![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > icc0 | Structured version Visualization version GIF version |
Description: An empty closed interval of extended reals. (Contributed by FL, 30-May-2014.) |
Ref | Expression |
---|---|
icc0 | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((𝐴[,]𝐵) = ∅ ↔ 𝐵 < 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iccval 12593 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴[,]𝐵) = {𝑥 ∈ ℝ* ∣ (𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵)}) | |
2 | 1 | eqeq1d 2780 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((𝐴[,]𝐵) = ∅ ↔ {𝑥 ∈ ℝ* ∣ (𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵)} = ∅)) |
3 | df-ne 2968 | . . . . . 6 ⊢ ({𝑥 ∈ ℝ* ∣ (𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵)} ≠ ∅ ↔ ¬ {𝑥 ∈ ℝ* ∣ (𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵)} = ∅) | |
4 | rabn0 4225 | . . . . . 6 ⊢ ({𝑥 ∈ ℝ* ∣ (𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵)} ≠ ∅ ↔ ∃𝑥 ∈ ℝ* (𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵)) | |
5 | 3, 4 | bitr3i 269 | . . . . 5 ⊢ (¬ {𝑥 ∈ ℝ* ∣ (𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵)} = ∅ ↔ ∃𝑥 ∈ ℝ* (𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵)) |
6 | xrletr 12368 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵) → 𝐴 ≤ 𝐵)) | |
7 | 6 | 3com23 1106 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝑥 ∈ ℝ*) → ((𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵) → 𝐴 ≤ 𝐵)) |
8 | 7 | 3expa 1098 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ℝ*) → ((𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵) → 𝐴 ≤ 𝐵)) |
9 | 8 | rexlimdva 3229 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (∃𝑥 ∈ ℝ* (𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵) → 𝐴 ≤ 𝐵)) |
10 | simp2 1117 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → 𝐵 ∈ ℝ*) | |
11 | simp3 1118 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → 𝐴 ≤ 𝐵) | |
12 | xrleid 12361 | . . . . . . . . 9 ⊢ (𝐵 ∈ ℝ* → 𝐵 ≤ 𝐵) | |
13 | 12 | 3ad2ant2 1114 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → 𝐵 ≤ 𝐵) |
14 | breq2 4933 | . . . . . . . . . 10 ⊢ (𝑥 = 𝐵 → (𝐴 ≤ 𝑥 ↔ 𝐴 ≤ 𝐵)) | |
15 | breq1 4932 | . . . . . . . . . 10 ⊢ (𝑥 = 𝐵 → (𝑥 ≤ 𝐵 ↔ 𝐵 ≤ 𝐵)) | |
16 | 14, 15 | anbi12d 621 | . . . . . . . . 9 ⊢ (𝑥 = 𝐵 → ((𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵) ↔ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐵))) |
17 | 16 | rspcev 3535 | . . . . . . . 8 ⊢ ((𝐵 ∈ ℝ* ∧ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐵)) → ∃𝑥 ∈ ℝ* (𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵)) |
18 | 10, 11, 13, 17 | syl12anc 824 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → ∃𝑥 ∈ ℝ* (𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵)) |
19 | 18 | 3expia 1101 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 ≤ 𝐵 → ∃𝑥 ∈ ℝ* (𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵))) |
20 | 9, 19 | impbid 204 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (∃𝑥 ∈ ℝ* (𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵) ↔ 𝐴 ≤ 𝐵)) |
21 | 5, 20 | syl5bb 275 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (¬ {𝑥 ∈ ℝ* ∣ (𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵)} = ∅ ↔ 𝐴 ≤ 𝐵)) |
22 | xrlenlt 10506 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) | |
23 | 21, 22 | bitrd 271 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (¬ {𝑥 ∈ ℝ* ∣ (𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵)} = ∅ ↔ ¬ 𝐵 < 𝐴)) |
24 | 23 | con4bid 309 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ({𝑥 ∈ ℝ* ∣ (𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵)} = ∅ ↔ 𝐵 < 𝐴)) |
25 | 2, 24 | bitrd 271 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((𝐴[,]𝐵) = ∅ ↔ 𝐵 < 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 198 ∧ wa 387 ∧ w3a 1068 = wceq 1507 ∈ wcel 2050 ≠ wne 2967 ∃wrex 3089 {crab 3092 ∅c0 4178 class class class wbr 4929 (class class class)co 6976 ℝ*cxr 10473 < clt 10474 ≤ cle 10475 [,]cicc 12557 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2750 ax-sep 5060 ax-nul 5067 ax-pow 5119 ax-pr 5186 ax-un 7279 ax-cnex 10391 ax-resscn 10392 ax-pre-lttri 10409 ax-pre-lttrn 10410 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2759 df-cleq 2771 df-clel 2846 df-nfc 2918 df-ne 2968 df-nel 3074 df-ral 3093 df-rex 3094 df-rab 3097 df-v 3417 df-sbc 3682 df-csb 3787 df-dif 3832 df-un 3834 df-in 3836 df-ss 3843 df-nul 4179 df-if 4351 df-pw 4424 df-sn 4442 df-pr 4444 df-op 4448 df-uni 4713 df-br 4930 df-opab 4992 df-mpt 5009 df-id 5312 df-po 5326 df-so 5327 df-xp 5413 df-rel 5414 df-cnv 5415 df-co 5416 df-dm 5417 df-rn 5418 df-res 5419 df-ima 5420 df-iota 6152 df-fun 6190 df-fn 6191 df-f 6192 df-f1 6193 df-fo 6194 df-f1o 6195 df-fv 6196 df-ov 6979 df-oprab 6980 df-mpo 6981 df-er 8089 df-en 8307 df-dom 8308 df-sdom 8309 df-pnf 10476 df-mnf 10477 df-xr 10478 df-ltxr 10479 df-le 10480 df-icc 12561 |
This theorem is referenced by: iccntr 23132 icccmp 23136 cniccbdd 23765 iccvolcl 23871 itgioo 24119 c1lip1 24297 pserulm 24713 iccdifprioo 41229 cncfiooicc 41613 ibliooicc 41692 voliccico 41721 vonicc 42404 |
Copyright terms: Public domain | W3C validator |