Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege131d Structured version   Visualization version   GIF version

Theorem frege131d 39013
Description: If 𝐹 is a function and 𝐴 contains all elements of 𝑈 and all elements before or after those elements of 𝑈 in the transitive closure of 𝐹, then the image under 𝐹 of 𝐴 is a subclass of 𝐴. Similar to Proposition 131 of [Frege1879] p. 85. Compare with frege131 39244. (Contributed by RP, 17-Jul-2020.)
Hypotheses
Ref Expression
frege131d.f (𝜑𝐹 ∈ V)
frege131d.a (𝜑𝐴 = (𝑈 ∪ (((t+‘𝐹) “ 𝑈) ∪ ((t+‘𝐹) “ 𝑈))))
frege131d.fun (𝜑 → Fun 𝐹)
Assertion
Ref Expression
frege131d (𝜑 → (𝐹𝐴) ⊆ 𝐴)

Proof of Theorem frege131d
StepHypRef Expression
1 frege131d.f . . . . 5 (𝜑𝐹 ∈ V)
2 trclfvlb 14156 . . . . 5 (𝐹 ∈ V → 𝐹 ⊆ (t+‘𝐹))
3 imass1 5754 . . . . 5 (𝐹 ⊆ (t+‘𝐹) → (𝐹𝑈) ⊆ ((t+‘𝐹) “ 𝑈))
41, 2, 33syl 18 . . . 4 (𝜑 → (𝐹𝑈) ⊆ ((t+‘𝐹) “ 𝑈))
5 ssun2 4000 . . . . 5 ((t+‘𝐹) “ 𝑈) ⊆ (((t+‘𝐹) “ 𝑈) ∪ ((t+‘𝐹) “ 𝑈))
6 ssun2 4000 . . . . 5 (((t+‘𝐹) “ 𝑈) ∪ ((t+‘𝐹) “ 𝑈)) ⊆ (𝑈 ∪ (((t+‘𝐹) “ 𝑈) ∪ ((t+‘𝐹) “ 𝑈)))
75, 6sstri 3830 . . . 4 ((t+‘𝐹) “ 𝑈) ⊆ (𝑈 ∪ (((t+‘𝐹) “ 𝑈) ∪ ((t+‘𝐹) “ 𝑈)))
84, 7syl6ss 3833 . . 3 (𝜑 → (𝐹𝑈) ⊆ (𝑈 ∪ (((t+‘𝐹) “ 𝑈) ∪ ((t+‘𝐹) “ 𝑈))))
9 trclfvdecomr 38977 . . . . . . . . . . . 12 (𝐹 ∈ V → (t+‘𝐹) = (𝐹 ∪ ((t+‘𝐹) ∘ 𝐹)))
101, 9syl 17 . . . . . . . . . . 11 (𝜑 → (t+‘𝐹) = (𝐹 ∪ ((t+‘𝐹) ∘ 𝐹)))
1110cnveqd 5543 . . . . . . . . . 10 (𝜑(t+‘𝐹) = (𝐹 ∪ ((t+‘𝐹) ∘ 𝐹)))
12 cnvun 5792 . . . . . . . . . . 11 (𝐹 ∪ ((t+‘𝐹) ∘ 𝐹)) = (𝐹((t+‘𝐹) ∘ 𝐹))
13 cnvco 5553 . . . . . . . . . . . 12 ((t+‘𝐹) ∘ 𝐹) = (𝐹(t+‘𝐹))
1413uneq2i 3987 . . . . . . . . . . 11 (𝐹((t+‘𝐹) ∘ 𝐹)) = (𝐹 ∪ (𝐹(t+‘𝐹)))
1512, 14eqtri 2802 . . . . . . . . . 10 (𝐹 ∪ ((t+‘𝐹) ∘ 𝐹)) = (𝐹 ∪ (𝐹(t+‘𝐹)))
1611, 15syl6eq 2830 . . . . . . . . 9 (𝜑(t+‘𝐹) = (𝐹 ∪ (𝐹(t+‘𝐹))))
1716coeq2d 5530 . . . . . . . 8 (𝜑 → (𝐹(t+‘𝐹)) = (𝐹 ∘ (𝐹 ∪ (𝐹(t+‘𝐹)))))
