Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ordsucuniel | Structured version Visualization version GIF version |
Description: Given an element 𝐴 of the union of an ordinal 𝐵, suc 𝐴 is an element of 𝐵 itself. (Contributed by Scott Fenton, 28-Mar-2012.) (Proof shortened by Mario Carneiro, 29-May-2015.) |
Ref | Expression |
---|---|
ordsucuniel | ⊢ (Ord 𝐵 → (𝐴 ∈ ∪ 𝐵 ↔ suc 𝐴 ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orduni 7573 | . . 3 ⊢ (Ord 𝐵 → Ord ∪ 𝐵) | |
2 | ordelord 6235 | . . . 4 ⊢ ((Ord ∪ 𝐵 ∧ 𝐴 ∈ ∪ 𝐵) → Ord 𝐴) | |
3 | 2 | ex 416 | . . 3 ⊢ (Ord ∪ 𝐵 → (𝐴 ∈ ∪ 𝐵 → Ord 𝐴)) |
4 | 1, 3 | syl 17 | . 2 ⊢ (Ord 𝐵 → (𝐴 ∈ ∪ 𝐵 → Ord 𝐴)) |
5 | ordelord 6235 | . . . 4 ⊢ ((Ord 𝐵 ∧ suc 𝐴 ∈ 𝐵) → Ord suc 𝐴) | |
6 | ordsuc 7593 | . . . 4 ⊢ (Ord 𝐴 ↔ Ord suc 𝐴) | |
7 | 5, 6 | sylibr 237 | . . 3 ⊢ ((Ord 𝐵 ∧ suc 𝐴 ∈ 𝐵) → Ord 𝐴) |
8 | 7 | ex 416 | . 2 ⊢ (Ord 𝐵 → (suc 𝐴 ∈ 𝐵 → Ord 𝐴)) |
9 | ordsson 7567 | . . . . . 6 ⊢ (Ord 𝐵 → 𝐵 ⊆ On) | |
10 | ordunisssuc 6315 | . . . . . 6 ⊢ ((𝐵 ⊆ On ∧ Ord 𝐴) → (∪ 𝐵 ⊆ 𝐴 ↔ 𝐵 ⊆ suc 𝐴)) | |
11 | 9, 10 | sylan 583 | . . . . 5 ⊢ ((Ord 𝐵 ∧ Ord 𝐴) → (∪ 𝐵 ⊆ 𝐴 ↔ 𝐵 ⊆ suc 𝐴)) |
12 | ordtri1 6246 | . . . . . 6 ⊢ ((Ord ∪ 𝐵 ∧ Ord 𝐴) → (∪ 𝐵 ⊆ 𝐴 ↔ ¬ 𝐴 ∈ ∪ 𝐵)) | |
13 | 1, 12 | sylan 583 | . . . . 5 ⊢ ((Ord 𝐵 ∧ Ord 𝐴) → (∪ 𝐵 ⊆ 𝐴 ↔ ¬ 𝐴 ∈ ∪ 𝐵)) |
14 | ordtri1 6246 | . . . . . 6 ⊢ ((Ord 𝐵 ∧ Ord suc 𝐴) → (𝐵 ⊆ suc 𝐴 ↔ ¬ suc 𝐴 ∈ 𝐵)) | |
15 | 6, 14 | sylan2b 597 | . . . . 5 ⊢ ((Ord 𝐵 ∧ Ord 𝐴) → (𝐵 ⊆ suc 𝐴 ↔ ¬ suc 𝐴 ∈ 𝐵)) |
16 | 11, 13, 15 | 3bitr3d 312 | . . . 4 ⊢ ((Ord 𝐵 ∧ Ord 𝐴) → (¬ 𝐴 ∈ ∪ 𝐵 ↔ ¬ suc 𝐴 ∈ 𝐵)) |
17 | 16 | con4bid 320 | . . 3 ⊢ ((Ord 𝐵 ∧ Ord 𝐴) → (𝐴 ∈ ∪ 𝐵 ↔ suc 𝐴 ∈ 𝐵)) |
18 | 17 | ex 416 | . 2 ⊢ (Ord 𝐵 → (Ord 𝐴 → (𝐴 ∈ ∪ 𝐵 ↔ suc 𝐴 ∈ 𝐵))) |
19 | 4, 8, 18 | pm5.21ndd 384 | 1 ⊢ (Ord 𝐵 → (𝐴 ∈ ∪ 𝐵 ↔ suc 𝐴 ∈ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 209 ∧ wa 399 ∈ wcel 2110 ⊆ wss 3866 ∪ cuni 4819 Ord word 6212 Oncon0 6213 suc csuc 6215 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-11 2158 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pr 5322 ax-un 7523 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-br 5054 df-opab 5116 df-tr 5162 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-ord 6216 df-on 6217 df-suc 6219 |
This theorem is referenced by: dfac12lem1 9757 dfac12lem2 9758 |
Copyright terms: Public domain | W3C validator |