Proof of Theorem frege131d
Step | Hyp | Ref
| Expression |
1 | | frege131d.f |
. . . . 5
⊢ (𝜑 → 𝐹 ∈ V) |
2 | | trclfvlb 14707 |
. . . . 5
⊢ (𝐹 ∈ V → 𝐹 ⊆ (t+‘𝐹)) |
3 | | imass1 6003 |
. . . . 5
⊢ (𝐹 ⊆ (t+‘𝐹) → (𝐹 “ 𝑈) ⊆ ((t+‘𝐹) “ 𝑈)) |
4 | 1, 2, 3 | 3syl 18 |
. . . 4
⊢ (𝜑 → (𝐹 “ 𝑈) ⊆ ((t+‘𝐹) “ 𝑈)) |
5 | | ssun2 4107 |
. . . . 5
⊢
((t+‘𝐹)
“ 𝑈) ⊆ ((◡(t+‘𝐹) “ 𝑈) ∪ ((t+‘𝐹) “ 𝑈)) |
6 | | ssun2 4107 |
. . . . 5
⊢ ((◡(t+‘𝐹) “ 𝑈) ∪ ((t+‘𝐹) “ 𝑈)) ⊆ (𝑈 ∪ ((◡(t+‘𝐹) “ 𝑈) ∪ ((t+‘𝐹) “ 𝑈))) |
7 | 5, 6 | sstri 3930 |
. . . 4
⊢
((t+‘𝐹)
“ 𝑈) ⊆ (𝑈 ∪ ((◡(t+‘𝐹) “ 𝑈) ∪ ((t+‘𝐹) “ 𝑈))) |
8 | 4, 7 | sstrdi 3933 |
. . 3
⊢ (𝜑 → (𝐹 “ 𝑈) ⊆ (𝑈 ∪ ((◡(t+‘𝐹) “ 𝑈) ∪ ((t+‘𝐹) “ 𝑈)))) |
9 | | trclfvdecomr 41295 |
. . . . . . . . . . . 12
⊢ (𝐹 ∈ V → (t+‘𝐹) = (𝐹 ∪ ((t+‘𝐹) ∘ 𝐹))) |
10 | 1, 9 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (t+‘𝐹) = (𝐹 ∪ ((t+‘𝐹) ∘ 𝐹))) |
11 | 10 | cnveqd 5778 |
. . . . . . . . . 10
⊢ (𝜑 → ◡(t+‘𝐹) = ◡(𝐹 ∪ ((t+‘𝐹) ∘ 𝐹))) |
12 | | cnvun 6040 |
. . . . . . . . . . 11
⊢ ◡(𝐹 ∪ ((t+‘𝐹) ∘ 𝐹)) = (◡𝐹 ∪ ◡((t+‘𝐹) ∘ 𝐹)) |
13 | | cnvco 5788 |
. . . . . . . . . . . 12
⊢ ◡((t+‘𝐹) ∘ 𝐹) = (◡𝐹 ∘ ◡(t+‘𝐹)) |
14 | 13 | uneq2i 4094 |
. . . . . . . . . . 11
⊢ (◡𝐹 ∪ ◡((t+‘𝐹) ∘ 𝐹)) = (◡𝐹 ∪ (◡𝐹 ∘ ◡(t+‘𝐹))) |
15 | 12, 14 | eqtri 2766 |
. . . . . . . . . 10
⊢ ◡(𝐹 ∪ ((t+‘𝐹) ∘ 𝐹)) = (◡𝐹 ∪ (◡𝐹 ∘ ◡(t+‘𝐹))) |
16 | 11, 15 | eqtrdi 2794 |
. . . . . . . . 9
⊢ (𝜑 → ◡(t+‘𝐹) = (◡𝐹 ∪ (◡𝐹 ∘ ◡(t+‘𝐹)))) |
17 | 16 | coeq2d 5765 |
. . . . . . . 8
