MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  icc0 Structured version   Visualization version   GIF version

Theorem icc0 13127
Description: An empty closed interval of extended reals. (Contributed by FL, 30-May-2014.)
Assertion
Ref Expression
icc0 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴[,]𝐵) = ∅ ↔ 𝐵 < 𝐴))

Proof of Theorem icc0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 iccval 13118 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴[,]𝐵) = {𝑥 ∈ ℝ* ∣ (𝐴𝑥𝑥𝐵)})
21eqeq1d 2740 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴[,]𝐵) = ∅ ↔ {𝑥 ∈ ℝ* ∣ (𝐴𝑥𝑥𝐵)} = ∅))
3 df-ne 2944 . . . . . 6 ({𝑥 ∈ ℝ* ∣ (𝐴𝑥𝑥𝐵)} ≠ ∅ ↔ ¬ {𝑥 ∈ ℝ* ∣ (𝐴𝑥𝑥𝐵)} = ∅)
4 rabn0 4319 . . . . . 6 ({𝑥 ∈ ℝ* ∣ (𝐴𝑥𝑥𝐵)} ≠ ∅ ↔ ∃𝑥 ∈ ℝ* (𝐴𝑥𝑥𝐵))
53, 4bitr3i 276 . . . . 5 (¬ {𝑥 ∈ ℝ* ∣ (𝐴𝑥𝑥𝐵)} = ∅ ↔ ∃𝑥 ∈ ℝ* (𝐴𝑥𝑥𝐵))
6 xrletr 12892 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝑥 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴𝑥𝑥𝐵) → 𝐴𝐵))
763com23 1125 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑥 ∈ ℝ*) → ((𝐴𝑥𝑥𝐵) → 𝐴𝐵))
873expa 1117 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ℝ*) → ((𝐴𝑥𝑥𝐵) → 𝐴𝐵))
98rexlimdva 3213 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (∃𝑥 ∈ ℝ* (𝐴𝑥𝑥𝐵) → 𝐴𝐵))
10 simp2 1136 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐵 ∈ ℝ*)
11 simp3 1137 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐴𝐵)
12 xrleid 12885 . . . . . . . . 9 (𝐵 ∈ ℝ*𝐵𝐵)
13123ad2ant2 1133 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐵𝐵)
14 breq2 5078 . . . . . . . . . 10 (𝑥 = 𝐵 → (𝐴𝑥𝐴𝐵))
15 breq1 5077 . . . . . . . . . 10 (𝑥 = 𝐵 → (𝑥𝐵𝐵𝐵))
1614, 15anbi12d 631 . . . . . . . . 9 (𝑥 = 𝐵 → ((𝐴𝑥𝑥𝐵) ↔ (𝐴𝐵𝐵𝐵)))
1716rspcev 3561 . . . . . . . 8 ((𝐵 ∈ ℝ* ∧ (𝐴𝐵𝐵𝐵)) → ∃𝑥 ∈ ℝ* (𝐴𝑥𝑥𝐵))
1810, 11, 13, 17syl12anc 834 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → ∃𝑥 ∈ ℝ* (𝐴𝑥𝑥𝐵))
19183expia 1120 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴𝐵 → ∃𝑥 ∈ ℝ* (𝐴𝑥𝑥𝐵)))
209, 19impbid 211 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (∃𝑥 ∈ ℝ* (𝐴𝑥𝑥𝐵) ↔ 𝐴𝐵))
215, 20bitrid 282 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (¬ {𝑥 ∈ ℝ* ∣ (𝐴𝑥𝑥𝐵)} = ∅ ↔ 𝐴𝐵))
22 xrlenlt 11040 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴𝐵 ↔ ¬ 𝐵 < 𝐴))
2321, 22bitrd 278 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (¬ {𝑥 ∈ ℝ* ∣ (𝐴𝑥𝑥𝐵)} = ∅ ↔ ¬ 𝐵 < 𝐴))
2423con4bid 317 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ({𝑥 ∈ ℝ* ∣ (𝐴𝑥𝑥𝐵)} = ∅ ↔ 𝐵 < 𝐴))
252, 24bitrd 278 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴[,]𝐵) = ∅ ↔ 𝐵 < 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wrex 3065  {crab 3068  c0 4256   class class class wbr 5074  (class class class)co 7275  *cxr 11008   < clt 11009  cle 11010  [,]cicc 13082
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-pre-lttri 10945  ax-pre-lttrn 10946
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-po 5503  df-so 5504  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-icc 13086
This theorem is referenced by:  iccntr  23984  icccmp  23988  cniccbdd  24625  iccvolcl  24731  itgioo  24980  c1lip1  25161  pserulm  25581  iccdifprioo  43054  cncfiooicc  43435  ibliooicc  43512  voliccico  43540  vonicc  44223
  Copyright terms: Public domain W3C validator