| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ordsucuniel | Structured version Visualization version GIF version | ||
| Description: Given an element 𝐴 of the union of an ordinal 𝐵, suc 𝐴 is an element of 𝐵 itself. (Contributed by Scott Fenton, 28-Mar-2012.) (Proof shortened by Mario Carneiro, 29-May-2015.) |
| Ref | Expression |
|---|---|
| ordsucuniel | ⊢ (Ord 𝐵 → (𝐴 ∈ ∪ 𝐵 ↔ suc 𝐴 ∈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orduni 7809 | . . 3 ⊢ (Ord 𝐵 → Ord ∪ 𝐵) | |
| 2 | ordelord 6406 | . . . 4 ⊢ ((Ord ∪ 𝐵 ∧ 𝐴 ∈ ∪ 𝐵) → Ord 𝐴) | |
| 3 | 2 | ex 412 | . . 3 ⊢ (Ord ∪ 𝐵 → (𝐴 ∈ ∪ 𝐵 → Ord 𝐴)) |
| 4 | 1, 3 | syl 17 | . 2 ⊢ (Ord 𝐵 → (𝐴 ∈ ∪ 𝐵 → Ord 𝐴)) |
| 5 | ordelord 6406 | . . . 4 ⊢ ((Ord 𝐵 ∧ suc 𝐴 ∈ 𝐵) → Ord suc 𝐴) | |
| 6 | ordsuc 7833 | . . . 4 ⊢ (Ord 𝐴 ↔ Ord suc 𝐴) | |
| 7 | 5, 6 | sylibr 234 | . . 3 ⊢ ((Ord 𝐵 ∧ suc 𝐴 ∈ 𝐵) → Ord 𝐴) |
| 8 | 7 | ex 412 | . 2 ⊢ (Ord 𝐵 → (suc 𝐴 ∈ 𝐵 → Ord 𝐴)) |
| 9 | ordsson 7803 | . . . . . 6 ⊢ (Ord 𝐵 → 𝐵 ⊆ On) | |
| 10 | ordunisssuc 6490 | . . . . . 6 ⊢ ((𝐵 ⊆ On ∧ Ord 𝐴) → (∪ 𝐵 ⊆ 𝐴 ↔ 𝐵 ⊆ suc 𝐴)) | |
| 11 | 9, 10 | sylan 580 | . . . . 5 ⊢ ((Ord 𝐵 ∧ Ord 𝐴) → (∪ 𝐵 ⊆ 𝐴 ↔ 𝐵 ⊆ suc 𝐴)) |
| 12 | ordtri1 6417 | . . . . . 6 ⊢ ((Ord ∪ 𝐵 ∧ Ord 𝐴) → (∪ 𝐵 ⊆ 𝐴 ↔ ¬ 𝐴 ∈ ∪ 𝐵)) | |
| 13 | 1, 12 | sylan 580 | . . . . 5 ⊢ ((Ord 𝐵 ∧ Ord 𝐴) → (∪ 𝐵 ⊆ 𝐴 ↔ ¬ 𝐴 ∈ ∪ 𝐵)) |
| 14 | ordtri1 6417 | . . . . . 6 ⊢ ((Ord 𝐵 ∧ Ord suc 𝐴) → (𝐵 ⊆ suc 𝐴 ↔ ¬ suc 𝐴 ∈ 𝐵)) | |
| 15 | 6, 14 | sylan2b 594 | . . . . 5 ⊢ ((Ord 𝐵 ∧ Ord 𝐴) → (𝐵 ⊆ suc 𝐴 ↔ ¬ suc 𝐴 ∈ 𝐵)) |
| 16 | 11, 13, 15 | 3bitr3d 309 | . . . 4 ⊢ ((Ord 𝐵 ∧ Ord 𝐴) → (¬ 𝐴 ∈ ∪ 𝐵 ↔ ¬ suc 𝐴 ∈ 𝐵)) |
| 17 | 16 | con4bid 317 | . . 3 ⊢ ((Ord 𝐵 ∧ Ord 𝐴) → (𝐴 ∈ ∪ 𝐵 ↔ suc 𝐴 ∈ 𝐵)) |
| 18 | 17 | ex 412 | . 2 ⊢ (Ord 𝐵 → (Ord 𝐴 → (𝐴 ∈ ∪ 𝐵 ↔ suc 𝐴 ∈ 𝐵))) |
| 19 | 4, 8, 18 | pm5.21ndd 379 | 1 ⊢ (Ord 𝐵 → (𝐴 ∈ ∪ 𝐵 ↔ suc 𝐴 ∈ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2108 ⊆ wss 3951 ∪ cuni 4907 Ord word 6383 Oncon0 6384 suc csuc 6386 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-tr 5260 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-ord 6387 df-on 6388 df-suc 6390 |
| This theorem is referenced by: naddsuc2 8739 dfac12lem1 10184 dfac12lem2 10185 |
| Copyright terms: Public domain | W3C validator |