18 coundi 5890 . . . . . . . . 9 (𝐹 ∘ (𝐹 ∪ (𝐹(t+‘𝐹)))) = ((𝐹𝐹) ∪ (𝐹 ∘ (𝐹(t+‘𝐹))))
19 frege131d.fun . . . . . . . . . . 11 (𝜑 → Fun 𝐹)
20 funcocnv2 6415 . . . . . . . . . . 11 (Fun 𝐹 → (𝐹𝐹) = ( I ↾ ran 𝐹))
2119, 20syl 17 . . . . . . . . . 10 (𝜑 → (𝐹𝐹) = ( I ↾ ran 𝐹))
22 coass 5908 . . . . . . . . . . . 12 ((𝐹𝐹) ∘ (t+‘𝐹)) = (𝐹 ∘ (𝐹(t+‘𝐹)))
2322eqcomi 2787 . . . . . . . . . . 11 (𝐹 ∘ (𝐹(t+‘𝐹))) = ((𝐹𝐹) ∘ (t+‘𝐹))
2421coeq1d 5529 . . . . . . . . . . 11 (𝜑 → ((𝐹𝐹) ∘ (t+‘𝐹)) = (( I ↾ ran 𝐹) ∘ (t+‘𝐹)))
2523, 24syl5eq 2826 . . . . . . . . . 10 (𝜑 → (𝐹 ∘ (𝐹(t+‘𝐹))) = (( I ↾ ran 𝐹) ∘ (t+‘𝐹)))
2621, 25uneq12d 3991 . . . . . . . . 9 (𝜑 → ((𝐹𝐹) ∪ (𝐹 ∘ (𝐹(t+‘𝐹)))) = (( I ↾ ran 𝐹) ∪ (( I ↾ ran 𝐹) ∘ (t+‘𝐹))))
2718, 26syl5eq 2826 . . . . . . . 8 (𝜑 → (𝐹 ∘ (𝐹 ∪ (𝐹(t+‘𝐹)))) = (( I ↾ ran 𝐹) ∪ (( I ↾ ran 𝐹) ∘ (t+‘𝐹))))
2817, 27eqtrd 2814 . . . . . . 7 (𝜑 → (𝐹(t+‘𝐹)) = (( I ↾ ran 𝐹) ∪ (( I ↾ ran 𝐹) ∘ (t+‘𝐹))))
2928imaeq1d 5719 . . . . . 6 (𝜑 → ((𝐹(t+‘𝐹)) “ 𝑈) = ((( I ↾ ran 𝐹) ∪ (( I ↾ ran 𝐹) ∘ (t+‘𝐹))) “ 𝑈))
30 imaundir 5800 . . . . . 6 ((( I ↾ ran 𝐹) ∪ (( I ↾ ran 𝐹) ∘ (t+‘𝐹))) “ 𝑈) = ((( I ↾ ran 𝐹) “ 𝑈) ∪ ((( I ↾ ran 𝐹) ∘ (t+‘𝐹)) “ 𝑈))
3129, 30syl6eq 2830 . . . . 5 (𝜑 → ((𝐹(t+‘𝐹)) “ 𝑈) = ((( I ↾ ran 𝐹) “ 𝑈) ∪ ((( I ↾ ran 𝐹) ∘ (t+‘𝐹)) “ 𝑈)))
32 resss 5671 . . . . . . . . 9 ( I ↾ ran 𝐹) ⊆ I
33 imass1 5754 . . . . . . . . 9 (( I ↾ ran 𝐹) ⊆ I → (( I ↾ ran 𝐹) “ 𝑈) ⊆ ( I “ 𝑈))
3432, 33ax-mp 5 . . . . . . . 8 (( I ↾ ran 𝐹) “ 𝑈) ⊆ ( I “ 𝑈)
35 imai 5732 . . . . . . . 8 ( I “ 𝑈) = 𝑈
3634, 35sseqtri 3856 . . . . . . 7 (( I ↾ ran 𝐹) “ 𝑈) ⊆ 𝑈
37 imaco 5894 . . . . . . . 8 ((( I ↾ ran 𝐹) ∘ (t+‘𝐹)) “ 𝑈) = (( I ↾ ran 𝐹) “ ((t+‘𝐹) “ 𝑈))
38 imass1 5754 . . . . . . . . . 10 (( I ↾ ran 𝐹) ⊆ I → (( I ↾ ran 𝐹) “ ((t+‘𝐹) “ 𝑈)) ⊆ ( I “ ((t+‘𝐹) “ 𝑈)))
3932, 38ax-mp 5 . . . . . . . . 9 (( I ↾ ran 𝐹) “ ((t+‘𝐹) “ 𝑈)) ⊆ ( I “ ((t+‘𝐹) “ 𝑈))
