MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordsucuniel Structured version   Visualization version   GIF version

Theorem ordsucuniel 7808
Description: Given an element 𝐴 of the union of an ordinal 𝐵, suc 𝐴 is an element of 𝐵 itself. (Contributed by Scott Fenton, 28-Mar-2012.) (Proof shortened by Mario Carneiro, 29-May-2015.)
Assertion
Ref Expression
ordsucuniel (Ord 𝐵 → (𝐴 𝐵 ↔ suc 𝐴𝐵))

Proof of Theorem ordsucuniel
StepHypRef Expression
1 orduni 7773 . . 3 (Ord 𝐵 → Ord 𝐵)
2 ordelord 6383 . . . 4 ((Ord 𝐵𝐴 𝐵) → Ord 𝐴)
32ex 413 . . 3 (Ord 𝐵 → (𝐴 𝐵 → Ord 𝐴))
41, 3syl 17 . 2 (Ord 𝐵 → (𝐴 𝐵 → Ord 𝐴))
5 ordelord 6383 . . . 4 ((Ord 𝐵 ∧ suc 𝐴𝐵) → Ord suc 𝐴)
6 ordsuc 7797 . . . 4 (Ord 𝐴 ↔ Ord suc 𝐴)
75, 6sylibr 233 . . 3 ((Ord 𝐵 ∧ suc 𝐴𝐵) → Ord 𝐴)
87ex 413 . 2 (Ord 𝐵 → (suc 𝐴𝐵 → Ord 𝐴))
9 ordsson 7766 . . . . . 6 (Ord 𝐵𝐵 ⊆ On)
10 ordunisssuc 6467 . . . . . 6 ((𝐵 ⊆ On ∧ Ord 𝐴) → ( 𝐵𝐴𝐵 ⊆ suc 𝐴))
119, 10sylan 580 . . . . 5 ((Ord 𝐵 ∧ Ord 𝐴) → ( 𝐵𝐴𝐵 ⊆ suc 𝐴))
12 ordtri1 6394 . . . . . 6 ((Ord 𝐵 ∧ Ord 𝐴) → ( 𝐵𝐴 ↔ ¬ 𝐴 𝐵))
131, 12sylan 580 . . . . 5 ((Ord 𝐵 ∧ Ord 𝐴) → ( 𝐵𝐴 ↔ ¬ 𝐴 𝐵))
14 ordtri1 6394 . . . . . 6 ((Ord 𝐵 ∧ Ord suc 𝐴) → (𝐵 ⊆ suc 𝐴 ↔ ¬ suc 𝐴𝐵))
156, 14sylan2b 594 . . . . 5 ((Ord 𝐵 ∧ Ord 𝐴) → (𝐵 ⊆ suc 𝐴 ↔ ¬ suc 𝐴𝐵))
1611, 13, 153bitr3d 308 . . . 4 ((Ord 𝐵 ∧ Ord 𝐴) → (¬ 𝐴 𝐵 ↔ ¬ suc 𝐴𝐵))
1716con4bid 316 . . 3 ((Ord 𝐵 ∧ Ord 𝐴) → (𝐴 𝐵 ↔ suc 𝐴𝐵))
1817ex 413 . 2 (Ord 𝐵 → (Ord 𝐴 → (𝐴 𝐵 ↔ suc 𝐴𝐵)))
194, 8, 18pm5.21ndd 380 1 (Ord 𝐵 → (𝐴 𝐵 ↔ suc 𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wcel 2106  wss 3947   cuni 4907  Ord word 6360  Oncon0 6361  suc csuc 6363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-tr 5265  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-ord 6364  df-on 6365  df-suc 6367
This theorem is referenced by:  dfac12lem1  10134  dfac12lem2  10135  naddsuc2  42128
  Copyright terms: Public domain W3C validator