MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ustssco Structured version   Visualization version   GIF version

Theorem ustssco 24239
Description: In an uniform structure, any entourage 𝑉 is a subset of its composition with itself. (Contributed by Thierry Arnoux, 5-Jan-2018.)
Assertion
Ref Expression
ustssco ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) → 𝑉 ⊆ (𝑉𝑉))

Proof of Theorem ustssco
StepHypRef Expression
1 ssun1 4188 . . . 4 𝑉 ⊆ (𝑉 ∪ (𝑉𝑉))
2 coires1 6286 . . . . . 6 (𝑉 ∘ ( I ↾ 𝑋)) = (𝑉𝑋)
3 ustrel 24236 . . . . . . 7 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) → Rel 𝑉)
4 ustssxp 24229 . . . . . . . . 9 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) → 𝑉 ⊆ (𝑋 × 𝑋))
5 dmss 5916 . . . . . . . . 9 (𝑉 ⊆ (𝑋 × 𝑋) → dom 𝑉 ⊆ dom (𝑋 × 𝑋))
64, 5syl 17 . . . . . . . 8 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) → dom 𝑉 ⊆ dom (𝑋 × 𝑋))
7 dmxpid 5944 . . . . . . . 8 dom (𝑋 × 𝑋) = 𝑋
86, 7sseqtrdi 4046 . . . . . . 7 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) → dom 𝑉𝑋)
9 relssres 6042 . . . . . . 7 ((Rel 𝑉 ∧ dom 𝑉𝑋) → (𝑉𝑋) = 𝑉)
103, 8, 9syl2anc 584 . . . . . 6 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) → (𝑉𝑋) = 𝑉)
112, 10eqtrid 2787 . . . . 5 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) → (𝑉 ∘ ( I ↾ 𝑋)) = 𝑉)
1211uneq1d 4177 . . . 4 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) → ((𝑉 ∘ ( I ↾ 𝑋)) ∪ (𝑉𝑉)) = (𝑉 ∪ (𝑉𝑉)))
131, 12sseqtrrid 4049 . . 3 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) → 𝑉 ⊆ ((𝑉 ∘ ( I ↾ 𝑋)) ∪ (𝑉𝑉)))
14 coundi 6269 . . 3 (𝑉 ∘ (( I ↾ 𝑋) ∪ 𝑉)) = ((𝑉 ∘ ( I ↾ 𝑋)) ∪ (𝑉𝑉))
1513, 14sseqtrrdi 4047 . 2 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) → 𝑉 ⊆ (𝑉 ∘ (( I ↾ 𝑋) ∪ 𝑉)))
16 ustdiag 24233 . . . 4 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) → ( I ↾ 𝑋) ⊆ 𝑉)
17 ssequn1 4196 . . . 4 (( I ↾ 𝑋) ⊆ 𝑉 ↔ (( I ↾ 𝑋) ∪ 𝑉) = 𝑉)
1816, 17sylib 218 . . 3 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) → (( I ↾ 𝑋) ∪ 𝑉) = 𝑉)
1918coeq2d 5876 . 2 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) → (𝑉 ∘ (( I ↾ 𝑋) ∪ 𝑉)) = (𝑉𝑉))
2015, 19sseqtrd 4036 1 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) → 𝑉 ⊆ (𝑉𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  cun 3961  wss 3963   I cid 5582   × cxp 5687  dom cdm 5689  cres 5691  ccom 5693  Rel wrel 5694  cfv 6563  UnifOncust 24224
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-iota 6516  df-fun 6565  df-fv 6571  df-ust 24225
This theorem is referenced by:  ustexsym  24240  ustex3sym  24242
  Copyright terms: Public domain W3C validator