| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ustssco | Structured version Visualization version GIF version | ||
| Description: In an uniform structure, any entourage 𝑉 is a subset of its composition with itself. (Contributed by Thierry Arnoux, 5-Jan-2018.) |
| Ref | Expression |
|---|---|
| ustssco | ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) → 𝑉 ⊆ (𝑉 ∘ 𝑉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssun1 4126 | . . . 4 ⊢ 𝑉 ⊆ (𝑉 ∪ (𝑉 ∘ 𝑉)) | |
| 2 | coires1 6208 | . . . . . 6 ⊢ (𝑉 ∘ ( I ↾ 𝑋)) = (𝑉 ↾ 𝑋) | |
| 3 | ustrel 24120 | . . . . . . 7 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) → Rel 𝑉) | |
| 4 | ustssxp 24113 | . . . . . . . . 9 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) → 𝑉 ⊆ (𝑋 × 𝑋)) | |
| 5 | dmss 5840 | . . . . . . . . 9 ⊢ (𝑉 ⊆ (𝑋 × 𝑋) → dom 𝑉 ⊆ dom (𝑋 × 𝑋)) | |
| 6 | 4, 5 | syl 17 | . . . . . . . 8 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) → dom 𝑉 ⊆ dom (𝑋 × 𝑋)) |
| 7 | dmxpid 5867 | . . . . . . . 8 ⊢ dom (𝑋 × 𝑋) = 𝑋 | |
| 8 | 6, 7 | sseqtrdi 3973 | . . . . . . 7 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) → dom 𝑉 ⊆ 𝑋) |
| 9 | relssres 5968 | . . . . . . 7 ⊢ ((Rel 𝑉 ∧ dom 𝑉 ⊆ 𝑋) → (𝑉 ↾ 𝑋) = 𝑉) | |
| 10 | 3, 8, 9 | syl2anc 584 | . . . . . 6 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) → (𝑉 ↾ 𝑋) = 𝑉) |
| 11 | 2, 10 | eqtrid 2777 | . . . . 5 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) → (𝑉 ∘ ( I ↾ 𝑋)) = 𝑉) |
| 12 | 11 | uneq1d 4115 | . . . 4 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) → ((𝑉 ∘ ( I ↾ 𝑋)) ∪ (𝑉 ∘ 𝑉)) = (𝑉 ∪ (𝑉 ∘ 𝑉))) |
| 13 | 1, 12 | sseqtrrid 3976 | . . 3 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) → 𝑉 ⊆ ((𝑉 ∘ ( I ↾ 𝑋)) ∪ (𝑉 ∘ 𝑉))) |
| 14 | coundi 6191 | . . 3 ⊢ (𝑉 ∘ (( I ↾ 𝑋) ∪ 𝑉)) = ((𝑉 ∘ ( I ↾ 𝑋)) ∪ (𝑉 ∘ 𝑉)) | |
| 15 | 13, 14 | sseqtrrdi 3974 | . 2 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) → 𝑉 ⊆ (𝑉 ∘ (( I ↾ 𝑋) ∪ 𝑉))) |
| 16 | ustdiag 24117 | . . . 4 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) → ( I ↾ 𝑋) ⊆ 𝑉) | |
| 17 | ssequn1 4134 | . . . 4 ⊢ (( I ↾ 𝑋) ⊆ 𝑉 ↔ (( I ↾ 𝑋) ∪ 𝑉) = 𝑉) | |
| 18 | 16, 17 | sylib 218 | . . 3 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) → (( I ↾ 𝑋) ∪ 𝑉) = 𝑉) |
| 19 | 18 | coeq2d 5800 | . 2 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) → (𝑉 ∘ (( I ↾ 𝑋) ∪ 𝑉)) = (𝑉 ∘ 𝑉)) |
| 20 | 15, 19 | sseqtrd 3969 | 1 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) → 𝑉 ⊆ (𝑉 ∘ 𝑉)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2110 ∪ cun 3898 ⊆ wss 3900 I cid 5508 × cxp 5612 dom cdm 5614 ↾ cres 5616 ∘ ccom 5618 Rel wrel 5619 ‘cfv 6477 UnifOncust 24108 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3394 df-v 3436 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-iota 6433 df-fun 6479 df-fv 6485 df-ust 24109 |
| This theorem is referenced by: ustexsym 24124 ustex3sym 24126 |
| Copyright terms: Public domain | W3C validator |