MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supxrbnd1 Structured version   Visualization version   GIF version

Theorem supxrbnd1 12356
Description: The supremum of a bounded-above set of extended reals is less than infinity. (Contributed by NM, 30-Jan-2006.)
Assertion
Ref Expression
supxrbnd1 (𝐴 ⊆ ℝ* → (∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥 ↔ sup(𝐴, ℝ*, < ) < +∞))
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem supxrbnd1
StepHypRef Expression
1 ralnex 3141 . . . 4 (∀𝑥 ∈ ℝ ¬ ∀𝑦𝐴 𝑦 < 𝑥 ↔ ¬ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥)
2 rexr 10291 . . . . . . . . 9 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*)
3 ssel2 3747 . . . . . . . . 9 ((𝐴 ⊆ ℝ*𝑦𝐴) → 𝑦 ∈ ℝ*)
4 xrlenlt 10309 . . . . . . . . 9 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥𝑦 ↔ ¬ 𝑦 < 𝑥))
52, 3, 4syl2anr 584 . . . . . . . 8 (((𝐴 ⊆ ℝ*𝑦𝐴) ∧ 𝑥 ∈ ℝ) → (𝑥𝑦 ↔ ¬ 𝑦 < 𝑥))
65an32s 631 . . . . . . 7 (((𝐴 ⊆ ℝ*𝑥 ∈ ℝ) ∧ 𝑦𝐴) → (𝑥𝑦 ↔ ¬ 𝑦 < 𝑥))
76rexbidva 3197 . . . . . 6 ((𝐴 ⊆ ℝ*𝑥 ∈ ℝ) → (∃𝑦𝐴 𝑥𝑦 ↔ ∃𝑦𝐴 ¬ 𝑦 < 𝑥))
8 rexnal 3143 . . . . . 6 (∃𝑦𝐴 ¬ 𝑦 < 𝑥 ↔ ¬ ∀𝑦𝐴 𝑦 < 𝑥)
97, 8syl6rbb 277 . . . . 5 ((𝐴 ⊆ ℝ*𝑥 ∈ ℝ) → (¬ ∀𝑦𝐴 𝑦 < 𝑥 ↔ ∃𝑦𝐴 𝑥𝑦))
109ralbidva 3134 . . . 4 (𝐴 ⊆ ℝ* → (∀𝑥 ∈ ℝ ¬ ∀𝑦𝐴 𝑦 < 𝑥 ↔ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦))
111, 10syl5bbr 274 . . 3 (𝐴 ⊆ ℝ* → (¬ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥 ↔ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦))
12 supxrunb1 12354 . . 3 (𝐴 ⊆ ℝ* → (∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦 ↔ sup(𝐴, ℝ*, < ) = +∞))
13 supxrcl 12350 . . . 4 (𝐴 ⊆ ℝ* → sup(𝐴, ℝ*, < ) ∈ ℝ*)
14 nltpnft 12200 . . . 4 (sup(𝐴, ℝ*, < ) ∈ ℝ* → (sup(𝐴, ℝ*, < ) = +∞ ↔ ¬ sup(𝐴, ℝ*, < ) < +∞))
1513, 14syl 17 . . 3 (𝐴 ⊆ ℝ* → (sup(𝐴, ℝ*, < ) = +∞ ↔ ¬ sup(𝐴, ℝ*, < ) < +∞))
1611, 12, 153bitrd 294 . 2 (𝐴 ⊆ ℝ* → (¬ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥 ↔ ¬ sup(𝐴, ℝ*, < ) < +∞))
1716con4bid 306 1 (𝐴 ⊆ ℝ* → (∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥 ↔ sup(𝐴, ℝ*, < ) < +∞))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 382   = wceq 1631  wcel 2145  wral 3061  wrex 3062  wss 3723   class class class wbr 4787  supcsup 8506  cr 10141  +∞cpnf 10277  *cxr 10279   < clt 10280  cle 10281
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100  ax-cnex 10198  ax-resscn 10199  ax-1cn 10200  ax-icn 10201  ax-addcl 10202  ax-addrcl 10203  ax-mulcl 10204  ax-mulrcl 10205  ax-mulcom 10206  ax-addass 10207  ax-mulass 10208  ax-distr 10209  ax-i2m1 10210  ax-1ne0 10211  ax-1rid 10212  ax-rnegex 10213  ax-rrecex 10214  ax-cnre 10215  ax-pre-lttri 10216  ax-pre-lttrn 10217  ax-pre-ltadd 10218  ax-pre-mulgt0 10219  ax-pre-sup 10220
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-op 4324  df-uni 4576  df-br 4788  df-opab 4848  df-mpt 4865  df-id 5158  df-po 5171  df-so 5172  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-riota 6757  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-er 7900  df-en 8114  df-dom 8115  df-sdom 8116  df-sup 8508  df-pnf 10282  df-mnf 10283  df-xr 10284  df-ltxr 10285  df-le 10286  df-sub 10474  df-neg 10475
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator