MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ustssco Structured version   Visualization version   GIF version

Theorem ustssco 24039
Description: In an uniform structure, any entourage 𝑉 is a subset of its composition with itself. (Contributed by Thierry Arnoux, 5-Jan-2018.)
Assertion
Ref Expression
ustssco ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) → 𝑉 ⊆ (𝑉𝑉))

Proof of Theorem ustssco
StepHypRef Expression
1 ssun1 4172 . . . 4 𝑉 ⊆ (𝑉 ∪ (𝑉𝑉))
2 coires1 6263 . . . . . 6 (𝑉 ∘ ( I ↾ 𝑋)) = (𝑉𝑋)
3 ustrel 24036 . . . . . . 7 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) → Rel 𝑉)
4 ustssxp 24029 . . . . . . . . 9 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) → 𝑉 ⊆ (𝑋 × 𝑋))
5 dmss 5902 . . . . . . . . 9 (𝑉 ⊆ (𝑋 × 𝑋) → dom 𝑉 ⊆ dom (𝑋 × 𝑋))
64, 5syl 17 . . . . . . . 8 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) → dom 𝑉 ⊆ dom (𝑋 × 𝑋))
7 dmxpid 5929 . . . . . . . 8 dom (𝑋 × 𝑋) = 𝑋
86, 7sseqtrdi 4032 . . . . . . 7 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) → dom 𝑉𝑋)
9 relssres 6022 . . . . . . 7 ((Rel 𝑉 ∧ dom 𝑉𝑋) → (𝑉𝑋) = 𝑉)
103, 8, 9syl2anc 583 . . . . . 6 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) → (𝑉𝑋) = 𝑉)
112, 10eqtrid 2783 . . . . 5 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) → (𝑉 ∘ ( I ↾ 𝑋)) = 𝑉)
1211uneq1d 4162 . . . 4 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) → ((𝑉 ∘ ( I ↾ 𝑋)) ∪ (𝑉𝑉)) = (𝑉 ∪ (𝑉𝑉)))
131, 12sseqtrrid 4035 . . 3 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) → 𝑉 ⊆ ((𝑉 ∘ ( I ↾ 𝑋)) ∪ (𝑉𝑉)))
14 coundi 6246 . . 3 (𝑉 ∘ (( I ↾ 𝑋) ∪ 𝑉)) = ((𝑉 ∘ ( I ↾ 𝑋)) ∪ (𝑉𝑉))
1513, 14sseqtrrdi 4033 . 2 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) → 𝑉 ⊆ (𝑉 ∘ (( I ↾ 𝑋) ∪ 𝑉)))
16 ustdiag 24033 . . . 4 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) → ( I ↾ 𝑋) ⊆ 𝑉)
17 ssequn1 4180 . . . 4 (( I ↾ 𝑋) ⊆ 𝑉 ↔ (( I ↾ 𝑋) ∪ 𝑉) = 𝑉)
1816, 17sylib 217 . . 3 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) → (( I ↾ 𝑋) ∪ 𝑉) = 𝑉)
1918coeq2d 5862 . 2 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) → (𝑉 ∘ (( I ↾ 𝑋) ∪ 𝑉)) = (𝑉𝑉))
2015, 19sseqtrd 4022 1 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) → 𝑉 ⊆ (𝑉𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2105  cun 3946  wss 3948   I cid 5573   × cxp 5674  dom cdm 5676  cres 5678  ccom 5680  Rel wrel 5681  cfv 6543  UnifOncust 24024
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-iota 6495  df-fun 6545  df-fv 6551  df-ust 24025
This theorem is referenced by:  ustexsym  24040  ustex3sym  24042
  Copyright terms: Public domain W3C validator