40 imai 5732 . . . . . . . . 9 ( I “ ((t+‘𝐹) “ 𝑈)) = ((t+‘𝐹) “ 𝑈)
4139, 40sseqtri 3856 . . . . . . . 8 (( I ↾ ran 𝐹) “ ((t+‘𝐹) “ 𝑈)) ⊆ ((t+‘𝐹) “ 𝑈)
4237, 41eqsstri 3854 . . . . . . 7 ((( I ↾ ran 𝐹) ∘ (t+‘𝐹)) “ 𝑈) ⊆ ((t+‘𝐹) “ 𝑈)
43 unss12 4008 . . . . . . 7 (((( I ↾ ran 𝐹) “ 𝑈) ⊆ 𝑈 ∧ ((( I ↾ ran 𝐹) ∘ (t+‘𝐹)) “ 𝑈) ⊆ ((t+‘𝐹) “ 𝑈)) → ((( I ↾ ran 𝐹) “ 𝑈) ∪ ((( I ↾ ran 𝐹) ∘ (t+‘𝐹)) “ 𝑈)) ⊆ (𝑈 ∪ ((t+‘𝐹) “ 𝑈)))
4436, 42, 43mp2an 682 . . . . . 6 ((( I ↾ ran 𝐹) “ 𝑈) ∪ ((( I ↾ ran 𝐹) ∘ (t+‘𝐹)) “ 𝑈)) ⊆ (𝑈 ∪ ((t+‘𝐹) “ 𝑈))
45 ssun1 3999 . . . . . . 7 (𝑈 ∪ ((t+‘𝐹) “ 𝑈)) ⊆ ((𝑈 ∪ ((t+‘𝐹) “ 𝑈)) ∪ ((t+‘𝐹) “ 𝑈))
46 unass 3993 . . . . . . 7 ((𝑈 ∪ ((t+‘𝐹) “ 𝑈)) ∪ ((t+‘𝐹) “ 𝑈)) = (𝑈 ∪ (((t+‘𝐹) “ 𝑈) ∪ ((t+‘𝐹) “ 𝑈)))
4745, 46sseqtri 3856 . . . . . 6 (𝑈 ∪ ((t+‘𝐹) “ 𝑈)) ⊆ (𝑈 ∪ (((t+‘𝐹) “ 𝑈) ∪ ((t+‘𝐹) “ 𝑈)))
4844, 47sstri 3830 . . . . 5 ((( I ↾ ran 𝐹) “ 𝑈) ∪ ((( I ↾ ran 𝐹) ∘ (t+‘𝐹)) “ 𝑈)) ⊆ (𝑈 ∪ (((t+‘𝐹) “ 𝑈) ∪ ((t+‘𝐹) “ 𝑈)))
4931, 48syl6eqss 3874 . . . 4 (𝜑 → ((𝐹(t+‘𝐹)) “ 𝑈) ⊆ (𝑈 ∪ (((t+‘𝐹) “ 𝑈) ∪ ((t+‘𝐹) “ 𝑈))))
50 coss1 5523 . . . . . . . 8 (𝐹 ⊆ (t+‘𝐹) → (𝐹 ∘ (t+‘𝐹)) ⊆ ((t+‘𝐹) ∘ (t+‘𝐹)))
511, 2, 503syl 18 . . . . . . 7 (𝜑 → (𝐹 ∘ (t+‘𝐹)) ⊆ ((t+‘𝐹) ∘ (t+‘𝐹)))
52 trclfvcotrg 14164 . . . . . . 7 ((t+‘𝐹) ∘ (t+‘𝐹)) ⊆ (t+‘𝐹)
5351, 52syl6ss 3833 . . . . . 6 (𝜑 → (𝐹 ∘ (t+‘𝐹)) ⊆ (t+‘𝐹))
54 imass1 5754 . . . . . 6 ((𝐹 ∘ (t+‘𝐹)) ⊆ (t+‘𝐹) → ((𝐹 ∘ (t+‘𝐹)) “ 𝑈) ⊆ ((t+‘𝐹) “ 𝑈))
5553, 54syl 17 . . . . 5 (𝜑 → ((𝐹 ∘ (t+‘𝐹)) “ 𝑈) ⊆ ((t+‘𝐹) “ 𝑈))
5655, 7syl6ss 3833 . . . 4 (𝜑 → ((𝐹 ∘ (t+‘𝐹)) “ 𝑈) ⊆ (𝑈 ∪ (((t+‘𝐹) “ 𝑈) ∪ ((t+‘𝐹) “ 𝑈))))
5749, 56unssd 4012 . . 3 (𝜑 → (((𝐹(t+‘𝐹)) “ 𝑈) ∪ ((𝐹 ∘ (t+‘𝐹)) “ 𝑈)) ⊆ (𝑈 ∪ (((t+‘𝐹) “ 𝑈) ∪ ((t+‘𝐹) “ 𝑈))))
588, 57unssd 4012 . 2 (𝜑 → ((𝐹𝑈) ∪ (((𝐹(t+‘𝐹)) “ 𝑈) ∪ ((𝐹 ∘ (t+‘𝐹)) “ 𝑈))) ⊆ (𝑈 ∪ (((t+‘𝐹) “ 𝑈) ∪ ((t+‘𝐹) “ 𝑈))))
59 frege131d.a . . . 4 (𝜑𝐴 = (𝑈 ∪ (((t+‘𝐹) “ 𝑈) ∪ ((t+‘𝐹) “ 𝑈))))
6059imaeq2d 5720 . . 3 (𝜑 → (𝐹𝐴) = (𝐹 “ (𝑈 ∪ (((t+‘𝐹) “ 𝑈) ∪ ((t+‘𝐹) “ 𝑈)))))
