Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege131d Structured version   Visualization version   GIF version

Theorem frege131d 43760
Description: If 𝐹 is a function and 𝐴 contains all elements of 𝑈 and all elements before or after those elements of 𝑈 in the transitive closure of 𝐹, then the image under 𝐹 of 𝐴 is a subclass of 𝐴. Similar to Proposition 131 of [Frege1879] p. 85. Compare with frege131 43990. (Contributed by RP, 17-Jul-2020.)
Hypotheses
Ref Expression
frege131d.f (𝜑𝐹 ∈ V)
frege131d.a (𝜑𝐴 = (𝑈 ∪ (((t+‘𝐹) “ 𝑈) ∪ ((t+‘𝐹) “ 𝑈))))
frege131d.fun (𝜑 → Fun 𝐹)
Assertion
Ref Expression
frege131d (𝜑 → (𝐹𝐴) ⊆ 𝐴)

Proof of Theorem frege131d
StepHypRef Expression
1 frege131d.f . . . . 5 (𝜑𝐹 ∈ V)
2 trclfvlb 14981 . . . . 5 (𝐹 ∈ V → 𝐹 ⊆ (t+‘𝐹))
3 imass1 6075 . . . . 5 (𝐹 ⊆ (t+‘𝐹) → (𝐹𝑈) ⊆ ((t+‘𝐹) “ 𝑈))
41, 2, 33syl 18 . . . 4 (𝜑 → (𝐹𝑈) ⊆ ((t+‘𝐹) “ 𝑈))
5 ssun2 4145 . . . . 5 ((t+‘𝐹) “ 𝑈) ⊆ (((t+‘𝐹) “ 𝑈) ∪ ((t+‘𝐹) “ 𝑈))
6 ssun2 4145 . . . . 5 (((t+‘𝐹) “ 𝑈) ∪ ((t+‘𝐹) “ 𝑈)) ⊆ (𝑈 ∪ (((t+‘𝐹) “ 𝑈) ∪ ((t+‘𝐹) “ 𝑈)))
75, 6sstri 3959 . . . 4 ((t+‘𝐹) “ 𝑈) ⊆ (𝑈 ∪ (((t+‘𝐹) “ 𝑈) ∪ ((t+‘𝐹) “ 𝑈)))
84, 7sstrdi 3962 . . 3 (𝜑 → (𝐹𝑈) ⊆ (𝑈 ∪ (((t+‘𝐹) “ 𝑈) ∪ ((t+‘𝐹) “ 𝑈))))
9 trclfvdecomr 43724 . . . . . . . . . . . 12 (𝐹 ∈ V → (t+‘𝐹) = (𝐹 ∪ ((t+‘𝐹) ∘ 𝐹)))
101, 9syl 17 . . . . . . . . . . 11 (𝜑 → (t+‘𝐹) = (𝐹 ∪ ((t+‘𝐹) ∘ 𝐹)))
1110cnveqd 5842 . . . . . . . . . 10 (𝜑(t+‘𝐹) = (𝐹 ∪ ((t+‘𝐹) ∘ 𝐹)))
12 cnvun 6118 . . . . . . . . . . 11 (𝐹 ∪ ((t+‘𝐹) ∘ 𝐹)) = (𝐹((t+‘𝐹) ∘ 𝐹))
13 cnvco 5852 . . . . . . . . . . . 12 ((t+‘𝐹) ∘ 𝐹) = (𝐹(t+‘𝐹))