⊢ (𝜑 → (𝐹 ∘ ◡(t+‘𝐹)) = (𝐹 ∘ (◡𝐹 ∪ (◡𝐹 ∘ ◡(t+‘𝐹))))) |
18 | | coundi 6145 |
. . . . . . . . 9
⊢ (𝐹 ∘ (◡𝐹 ∪ (◡𝐹 ∘ ◡(t+‘𝐹)))) = ((𝐹 ∘ ◡𝐹) ∪ (𝐹 ∘ (◡𝐹 ∘ ◡(t+‘𝐹)))) |
19 | | frege131d.fun |
. . . . . . . . . . 11
⊢ (𝜑 → Fun 𝐹) |
20 | | funcocnv2 6734 |
. . . . . . . . . . 11
⊢ (Fun
𝐹 → (𝐹 ∘ ◡𝐹) = ( I ↾ ran 𝐹)) |
21 | 19, 20 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐹 ∘ ◡𝐹) = ( I ↾ ran 𝐹)) |
22 | | coass 6163 |
. . . . . . . . . . . 12
⊢ ((𝐹 ∘ ◡𝐹) ∘ ◡(t+‘𝐹)) = (𝐹 ∘ (◡𝐹 ∘ ◡(t+‘𝐹))) |
23 | 22 | eqcomi 2747 |
. . . . . . . . . . 11
⊢ (𝐹 ∘ (◡𝐹 ∘ ◡(t+‘𝐹))) = ((𝐹 ∘ ◡𝐹) ∘ ◡(t+‘𝐹)) |
24 | 21 | coeq1d 5764 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝐹 ∘ ◡𝐹) ∘ ◡(t+‘𝐹)) = (( I ↾ ran 𝐹) ∘ ◡(t+‘𝐹))) |
25 | 23, 24 | eqtrid 2790 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐹 ∘ (◡𝐹 ∘ ◡(t+‘𝐹))) = (( I ↾ ran 𝐹) ∘ ◡(t+‘𝐹))) |
26 | 21, 25 | uneq12d 4098 |
. . . . . . . . 9
⊢ (𝜑 → ((𝐹 ∘ ◡𝐹) ∪ (𝐹 ∘ (◡𝐹 ∘ ◡(t+‘𝐹)))) = (( I ↾ ran 𝐹) ∪ (( I ↾ ran 𝐹) ∘ ◡(t+‘𝐹)))) |
27 | 18, 26 | eqtrid 2790 |
. . . . . . . 8
⊢ (𝜑 → (𝐹 ∘ (◡𝐹 ∪ (◡𝐹 ∘ ◡(t+‘𝐹)))) = (( I ↾ ran 𝐹) ∪ (( I ↾ ran 𝐹) ∘ ◡(t+‘𝐹)))) |
28 | 17, 27 | eqtrd 2778 |
. . . . . . 7
⊢ (𝜑 → (𝐹 ∘ ◡(t+‘𝐹)) = (( I ↾ ran 𝐹) ∪ (( I ↾ ran 𝐹) ∘ ◡(t+‘𝐹)))) |
29 | 28 | imaeq1d 5962 |
. . . . . 6
⊢ (𝜑 → ((𝐹 ∘ ◡(t+‘𝐹)) “ 𝑈) = ((( I ↾ ran 𝐹) ∪ (( I ↾ ran 𝐹) ∘ ◡(t+‘𝐹))) “ 𝑈)) |
30 | | imaundir 6048 |
. . . . . 6
⊢ ((( I
↾ ran 𝐹) ∪ (( I
↾ ran 𝐹) ∘
