Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ustssco | Structured version Visualization version GIF version |
Description: In an uniform structure, any entourage 𝑉 is a subset of its composition with itself. (Contributed by Thierry Arnoux, 5-Jan-2018.) |
Ref | Expression |
---|---|
ustssco | ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) → 𝑉 ⊆ (𝑉 ∘ 𝑉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssun1 4102 | . . . 4 ⊢ 𝑉 ⊆ (𝑉 ∪ (𝑉 ∘ 𝑉)) | |
2 | coires1 6157 | . . . . . 6 ⊢ (𝑉 ∘ ( I ↾ 𝑋)) = (𝑉 ↾ 𝑋) | |
3 | ustrel 23271 | . . . . . . 7 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) → Rel 𝑉) | |
4 | ustssxp 23264 | . . . . . . . . 9 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) → 𝑉 ⊆ (𝑋 × 𝑋)) | |
5 | dmss 5800 | . . . . . . . . 9 ⊢ (𝑉 ⊆ (𝑋 × 𝑋) → dom 𝑉 ⊆ dom (𝑋 × 𝑋)) | |
6 | 4, 5 | syl 17 | . . . . . . . 8 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) → dom 𝑉 ⊆ dom (𝑋 × 𝑋)) |
7 | dmxpid 5828 | . . . . . . . 8 ⊢ dom (𝑋 × 𝑋) = 𝑋 | |
8 | 6, 7 | sseqtrdi 3967 | . . . . . . 7 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) → dom 𝑉 ⊆ 𝑋) |
9 | relssres 5921 | . . . . . . 7 ⊢ ((Rel 𝑉 ∧ dom 𝑉 ⊆ 𝑋) → (𝑉 ↾ 𝑋) = 𝑉) | |
10 | 3, 8, 9 | syl2anc 583 | . . . . . 6 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) → (𝑉 ↾ 𝑋) = 𝑉) |
11 | 2, 10 | eqtrid 2790 | . . . . 5 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) → (𝑉 ∘ ( I ↾ 𝑋)) = 𝑉) |
12 | 11 | uneq1d 4092 | . . . 4 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) → ((𝑉 ∘ ( I ↾ 𝑋)) ∪ (𝑉 ∘ 𝑉)) = (𝑉 ∪ (𝑉 ∘ 𝑉))) |
13 | 1, 12 | sseqtrrid 3970 | . . 3 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) → 𝑉 ⊆ ((𝑉 ∘ ( I ↾ 𝑋)) ∪ (𝑉 ∘ 𝑉))) |
14 | coundi 6140 | . . 3 ⊢ (𝑉 ∘ (( I ↾ 𝑋) ∪ 𝑉)) = ((𝑉 ∘ ( I ↾ 𝑋)) ∪ (𝑉 ∘ 𝑉)) | |
15 | 13, 14 | sseqtrrdi 3968 | . 2 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) → 𝑉 ⊆ (𝑉 ∘ (( I ↾ 𝑋) ∪ 𝑉))) |
16 | ustdiag 23268 | . . . 4 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) → ( I ↾ 𝑋) ⊆ 𝑉) | |
17 | ssequn1 4110 | . . . 4 ⊢ (( I ↾ 𝑋) ⊆ 𝑉 ↔ (( I ↾ 𝑋) ∪ 𝑉) = 𝑉) | |
18 | 16, 17 | sylib 217 | . . 3 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) → (( I ↾ 𝑋) ∪ 𝑉) = 𝑉) |
19 | 18 | coeq2d 5760 | . 2 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) → (𝑉 ∘ (( I ↾ 𝑋) ∪ 𝑉)) = (𝑉 ∘ 𝑉)) |
20 | 15, 19 | sseqtrd 3957 | 1 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) → 𝑉 ⊆ (𝑉 ∘ 𝑉)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∪ cun 3881 ⊆ wss 3883 I cid 5479 × cxp 5578 dom cdm 5580 ↾ cres 5582 ∘ ccom 5584 Rel wrel 5585 ‘cfv 6418 UnifOncust 23259 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-iota 6376 df-fun 6420 df-fv 6426 df-ust 23260 |
This theorem is referenced by: ustexsym 23275 ustex3sym 23277 |
Copyright terms: Public domain | W3C validator |