61 imaundi 5799 . . . 4 (𝐹 “ (𝑈 ∪ (((t+‘𝐹) “ 𝑈) ∪ ((t+‘𝐹) “ 𝑈)))) = ((𝐹𝑈) ∪ (𝐹 “ (((t+‘𝐹) “ 𝑈) ∪ ((t+‘𝐹) “ 𝑈))))
62 imaundi 5799 . . . . . 6 (𝐹 “ (((t+‘𝐹) “ 𝑈) ∪ ((t+‘𝐹) “ 𝑈))) = ((𝐹 “ ((t+‘𝐹) “ 𝑈)) ∪ (𝐹 “ ((t+‘𝐹) “ 𝑈)))
63 imaco 5894 . . . . . . . 8 ((𝐹(t+‘𝐹)) “ 𝑈) = (𝐹 “ ((t+‘𝐹) “ 𝑈))
6463eqcomi 2787 . . . . . . 7 (𝐹 “ ((t+‘𝐹) “ 𝑈)) = ((𝐹(t+‘𝐹)) “ 𝑈)
65 imaco 5894 . . . . . . . 8 ((𝐹 ∘ (t+‘𝐹)) “ 𝑈) = (𝐹 “ ((t+‘𝐹) “ 𝑈))
6665eqcomi 2787 . . . . . . 7 (𝐹 “ ((t+‘𝐹) “ 𝑈)) = ((𝐹 ∘ (t+‘𝐹)) “ 𝑈)
6764, 66uneq12i 3988 . . . . . 6 ((𝐹 “ ((t+‘𝐹) “ 𝑈)) ∪ (𝐹 “ ((t+‘𝐹) “ 𝑈))) = (((𝐹(t+‘𝐹)) “ 𝑈) ∪ ((𝐹 ∘ (t+‘𝐹)) “ 𝑈))
6862, 67eqtri 2802 . . . . 5 (𝐹 “ (((t+‘𝐹) “ 𝑈) ∪ ((t+‘𝐹) “ 𝑈))) = (((𝐹(t+‘𝐹)) “ 𝑈) ∪ ((𝐹 ∘ (t+‘𝐹)) “ 𝑈))
6968uneq2i 3987 . . . 4 ((𝐹𝑈) ∪ (𝐹 “ (((t+‘𝐹) “ 𝑈) ∪ ((t+‘𝐹) “ 𝑈)))) = ((𝐹𝑈) ∪ (((𝐹(t+‘𝐹)) “ 𝑈) ∪ ((𝐹 ∘ (t+‘𝐹)) “ 𝑈)))
7061, 69eqtri 2802 . . 3 (𝐹 “ (𝑈 ∪ (((t+‘𝐹) “ 𝑈) ∪ ((t+‘𝐹) “ 𝑈)))) = ((𝐹𝑈) ∪ (((𝐹(t+‘𝐹)) “ 𝑈) ∪ ((𝐹 ∘ (t+‘𝐹)) “ 𝑈)))
7160, 70syl6eq 2830 . 2 (𝜑 → (𝐹𝐴) = ((𝐹𝑈) ∪ (((𝐹(t+‘𝐹)) “ 𝑈) ∪ ((𝐹 ∘ (t+‘𝐹)) “ 𝑈))))
7258, 71, 593sstr4d 3867 1 (𝜑 → (𝐹𝐴) ⊆ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1601  wcel 2107  Vcvv 3398  cun 3790  wss 3792   I cid 5260  ccnv 5354  ran crn 5356  cres 5357  cima 5358  ccom 5359  Fun wfun 6129  cfv 6135  t+ctcl 14133
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4672  df-int 4711  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-om 7344  df-1st 7445  df-2nd 7446  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-er 8026  df-en 8242  df-dom 8243  df-sdom 8244  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-nn 11375  df-2 11438  df-n0 11643  df-z 11729  df-uz 11993  df-fz 12644  df-seq 13120  df-trcl 14135  df-relexp 14168
This theorem is referenced by:  frege133d  39014
  Copyright terms: Public domain W3C validator