◡(t+‘𝐹))) “ 𝑈) = ((( I ↾ ran 𝐹) “ 𝑈) ∪ ((( I ↾ ran 𝐹) ∘ ◡(t+‘𝐹)) “ 𝑈)) |
31 | 29, 30 | eqtrdi 2794 |
. . . . 5
⊢ (𝜑 → ((𝐹 ∘ ◡(t+‘𝐹)) “ 𝑈) = ((( I ↾ ran 𝐹) “ 𝑈) ∪ ((( I ↾ ran 𝐹) ∘ ◡(t+‘𝐹)) “ 𝑈))) |
32 | | resss 5910 |
. . . . . . . . 9
⊢ ( I
↾ ran 𝐹) ⊆
I |
33 | | imass1 6003 |
. . . . . . . . 9
⊢ (( I
↾ ran 𝐹) ⊆ I
→ (( I ↾ ran 𝐹)
“ 𝑈) ⊆ ( I
“ 𝑈)) |
34 | 32, 33 | ax-mp 5 |
. . . . . . . 8
⊢ (( I
↾ ran 𝐹) “
𝑈) ⊆ ( I “
𝑈) |
35 | | imai 5976 |
. . . . . . . 8
⊢ ( I
“ 𝑈) = 𝑈 |
36 | 34, 35 | sseqtri 3957 |
. . . . . . 7
⊢ (( I
↾ ran 𝐹) “
𝑈) ⊆ 𝑈 |
37 | | imaco 6149 |
. . . . . . . 8
⊢ ((( I
↾ ran 𝐹) ∘
◡(t+‘𝐹)) “ 𝑈) = (( I ↾ ran 𝐹) “ (◡(t+‘𝐹) “ 𝑈)) |
38 | | imass1 6003 |
. . . . . . . . . 10
⊢ (( I
↾ ran 𝐹) ⊆ I
→ (( I ↾ ran 𝐹)
“ (◡(t+‘𝐹) “ 𝑈)) ⊆ ( I “ (◡(t+‘𝐹) “ 𝑈))) |
39 | 32, 38 | ax-mp 5 |
. . . . . . . . 9
⊢ (( I
↾ ran 𝐹) “
(◡(t+‘𝐹) “ 𝑈)) ⊆ ( I “ (◡(t+‘𝐹) “ 𝑈)) |
40 | | imai 5976 |
. . . . . . . . 9
⊢ ( I
“ (◡(t+‘𝐹) “ 𝑈)) = (◡(t+‘𝐹) “ 𝑈) |
41 | 39, 40 | sseqtri 3957 |
. . . . . . . 8
⊢ (( I
↾ ran 𝐹) “
(◡(t+‘𝐹) “ 𝑈)) ⊆ (◡(t+‘𝐹) “ 𝑈) |
42 | 37, 41 | eqsstri 3955 |
. . . . . . 7
⊢ ((( I
↾ ran 𝐹) ∘
◡(t+‘𝐹)) “ 𝑈) ⊆ (◡(t+‘𝐹) “ 𝑈) |
43 | | unss12 4116 |
. . . . . . 7
⊢ (((( I
↾ ran 𝐹) “
𝑈) ⊆ 𝑈 ∧ ((( I ↾ ran 𝐹) ∘ ◡(t+‘𝐹)) “ 𝑈) ⊆ (◡(t+‘𝐹) “ 𝑈)) → ((( I ↾ ran 𝐹) “ 𝑈) ∪ ((( I ↾ ran 𝐹) ∘ ◡(t+‘𝐹)) “ 𝑈)) ⊆ (𝑈 ∪ (◡(t+‘𝐹) “ 𝑈))) |
44 | 36, 42, 43 | mp2an 689 |
. . . . . 6
⊢ ((( I
↾ ran 𝐹) “
𝑈) ∪ ((( I ↾ ran
𝐹) ∘ ◡(t+‘𝐹)) “ 𝑈)) ⊆ (𝑈 ∪ (◡(t+‘𝐹) “ 𝑈)) |