1413uneq2i 4131 . . . . . . . . . . 11 (𝐹((t+‘𝐹) ∘ 𝐹)) = (𝐹 ∪ (𝐹(t+‘𝐹)))
1512, 14eqtri 2753 . . . . . . . . . 10 (𝐹 ∪ ((t+‘𝐹) ∘ 𝐹)) = (𝐹 ∪ (𝐹(t+‘𝐹)))
1611, 15eqtrdi 2781 . . . . . . . . 9 (𝜑(t+‘𝐹) = (𝐹 ∪ (𝐹(t+‘𝐹))))
1716coeq2d 5829 . . . . . . . 8 (𝜑 → (𝐹(t+‘𝐹)) = (𝐹 ∘ (𝐹 ∪ (𝐹(t+‘𝐹)))))
18 coundi 6223 . . . . . . . . 9 (𝐹 ∘ (𝐹 ∪ (𝐹(t+‘𝐹)))) = ((𝐹𝐹) ∪ (𝐹 ∘ (𝐹(t+‘𝐹))))
19 frege131d.fun . . . . . . . . . . 11 (𝜑 → Fun 𝐹)
20 funcocnv2 6828 . . . . . . . . . . 11 (Fun 𝐹 → (𝐹𝐹) = ( I ↾ ran 𝐹))
2119, 20syl 17 . . . . . . . . . 10 (𝜑 → (𝐹𝐹) = ( I ↾ ran 𝐹))
22 coass 6241 . . . . . . . . . . . 12 ((𝐹𝐹) ∘ (t+‘𝐹)) = (𝐹 ∘ (𝐹(t+‘𝐹)))
2322eqcomi 2739 . . . . . . . . . . 11 (𝐹 ∘ (𝐹(t+‘𝐹))) = ((𝐹𝐹) ∘ (t+‘𝐹))
2421coeq1d 5828 . . . . . . . . . . 11 (𝜑 → ((𝐹𝐹) ∘ (t+‘𝐹)) = (( I ↾ ran 𝐹) ∘ (t+‘𝐹)))
2523, 24eqtrid 2777 . . . . . . . . . 10 (𝜑 → (𝐹 ∘ (𝐹(t+‘𝐹))) = (( I ↾ ran 𝐹) ∘ (t+‘𝐹)))
2621, 25uneq12d 4135 . . . . . . . . 9 (𝜑 → ((𝐹𝐹) ∪ (𝐹 ∘ (𝐹(t+‘𝐹)))) = (( I ↾ ran 𝐹) ∪ (( I ↾ ran 𝐹) ∘ (t+‘𝐹))))
2718, 26eqtrid 2777 . . . . . . . 8 (𝜑 → (𝐹 ∘ (𝐹 ∪ (𝐹(t+‘𝐹)))) = (( I ↾ ran 𝐹) ∪ (( I ↾ ran 𝐹) ∘ (t+‘𝐹))))
2817, 27eqtrd 2765 . . . . . . 7 (𝜑 → (𝐹(t+‘𝐹)) = (( I ↾ ran 𝐹) ∪ (( I ↾ ran 𝐹) ∘ (t+‘𝐹))))
2928imaeq1d 6033 . . . . . 6 (𝜑 → ((𝐹(t+‘𝐹)) “ 𝑈) = ((( I ↾ ran 𝐹) ∪ (( I ↾ ran 𝐹) ∘ (t+‘𝐹))) “ 𝑈))
30 imaundir 6126 . . . . . 6 ((( I ↾ ran 𝐹) ∪ (( I ↾ ran 𝐹) ∘ (t+‘𝐹))) “ 𝑈) = ((( I ↾ ran 𝐹) “ 𝑈) ∪ ((( I ↾ ran 𝐹) ∘ (t+‘𝐹)) “ 𝑈))
3129, 30eqtrdi 2781 . . . . 5 (𝜑 → ((𝐹(t+‘𝐹)) “ 𝑈) = ((( I ↾ ran 𝐹) “ 𝑈) ∪ ((( I ↾ ran 𝐹) ∘ (t+‘𝐹)) “ 𝑈)))
