MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordsucuniel Structured version   Visualization version   GIF version

Theorem ordsucuniel 7646
Description: Given an element 𝐴 of the union of an ordinal 𝐵, suc 𝐴 is an element of 𝐵 itself. (Contributed by Scott Fenton, 28-Mar-2012.) (Proof shortened by Mario Carneiro, 29-May-2015.)
Assertion
Ref Expression
ordsucuniel (Ord 𝐵 → (𝐴 𝐵 ↔ suc 𝐴𝐵))

Proof of Theorem ordsucuniel
StepHypRef Expression
1 orduni 7616 . . 3 (Ord 𝐵 → Ord 𝐵)
2 ordelord 6273 . . . 4 ((Ord 𝐵𝐴 𝐵) → Ord 𝐴)
32ex 412 . . 3 (Ord 𝐵 → (𝐴 𝐵 → Ord 𝐴))
41, 3syl 17 . 2 (Ord 𝐵 → (𝐴 𝐵 → Ord 𝐴))
5 ordelord 6273 . . . 4 ((Ord 𝐵 ∧ suc 𝐴𝐵) → Ord suc 𝐴)
6 ordsuc 7636 . . . 4 (Ord 𝐴 ↔ Ord suc 𝐴)
75, 6sylibr 233 . . 3 ((Ord 𝐵 ∧ suc 𝐴𝐵) → Ord 𝐴)
87ex 412 . 2 (Ord 𝐵 → (suc 𝐴𝐵 → Ord 𝐴))
9 ordsson 7610 . . . . . 6 (Ord 𝐵𝐵 ⊆ On)
10 ordunisssuc 6353 . . . . . 6 ((𝐵 ⊆ On ∧ Ord 𝐴) → ( 𝐵𝐴𝐵 ⊆ suc 𝐴))
119, 10sylan 579 . . . . 5 ((Ord 𝐵 ∧ Ord 𝐴) → ( 𝐵𝐴𝐵 ⊆ suc 𝐴))
12 ordtri1 6284 . . . . . 6 ((Ord 𝐵 ∧ Ord 𝐴) → ( 𝐵𝐴 ↔ ¬ 𝐴 𝐵))
131, 12sylan 579 . . . . 5 ((Ord 𝐵 ∧ Ord 𝐴) → ( 𝐵𝐴 ↔ ¬ 𝐴 𝐵))
14 ordtri1 6284 . . . . . 6 ((Ord 𝐵 ∧ Ord suc 𝐴) → (𝐵 ⊆ suc 𝐴 ↔ ¬ suc 𝐴𝐵))
156, 14sylan2b 593 . . . . 5 ((Ord 𝐵 ∧ Ord 𝐴) → (𝐵 ⊆ suc 𝐴 ↔ ¬ suc 𝐴𝐵))
1611, 13, 153bitr3d 308 . . . 4 ((Ord 𝐵 ∧ Ord 𝐴) → (¬ 𝐴 𝐵 ↔ ¬ suc 𝐴𝐵))
1716con4bid 316 . . 3 ((Ord 𝐵 ∧ Ord 𝐴) → (𝐴 𝐵 ↔ suc 𝐴𝐵))
1817ex 412 . 2 (Ord 𝐵 → (Ord 𝐴 → (𝐴 𝐵 ↔ suc 𝐴𝐵)))
194, 8, 18pm5.21ndd 380 1 (Ord 𝐵 → (𝐴 𝐵 ↔ suc 𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wcel 2108  wss 3883   cuni 4836  Ord word 6250  Oncon0 6251  suc csuc 6253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-11 2156  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-tr 5188  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-ord 6254  df-on 6255  df-suc 6257
This theorem is referenced by:  dfac12lem1  9830  dfac12lem2  9831
  Copyright terms: Public domain W3C validator