45 | | ssun1 4106 |
. . . . . . 7
⊢ (𝑈 ∪ (◡(t+‘𝐹) “ 𝑈)) ⊆ ((𝑈 ∪ (◡(t+‘𝐹) “ 𝑈)) ∪ ((t+‘𝐹) “ 𝑈)) |
46 | | unass 4100 |
. . . . . . 7
⊢ ((𝑈 ∪ (◡(t+‘𝐹) “ 𝑈)) ∪ ((t+‘𝐹) “ 𝑈)) = (𝑈 ∪ ((◡(t+‘𝐹) “ 𝑈) ∪ ((t+‘𝐹) “ 𝑈))) |
47 | 45, 46 | sseqtri 3957 |
. . . . . 6
⊢ (𝑈 ∪ (◡(t+‘𝐹) “ 𝑈)) ⊆ (𝑈 ∪ ((◡(t+‘𝐹) “ 𝑈) ∪ ((t+‘𝐹) “ 𝑈))) |
48 | 44, 47 | sstri 3930 |
. . . . 5
⊢ ((( I
↾ ran 𝐹) “
𝑈) ∪ ((( I ↾ ran
𝐹) ∘ ◡(t+‘𝐹)) “ 𝑈)) ⊆ (𝑈 ∪ ((◡(t+‘𝐹) “ 𝑈) ∪ ((t+‘𝐹) “ 𝑈))) |
49 | 31, 48 | eqsstrdi 3975 |
. . . 4
⊢ (𝜑 → ((𝐹 ∘ ◡(t+‘𝐹)) “ 𝑈) ⊆ (𝑈 ∪ ((◡(t+‘𝐹) “ 𝑈) ∪ ((t+‘𝐹) “ 𝑈)))) |
50 | | coss1 5758 |
. . . . . . . 8
⊢ (𝐹 ⊆ (t+‘𝐹) → (𝐹 ∘ (t+‘𝐹)) ⊆ ((t+‘𝐹) ∘ (t+‘𝐹))) |
51 | 1, 2, 50 | 3syl 18 |
. . . . . . 7
⊢ (𝜑 → (𝐹 ∘ (t+‘𝐹)) ⊆ ((t+‘𝐹) ∘ (t+‘𝐹))) |
52 | | trclfvcotrg 14715 |
. . . . . . 7
⊢
((t+‘𝐹)
∘ (t+‘𝐹))
⊆ (t+‘𝐹) |
53 | 51, 52 | sstrdi 3933 |
. . . . . 6
⊢ (𝜑 → (𝐹 ∘ (t+‘𝐹)) ⊆ (t+‘𝐹)) |
54 | | imass1 6003 |
. . . . . 6
⊢ ((𝐹 ∘ (t+‘𝐹)) ⊆ (t+‘𝐹) → ((𝐹 ∘ (t+‘𝐹)) “ 𝑈) ⊆ ((t+‘𝐹) “ 𝑈)) |
55 | 53, 54 | syl 17 |
. . . . 5
⊢ (𝜑 → ((𝐹 ∘ (t+‘𝐹)) “ 𝑈) ⊆ ((t+‘𝐹) “ 𝑈)) |
56 | 55, 7 | sstrdi 3933 |
. . . 4
⊢ (𝜑 → ((𝐹 ∘ (t+‘𝐹)) “ 𝑈) ⊆ (𝑈 ∪ ((◡(t+‘𝐹) “ 𝑈) ∪ ((t+‘𝐹) “ 𝑈)))) |
57 | 49, 56 | unssd 4120 |
. . 3
⊢ (𝜑 → (((𝐹 ∘ ◡(t+‘𝐹)) “ 𝑈) ∪ ((𝐹 ∘ (t+‘𝐹)) “ 𝑈)) ⊆ (𝑈 ∪ ((◡(t+‘𝐹) “ 𝑈) ∪ ((t+‘𝐹) “ 𝑈)))) |
58 | 8, 57 | unssd 4120 |
. 2
⊢ (𝜑 → ((𝐹 “ 𝑈) ∪ (((𝐹 ∘ ◡(t+‘𝐹)) “ 𝑈) ∪ ((𝐹 ∘ (t+‘𝐹)) “ 𝑈))) ⊆ (𝑈 ∪ ((◡(t+‘𝐹) “ 𝑈) ∪ ((t+‘𝐹) “ 𝑈)))) |
59 | | frege131d.a |