32 resss 5975 . . . . . . . . 9 ( I ↾ ran 𝐹) ⊆ I
33 imass1 6075 . . . . . . . . 9 (( I ↾ ran 𝐹) ⊆ I → (( I ↾ ran 𝐹) “ 𝑈) ⊆ ( I “ 𝑈))
3432, 33ax-mp 5 . . . . . . . 8 (( I ↾ ran 𝐹) “ 𝑈) ⊆ ( I “ 𝑈)
35 imai 6048 . . . . . . . 8 ( I “ 𝑈) = 𝑈
3634, 35sseqtri 3998 . . . . . . 7 (( I ↾ ran 𝐹) “ 𝑈) ⊆ 𝑈
37 imaco 6227 . . . . . . . 8 ((( I ↾ ran 𝐹) ∘ (t+‘𝐹)) “ 𝑈) = (( I ↾ ran 𝐹) “ ((t+‘𝐹) “ 𝑈))
38 imass1 6075 . . . . . . . . . 10 (( I ↾ ran 𝐹) ⊆ I → (( I ↾ ran 𝐹) “ ((t+‘𝐹) “ 𝑈)) ⊆ ( I “ ((t+‘𝐹) “ 𝑈)))
3932, 38ax-mp 5 . . . . . . . . 9 (( I ↾ ran 𝐹) “ ((t+‘𝐹) “ 𝑈)) ⊆ ( I “ ((t+‘𝐹) “ 𝑈))
40 imai 6048 . . . . . . . . 9 ( I “ ((t+‘𝐹) “ 𝑈)) = ((t+‘𝐹) “ 𝑈)
4139, 40sseqtri 3998 . . . . . . . 8 (( I ↾ ran 𝐹) “ ((t+‘𝐹) “ 𝑈)) ⊆ ((t+‘𝐹) “ 𝑈)
4237, 41eqsstri 3996 . . . . . . 7 ((( I ↾ ran 𝐹) ∘ (t+‘𝐹)) “ 𝑈) ⊆ ((t+‘𝐹) “ 𝑈)
43 unss12 4154 . . . . . . 7 (((( I ↾ ran 𝐹) “ 𝑈) ⊆ 𝑈 ∧ ((( I ↾ ran 𝐹) ∘ (t+‘𝐹)) “ 𝑈) ⊆ ((t+‘𝐹) “ 𝑈)) → ((( I ↾ ran 𝐹) “ 𝑈) ∪ ((( I ↾ ran 𝐹) ∘ (t+‘𝐹)) “ 𝑈)) ⊆ (𝑈 ∪ ((t+‘𝐹) “ 𝑈)))
4436, 42, 43mp2an 692 . . . . . 6 ((( I ↾ ran 𝐹) “ 𝑈) ∪ ((( I ↾ ran 𝐹) ∘ (t+‘𝐹)) “ 𝑈)) ⊆ (𝑈 ∪ ((t+‘𝐹) “ 𝑈))
45 ssun1 4144 . . . . . . 7 (𝑈 ∪ ((t+‘𝐹) “ 𝑈)) ⊆ ((𝑈 ∪ ((t+‘𝐹) “ 𝑈)) ∪ ((t+‘𝐹) “ 𝑈))
46 unass 4138 . . . . . . 7 ((𝑈 ∪ ((t+‘𝐹) “ 𝑈)) ∪ ((t+‘𝐹) “ 𝑈)) = (𝑈 ∪ (((t+‘𝐹) “ 𝑈) ∪ ((t+‘𝐹) “ 𝑈)))
4745, 46sseqtri 3998 . . . . . 6 (𝑈 ∪ ((t+‘𝐹) “ 𝑈)) ⊆ (𝑈 ∪ (((t+‘𝐹) “ 𝑈) ∪ ((t+‘𝐹) “ 𝑈)))
4844, 47sstri 3959 . . . . 5 ((( I ↾ ran 𝐹) “ 𝑈) ∪ ((( I ↾ ran 𝐹) ∘ (t+‘𝐹)) “ 𝑈)) ⊆ (𝑈 ∪ (((t+‘𝐹) “ 𝑈) ∪ ((t+‘𝐹) “ 𝑈)))
