MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordsucuniel Structured version   Visualization version   GIF version

Theorem ordsucuniel 7286
Description: Given an element 𝐴 of the union of an ordinal 𝐵, suc 𝐴 is an element of 𝐵 itself. (Contributed by Scott Fenton, 28-Mar-2012.) (Proof shortened by Mario Carneiro, 29-May-2015.)
Assertion
Ref Expression
ordsucuniel (Ord 𝐵 → (𝐴 𝐵 ↔ suc 𝐴𝐵))

Proof of Theorem ordsucuniel
StepHypRef Expression
1 orduni 7256 . . 3 (Ord 𝐵 → Ord 𝐵)
2 ordelord 5986 . . . 4 ((Ord 𝐵𝐴 𝐵) → Ord 𝐴)
32ex 403 . . 3 (Ord 𝐵 → (𝐴 𝐵 → Ord 𝐴))
41, 3syl 17 . 2 (Ord 𝐵 → (𝐴 𝐵 → Ord 𝐴))
5 ordelord 5986 . . . 4 ((Ord 𝐵 ∧ suc 𝐴𝐵) → Ord suc 𝐴)
6 ordsuc 7276 . . . 4 (Ord 𝐴 ↔ Ord suc 𝐴)
75, 6sylibr 226 . . 3 ((Ord 𝐵 ∧ suc 𝐴𝐵) → Ord 𝐴)
87ex 403 . 2 (Ord 𝐵 → (suc 𝐴𝐵 → Ord 𝐴))
9 ordsson 7251 . . . . . 6 (Ord 𝐵𝐵 ⊆ On)
10 ordunisssuc 6066 . . . . . 6 ((𝐵 ⊆ On ∧ Ord 𝐴) → ( 𝐵𝐴𝐵 ⊆ suc 𝐴))
119, 10sylan 577 . . . . 5 ((Ord 𝐵 ∧ Ord 𝐴) → ( 𝐵𝐴𝐵 ⊆ suc 𝐴))
12 ordtri1 5997 . . . . . 6 ((Ord 𝐵 ∧ Ord 𝐴) → ( 𝐵𝐴 ↔ ¬ 𝐴 𝐵))
131, 12sylan 577 . . . . 5 ((Ord 𝐵 ∧ Ord 𝐴) → ( 𝐵𝐴 ↔ ¬ 𝐴 𝐵))
14 ordtri1 5997 . . . . . 6 ((Ord 𝐵 ∧ Ord suc 𝐴) → (𝐵 ⊆ suc 𝐴 ↔ ¬ suc 𝐴𝐵))
156, 14sylan2b 589 . . . . 5 ((Ord 𝐵 ∧ Ord 𝐴) → (𝐵 ⊆ suc 𝐴 ↔ ¬ suc 𝐴𝐵))
1611, 13, 153bitr3d 301 . . . 4 ((Ord 𝐵 ∧ Ord 𝐴) → (¬ 𝐴 𝐵 ↔ ¬ suc 𝐴𝐵))
1716con4bid 309 . . 3 ((Ord 𝐵 ∧ Ord 𝐴) → (𝐴 𝐵 ↔ suc 𝐴𝐵))
1817ex 403 . 2 (Ord 𝐵 → (Ord 𝐴 → (𝐴 𝐵 ↔ suc 𝐴𝐵)))
194, 8, 18pm5.21ndd 371 1 (Ord 𝐵 → (𝐴 𝐵 ↔ suc 𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 386  wcel 2166  wss 3799   cuni 4659  Ord word 5963  Oncon0 5964  suc csuc 5966
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2804  ax-sep 5006  ax-nul 5014  ax-pr 5128  ax-un 7210
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2606  df-eu 2641  df-clab 2813  df-cleq 2819  df-clel 2822  df-nfc 2959  df-ne 3001  df-ral 3123  df-rex 3124  df-rab 3127  df-v 3417  df-sbc 3664  df-dif 3802  df-un 3804  df-in 3806  df-ss 3813  df-pss 3815  df-nul 4146  df-if 4308  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4660  df-br 4875  df-opab 4937  df-tr 4977  df-eprel 5256  df-po 5264  df-so 5265  df-fr 5302  df-we 5304  df-ord 5967  df-on 5968  df-suc 5970
This theorem is referenced by:  dfac12lem1  9281  dfac12lem2  9282
  Copyright terms: Public domain W3C validator