. . . 4
⊢ (𝜑 → 𝐴 = (𝑈 ∪ ((◡(t+‘𝐹) “ 𝑈) ∪ ((t+‘𝐹) “ 𝑈)))) |
60 | 59 | imaeq2d 5963 |
. . 3
⊢ (𝜑 → (𝐹 “ 𝐴) = (𝐹 “ (𝑈 ∪ ((◡(t+‘𝐹) “ 𝑈) ∪ ((t+‘𝐹) “ 𝑈))))) |
61 | | imaundi 6047 |
. . . 4
⊢ (𝐹 “ (𝑈 ∪ ((◡(t+‘𝐹) “ 𝑈) ∪ ((t+‘𝐹) “ 𝑈)))) = ((𝐹 “ 𝑈) ∪ (𝐹 “ ((◡(t+‘𝐹) “ 𝑈) ∪ ((t+‘𝐹) “ 𝑈)))) |
62 | | imaundi 6047 |
. . . . . 6
⊢ (𝐹 “ ((◡(t+‘𝐹) “ 𝑈) ∪ ((t+‘𝐹) “ 𝑈))) = ((𝐹 “ (◡(t+‘𝐹) “ 𝑈)) ∪ (𝐹 “ ((t+‘𝐹) “ 𝑈))) |
63 | | imaco 6149 |
. . . . . . . 8
⊢ ((𝐹 ∘ ◡(t+‘𝐹)) “ 𝑈) = (𝐹 “ (◡(t+‘𝐹) “ 𝑈)) |
64 | 63 | eqcomi 2747 |
. . . . . . 7
⊢ (𝐹 “ (◡(t+‘𝐹) “ 𝑈)) = ((𝐹 ∘ ◡(t+‘𝐹)) “ 𝑈) |
65 | | imaco 6149 |
. . . . . . . 8
⊢ ((𝐹 ∘ (t+‘𝐹)) “ 𝑈) = (𝐹 “ ((t+‘𝐹) “ 𝑈)) |
66 | 65 | eqcomi 2747 |
. . . . . . 7
⊢ (𝐹 “ ((t+‘𝐹) “ 𝑈)) = ((𝐹 ∘ (t+‘𝐹)) “ 𝑈) |
67 | 64, 66 | uneq12i 4095 |
. . . . . 6
⊢ ((𝐹 “ (◡(t+‘𝐹) “ 𝑈)) ∪ (𝐹 “ ((t+‘𝐹) “ 𝑈))) = (((𝐹 ∘ ◡(t+‘𝐹)) “ 𝑈) ∪ ((𝐹 ∘ (t+‘𝐹)) “ 𝑈)) |
68 | 62, 67 | eqtri 2766 |
. . . . 5
⊢ (𝐹 “ ((◡(t+‘𝐹) “ 𝑈) ∪ ((t+‘𝐹) “ 𝑈))) = (((𝐹 ∘ ◡(t+‘𝐹)) “ 𝑈) ∪ ((𝐹 ∘ (t+‘𝐹)) “ 𝑈)) |
69 | 68 | uneq2i 4094 |
. . . 4
⊢ ((𝐹 “ 𝑈) ∪ (𝐹 “ ((◡(t+‘𝐹) “ 𝑈) ∪ ((t+‘𝐹) “ 𝑈)))) = ((𝐹 “ 𝑈) ∪ (((𝐹 ∘ ◡(t+‘𝐹)) “ 𝑈) ∪ ((𝐹 ∘ (t+‘𝐹)) “ 𝑈))) |
70 | 61, 69 | eqtri 2766 |
. . 3
⊢ (𝐹 “ (𝑈 ∪ ((◡(t+‘𝐹) “ 𝑈) ∪ ((t+‘𝐹) “ 𝑈)))) = ((𝐹 “ 𝑈) ∪ (((𝐹 ∘ ◡(t+‘𝐹)) “ 𝑈) ∪ ((𝐹 ∘ (t+‘𝐹)) “ 𝑈))) |
71 | 60, 70 | eqtrdi 2794 |
. 2
⊢ (𝜑 → (𝐹 “ 𝐴) = ((𝐹 “ 𝑈) ∪ (((𝐹 ∘ ◡(t+‘𝐹)) “ 𝑈) ∪ ((𝐹 ∘ (t+‘𝐹)) “ 𝑈)))) |
72 | 58, 71, 59 | 3sstr4d 3968 |
1
⊢ (𝜑 → (𝐹 “ 𝐴) ⊆ 𝐴) |