rexlimdva 3130 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (∃𝑥 ∈ ℝ* (𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵) → 𝐴 ≤ 𝐵)) |
| 10 | simp2 1137 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → 𝐵 ∈ ℝ*) | |
| 11 | simp3 1138 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → 𝐴 ≤ 𝐵) | |
| 12 | xrleid 13071 | . . . . . . . . 9 ⊢ (𝐵 ∈ ℝ* → 𝐵 ≤ 𝐵) | |
| 13 | 12 | 3ad2ant2 1134 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → 𝐵 ≤ 𝐵) |
| 14 | breq2 5099 | . . . . . . . . . 10 ⊢ (𝑥 = 𝐵 → (𝐴 ≤ 𝑥 ↔ 𝐴 ≤ 𝐵)) | |
| 15 | breq1 5098 | . . . . . . . . . 10 ⊢ (𝑥 = 𝐵 → (𝑥 ≤ 𝐵 ↔ 𝐵 ≤ 𝐵)) | |
| 16 | 14, 15 | anbi12d 632 | . . . . . . . . 9 ⊢ (𝑥 = 𝐵 → ((𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵) ↔ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐵))) |
| 17 | 16 | rspcev 3579 | . . . . . . . 8 ⊢ ((𝐵 ∈ ℝ* ∧ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐵)) → ∃𝑥 ∈ ℝ* (𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵)) |
| 18 | 10, 11, 13, 17 | syl12anc 836 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → ∃𝑥 ∈ ℝ* (𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵)) |
| 19 | 18 | 3expia 1121 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 ≤ 𝐵 → ∃𝑥 ∈ ℝ* (𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵))) |
| 20 | 9, 19 | impbid 212 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (∃𝑥 ∈ ℝ* (𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵) ↔ 𝐴 ≤ 𝐵)) |
| 21 | 5, 20 | bitrid 283 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (¬ {𝑥 ∈ ℝ* ∣ (𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵)} = ∅ ↔ 𝐴 ≤ 𝐵)) |
| 22 | xrlenlt 11199 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) | |
| 23 | 21, 22 | bitrd 279 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (¬ {𝑥 ∈ ℝ* ∣ (𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵)} = ∅ ↔ ¬ 𝐵 < 𝐴)) |
| 24 | 23 | con4bid 317 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ({𝑥 ∈ ℝ* ∣ (𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵)} = ∅ ↔ 𝐵 < 𝐴)) |
| 25 | 2, 24 | bitrd 279 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((𝐴[,]𝐵) = ∅ ↔ 𝐵 < 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∃wrex 3053 {crab 3396 ∅c0 4286 class class class wbr 5095 (class class class)co 7353 ℝ*cxr 11167 < clt 11168 ≤ cle 11169 [,]cicc 13269 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-pre-lttri 11102 ax-pre-lttrn 11103 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-po 5531 df-so 5532 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-icc 13273 |
| This theorem is referenced by: iccntr 24726 icccmp 24730 cniccbdd 25378 iccvolcl 25484 itgioo 25733 c1lip1 25918 pserulm 26347 iccdifprioo 45501 cncfiooicc 45879 ibliooicc 45956 voliccico 45984 vonicc 46670 |
| Copyright terms: Public domain | W3C validator |