MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supxrbnd1 Structured version   Visualization version   GIF version

Theorem supxrbnd1 13220
Description: The supremum of a bounded-above set of extended reals is less than infinity. (Contributed by NM, 30-Jan-2006.)
Assertion
Ref Expression
supxrbnd1 (𝐴 ⊆ ℝ* → (∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥 ↔ sup(𝐴, ℝ*, < ) < +∞))
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem supxrbnd1
StepHypRef Expression
1 ralnex 3058 . . . 4 (∀𝑥 ∈ ℝ ¬ ∀𝑦𝐴 𝑦 < 𝑥 ↔ ¬ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥)
2 rexr 11158 . . . . . . . . 9 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*)
3 ssel2 3924 . . . . . . . . 9 ((𝐴 ⊆ ℝ*𝑦𝐴) → 𝑦 ∈ ℝ*)
4 xrlenlt 11177 . . . . . . . . 9 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥𝑦 ↔ ¬ 𝑦 < 𝑥))
52, 3, 4syl2anr 597 . . . . . . . 8 (((𝐴 ⊆ ℝ*𝑦𝐴) ∧ 𝑥 ∈ ℝ) → (𝑥𝑦 ↔ ¬ 𝑦 < 𝑥))
65an32s 652 . . . . . . 7 (((𝐴 ⊆ ℝ*𝑥 ∈ ℝ) ∧ 𝑦𝐴) → (𝑥𝑦 ↔ ¬ 𝑦 < 𝑥))
76rexbidva 3154 . . . . . 6 ((𝐴 ⊆ ℝ*𝑥 ∈ ℝ) → (∃𝑦𝐴 𝑥𝑦 ↔ ∃𝑦𝐴 ¬ 𝑦 < 𝑥))
8 rexnal 3084 . . . . . 6 (∃𝑦𝐴 ¬ 𝑦 < 𝑥 ↔ ¬ ∀𝑦𝐴 𝑦 < 𝑥)
97, 8bitr2di 288 . . . . 5 ((𝐴 ⊆ ℝ*𝑥 ∈ ℝ) → (¬ ∀𝑦𝐴 𝑦 < 𝑥 ↔ ∃𝑦𝐴 𝑥𝑦))
109ralbidva 3153 . . . 4 (𝐴 ⊆ ℝ* → (∀𝑥 ∈ ℝ ¬ ∀𝑦𝐴 𝑦 < 𝑥 ↔ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦))
111, 10bitr3id 285 . . 3 (𝐴 ⊆ ℝ* → (¬ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥 ↔ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦))
12 supxrunb1 13218 . . 3 (𝐴 ⊆ ℝ* → (∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑥𝑦 ↔ sup(𝐴, ℝ*, < ) = +∞))
13 supxrcl 13214 . . . 4 (𝐴 ⊆ ℝ* → sup(𝐴, ℝ*, < ) ∈ ℝ*)
14 nltpnft 13063 . . . 4 (sup(𝐴, ℝ*, < ) ∈ ℝ* → (sup(𝐴, ℝ*, < ) = +∞ ↔ ¬ sup(𝐴, ℝ*, < ) < +∞))
1513, 14syl 17 . . 3 (𝐴 ⊆ ℝ* → (sup(𝐴, ℝ*, < ) = +∞ ↔ ¬ sup(𝐴, ℝ*, < ) < +∞))
1611, 12, 153bitrd 305 . 2 (𝐴 ⊆ ℝ* → (¬ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥 ↔ ¬ sup(𝐴, ℝ*, < ) < +∞))
1716con4bid 317 1 (𝐴 ⊆ ℝ* → (∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥 ↔ sup(𝐴, ℝ*, < ) < +∞))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047  wrex 3056  wss 3897   class class class wbr 5089  supcsup 9324  cr 11005  +∞cpnf 11143  *cxr 11145   < clt 11146  cle 11147
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-po 5522  df-so 5523  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-sup 9326  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator