![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ustssco | Structured version Visualization version GIF version |
Description: In an uniform structure, any entourage 𝑉 is a subset of its composition with itself. (Contributed by Thierry Arnoux, 5-Jan-2018.) |
Ref | Expression |
---|---|
ustssco | ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) → 𝑉 ⊆ (𝑉 ∘ 𝑉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssun1 4188 | . . . 4 ⊢ 𝑉 ⊆ (𝑉 ∪ (𝑉 ∘ 𝑉)) | |
2 | coires1 6286 | . . . . . 6 ⊢ (𝑉 ∘ ( I ↾ 𝑋)) = (𝑉 ↾ 𝑋) | |
3 | ustrel 24236 | . . . . . . 7 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) → Rel 𝑉) | |
4 | ustssxp 24229 | . . . . . . . . 9 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) → 𝑉 ⊆ (𝑋 × 𝑋)) | |
5 | dmss 5916 | . . . . . . . . 9 ⊢ (𝑉 ⊆ (𝑋 × 𝑋) → dom 𝑉 ⊆ dom (𝑋 × 𝑋)) | |
6 | 4, 5 | syl 17 | . . . . . . . 8 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) → dom 𝑉 ⊆ dom (𝑋 × 𝑋)) |
7 | dmxpid 5944 | . . . . . . . 8 ⊢ dom (𝑋 × 𝑋) = 𝑋 | |
8 | 6, 7 | sseqtrdi 4046 | . . . . . . 7 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) → dom 𝑉 ⊆ 𝑋) |
9 | relssres 6042 | . . . . . . 7 ⊢ ((Rel 𝑉 ∧ dom 𝑉 ⊆ 𝑋) → (𝑉 ↾ 𝑋) = 𝑉) | |
10 | 3, 8, 9 | syl2anc 584 | . . . . . 6 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) → (𝑉 ↾ 𝑋) = 𝑉) |
11 | 2, 10 | eqtrid 2787 | . . . . 5 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) → (𝑉 ∘ ( I ↾ 𝑋)) = 𝑉) |
12 | 11 | uneq1d 4177 | . . . 4 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) → ((𝑉 ∘ ( I ↾ 𝑋)) ∪ (𝑉 ∘ 𝑉)) = (𝑉 ∪ (𝑉 ∘ 𝑉))) |
13 | 1, 12 | sseqtrrid 4049 | . . 3 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) → 𝑉 ⊆ ((𝑉 ∘ ( I ↾ 𝑋)) ∪ (𝑉 ∘ 𝑉))) |
14 | coundi 6269 | . . 3 ⊢ (𝑉 ∘ (( I ↾ 𝑋) ∪ 𝑉)) = ((𝑉 ∘ ( I ↾ 𝑋)) ∪ (𝑉 ∘ 𝑉)) | |
15 | 13, 14 | sseqtrrdi 4047 | . 2 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) → 𝑉 ⊆ (𝑉 ∘ (( I ↾ 𝑋) ∪ 𝑉))) |
16 | ustdiag 24233 | . . . 4 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) → ( I ↾ 𝑋) ⊆ 𝑉) | |
17 | ssequn1 4196 | . . . 4 ⊢ (( I ↾ 𝑋) ⊆ 𝑉 ↔ (( I ↾ 𝑋) ∪ 𝑉) = 𝑉) | |
18 | 16, 17 | sylib 218 | . . 3 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) → (( I ↾ 𝑋) ∪ 𝑉) = 𝑉) |
19 | 18 | coeq2d 5876 | . 2 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) → (𝑉 ∘ (( I ↾ 𝑋) ∪ 𝑉)) = (𝑉 ∘ 𝑉)) |
20 | 15, 19 | sseqtrd 4036 | 1 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) → 𝑉 ⊆ (𝑉 ∘ 𝑉)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ∪ cun 3961 ⊆ wss 3963 I cid 5582 × cxp 5687 dom cdm 5689 ↾ cres 5691 ∘ ccom 5693 Rel wrel 5694 ‘cfv 6563 UnifOncust 24224 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-iota 6516 df-fun 6565 df-fv 6571 df-ust 24225 |
This theorem is referenced by: ustexsym 24240 ustex3sym 24242 |
Copyright terms: Public domain | W3C validator |