| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ustssco | Structured version Visualization version GIF version | ||
| Description: In an uniform structure, any entourage 𝑉 is a subset of its composition with itself. (Contributed by Thierry Arnoux, 5-Jan-2018.) |
| Ref | Expression |
|---|---|
| ustssco | ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) → 𝑉 ⊆ (𝑉 ∘ 𝑉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssun1 4127 | . . . 4 ⊢ 𝑉 ⊆ (𝑉 ∪ (𝑉 ∘ 𝑉)) | |
| 2 | coires1 6218 | . . . . . 6 ⊢ (𝑉 ∘ ( I ↾ 𝑋)) = (𝑉 ↾ 𝑋) | |
| 3 | ustrel 24133 | . . . . . . 7 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) → Rel 𝑉) | |
| 4 | ustssxp 24126 | . . . . . . . . 9 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) → 𝑉 ⊆ (𝑋 × 𝑋)) | |
| 5 | dmss 5847 | . . . . . . . . 9 ⊢ (𝑉 ⊆ (𝑋 × 𝑋) → dom 𝑉 ⊆ dom (𝑋 × 𝑋)) | |
| 6 | 4, 5 | syl 17 | . . . . . . . 8 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) → dom 𝑉 ⊆ dom (𝑋 × 𝑋)) |
| 7 | dmxpid 5875 | . . . . . . . 8 ⊢ dom (𝑋 × 𝑋) = 𝑋 | |
| 8 | 6, 7 | sseqtrdi 3970 | . . . . . . 7 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) → dom 𝑉 ⊆ 𝑋) |
| 9 | relssres 5976 | . . . . . . 7 ⊢ ((Rel 𝑉 ∧ dom 𝑉 ⊆ 𝑋) → (𝑉 ↾ 𝑋) = 𝑉) | |
| 10 | 3, 8, 9 | syl2anc 584 | . . . . . 6 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) → (𝑉 ↾ 𝑋) = 𝑉) |
| 11 | 2, 10 | eqtrid 2778 | . . . . 5 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) → (𝑉 ∘ ( I ↾ 𝑋)) = 𝑉) |
| 12 | 11 | uneq1d 4116 | . . . 4 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) → ((𝑉 ∘ ( I ↾ 𝑋)) ∪ (𝑉 ∘ 𝑉)) = (𝑉 ∪ (𝑉 ∘ 𝑉))) |
| 13 | 1, 12 | sseqtrrid 3973 | . . 3 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) → 𝑉 ⊆ ((𝑉 ∘ ( I ↾ 𝑋)) ∪ (𝑉 ∘ 𝑉))) |
| 14 | coundi 6200 | . . 3 ⊢ (𝑉 ∘ (( I ↾ 𝑋) ∪ 𝑉)) = ((𝑉 ∘ ( I ↾ 𝑋)) ∪ (𝑉 ∘ 𝑉)) | |
| 15 | 13, 14 | sseqtrrdi 3971 | . 2 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) → 𝑉 ⊆ (𝑉 ∘ (( I ↾ 𝑋) ∪ 𝑉))) |
| 16 | ustdiag 24130 | . . . 4 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) → ( I ↾ 𝑋) ⊆ 𝑉) | |
| 17 | ssequn1 4135 | . . . 4 ⊢ (( I ↾ 𝑋) ⊆ 𝑉 ↔ (( I ↾ 𝑋) ∪ 𝑉) = 𝑉) | |
| 18 | 16, 17 | sylib 218 | . . 3 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) → (( I ↾ 𝑋) ∪ 𝑉) = 𝑉) |
| 19 | 18 | coeq2d 5807 | . 2 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) → (𝑉 ∘ (( I ↾ 𝑋) ∪ 𝑉)) = (𝑉 ∘ 𝑉)) |
| 20 | 15, 19 | sseqtrd 3966 | 1 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) → 𝑉 ⊆ (𝑉 ∘ 𝑉)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∪ cun 3895 ⊆ wss 3897 I cid 5513 × cxp 5617 dom cdm 5619 ↾ cres 5621 ∘ ccom 5623 Rel wrel 5624 ‘cfv 6487 UnifOncust 24121 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-iota 6443 df-fun 6489 df-fv 6495 df-ust 24122 |
| This theorem is referenced by: ustexsym 24137 ustex3sym 24139 |
| Copyright terms: Public domain | W3C validator |