Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > icc0 | Structured version Visualization version GIF version |
Description: An empty closed interval of extended reals. (Contributed by FL, 30-May-2014.) |
Ref | Expression |
---|---|
icc0 | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((𝐴[,]𝐵) = ∅ ↔ 𝐵 < 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iccval 13100 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴[,]𝐵) = {𝑥 ∈ ℝ* ∣ (𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵)}) | |
2 | 1 | eqeq1d 2741 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((𝐴[,]𝐵) = ∅ ↔ {𝑥 ∈ ℝ* ∣ (𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵)} = ∅)) |
3 | df-ne 2945 | . . . . . 6 ⊢ ({𝑥 ∈ ℝ* ∣ (𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵)} ≠ ∅ ↔ ¬ {𝑥 ∈ ℝ* ∣ (𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵)} = ∅) | |
4 | rabn0 4324 | . . . . . 6 ⊢ ({𝑥 ∈ ℝ* ∣ (𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵)} ≠ ∅ ↔ ∃𝑥 ∈ ℝ* (𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵)) | |
5 | 3, 4 | bitr3i 276 | . . . . 5 ⊢ (¬ {𝑥 ∈ ℝ* ∣ (𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵)} = ∅ ↔ ∃𝑥 ∈ ℝ* (𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵)) |
6 | xrletr 12874 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵) → 𝐴 ≤ 𝐵)) | |
7 | 6 | 3com23 1124 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝑥 ∈ ℝ*) → ((𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵) → 𝐴 ≤ 𝐵)) |
8 | 7 | 3expa 1116 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ 𝑥 ∈ ℝ*) → ((𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵) → 𝐴 ≤ 𝐵)) |
9 | 8 | rexlimdva 3214 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (∃𝑥 ∈ ℝ* (𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵) → 𝐴 ≤ 𝐵)) |
10 | simp2 1135 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → 𝐵 ∈ ℝ*) | |
11 | simp3 1136 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → 𝐴 ≤ 𝐵) | |
12 | xrleid 12867 | . . . . . . . . 9 ⊢ (𝐵 ∈ ℝ* → 𝐵 ≤ 𝐵) | |
13 | 12 | 3ad2ant2 1132 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → 𝐵 ≤ 𝐵) |
14 | breq2 5082 | . . . . . . . . . 10 ⊢ (𝑥 = 𝐵 → (𝐴 ≤ 𝑥 ↔ 𝐴 ≤ 𝐵)) | |
15 | breq1 5081 | . . . . . . . . . 10 ⊢ (𝑥 = 𝐵 → (𝑥 ≤ 𝐵 ↔ 𝐵 ≤ 𝐵)) | |
16 | 14, 15 | anbi12d 630 | . . . . . . . . 9 ⊢ (𝑥 = 𝐵 → ((𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵) ↔ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐵))) |
17 | 16 | rspcev 3560 | . . . . . . . 8 ⊢ ((𝐵 ∈ ℝ* ∧ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐵)) → ∃𝑥 ∈ ℝ* (𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵)) |
18 | 10, 11, 13, 17 | syl12anc 833 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → ∃𝑥 ∈ ℝ* (𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵)) |
19 | 18 | 3expia 1119 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 ≤ 𝐵 → ∃𝑥 ∈ ℝ* (𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵))) |
20 | 9, 19 | impbid 211 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (∃𝑥 ∈ ℝ* (𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵) ↔ 𝐴 ≤ 𝐵)) |
21 | 5, 20 | syl5bb 282 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (¬ {𝑥 ∈ ℝ* ∣ (𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵)} = ∅ ↔ 𝐴 ≤ 𝐵)) |
22 | xrlenlt 11024 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) | |
23 | 21, 22 | bitrd 278 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (¬ {𝑥 ∈ ℝ* ∣ (𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵)} = ∅ ↔ ¬ 𝐵 < 𝐴)) |
24 | 23 | con4bid 316 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ({𝑥 ∈ ℝ* ∣ (𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵)} = ∅ ↔ 𝐵 < 𝐴)) |
25 | 2, 24 | bitrd 278 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((𝐴[,]𝐵) = ∅ ↔ 𝐵 < 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1541 ∈ wcel 2109 ≠ wne 2944 ∃wrex 3066 {crab 3069 ∅c0 4261 class class class wbr 5078 (class class class)co 7268 ℝ*cxr 10992 < clt 10993 ≤ cle 10994 [,]cicc 13064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-resscn 10912 ax-pre-lttri 10929 ax-pre-lttrn 10930 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-po 5502 df-so 5503 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-ov 7271 df-oprab 7272 df-mpo 7273 df-er 8472 df-en 8708 df-dom 8709 df-sdom 8710 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-icc 13068 |
This theorem is referenced by: iccntr 23965 icccmp 23969 cniccbdd 24606 iccvolcl 24712 itgioo 24961 c1lip1 25142 pserulm 25562 iccdifprioo 43008 cncfiooicc 43389 ibliooicc 43466 voliccico 43494 vonicc 44177 |
Copyright terms: Public domain | W3C validator |