4931, 48eqsstrdi 3994 . . . 4 (𝜑 → ((𝐹(t+‘𝐹)) “ 𝑈) ⊆ (𝑈 ∪ (((t+‘𝐹) “ 𝑈) ∪ ((t+‘𝐹) “ 𝑈))))
50 coss1 5822 . . . . . . . 8 (𝐹 ⊆ (t+‘𝐹) → (𝐹 ∘ (t+‘𝐹)) ⊆ ((t+‘𝐹) ∘ (t+‘𝐹)))
511, 2, 503syl 18 . . . . . . 7 (𝜑 → (𝐹 ∘ (t+‘𝐹)) ⊆ ((t+‘𝐹) ∘ (t+‘𝐹)))
52 trclfvcotrg 14989 . . . . . . 7 ((t+‘𝐹) ∘ (t+‘𝐹)) ⊆ (t+‘𝐹)
5351, 52sstrdi 3962 . . . . . 6 (𝜑 → (𝐹 ∘ (t+‘𝐹)) ⊆ (t+‘𝐹))
54 imass1 6075 . . . . . 6 ((𝐹 ∘ (t+‘𝐹)) ⊆ (t+‘𝐹) → ((𝐹 ∘ (t+‘𝐹)) “ 𝑈) ⊆ ((t+‘𝐹) “ 𝑈))
5553, 54syl 17 . . . . 5 (𝜑 → ((𝐹 ∘ (t+‘𝐹)) “ 𝑈) ⊆ ((t+‘𝐹) “ 𝑈))
5655, 7sstrdi 3962 . . . 4 (𝜑 → ((𝐹 ∘ (t+‘𝐹)) “ 𝑈) ⊆ (𝑈 ∪ (((t+‘𝐹) “ 𝑈) ∪ ((t+‘𝐹) “ 𝑈))))
5749, 56unssd 4158 . . 3 (𝜑 → (((𝐹(t+‘𝐹)) “ 𝑈) ∪ ((𝐹 ∘ (t+‘𝐹)) “ 𝑈)) ⊆ (𝑈 ∪ (((t+‘𝐹) “ 𝑈) ∪ ((t+‘𝐹) “ 𝑈))))
588, 57unssd 4158 . 2 (𝜑 → ((𝐹𝑈) ∪ (((𝐹(t+‘𝐹)) “ 𝑈) ∪ ((𝐹 ∘ (t+‘𝐹)) “ 𝑈))) ⊆ (𝑈 ∪ (((t+‘𝐹) “ 𝑈) ∪ ((t+‘𝐹) “ 𝑈))))
59 frege131d.a . . . 4 (𝜑𝐴 = (𝑈 ∪ (((t+‘𝐹) “ 𝑈) ∪ ((t+‘𝐹) “ 𝑈))))
6059imaeq2d 6034 . . 3 (𝜑 → (𝐹𝐴) = (𝐹 “ (𝑈 ∪ (((t+‘𝐹) “ 𝑈) ∪ ((t+‘𝐹) “ 𝑈)))))
61 imaundi 6125 . . . 4 (𝐹 “ (𝑈 ∪ (((t+‘𝐹) “ 𝑈) ∪ ((t+‘𝐹) “ 𝑈)))) = ((𝐹𝑈) ∪ (𝐹 “ (((t+‘𝐹) “ 𝑈) ∪ ((t+‘𝐹) “ 𝑈))))
62 imaundi 6125 . . . . . 6 (𝐹 “ (((t+‘𝐹) “ 𝑈) ∪ ((t+‘𝐹) “ 𝑈))) = ((𝐹 “ ((t+‘𝐹) “ 𝑈)) ∪ (𝐹 “ ((t+‘𝐹) “ 𝑈)))
63 imaco 6227 . . . . . . . 8 ((𝐹(t+‘𝐹)) “ 𝑈) = (𝐹 “ ((t+‘𝐹) “ 𝑈))
6463eqcomi 2739 . . . . . . 7 (𝐹 “ ((t+‘𝐹) “ 𝑈)) = ((𝐹(t+‘𝐹)) “ 𝑈)
65 imaco 6227 . . . . . . . 8 ((𝐹 ∘ (t+‘𝐹)) “ 𝑈) = (𝐹 “ ((t+‘𝐹) “ 𝑈))
6665eqcomi 2739 . . . . . . 7 (𝐹 “ ((t+‘𝐹) “ 𝑈)) = ((𝐹 ∘ (t+‘𝐹)) “ 𝑈)
6764, 66uneq12i 4132 . . . . . 6 ((𝐹 “ ((t+‘𝐹) “ 𝑈)) ∪ (𝐹 “ ((t+‘𝐹) “ 𝑈))) = (((𝐹(t+‘𝐹)) “ 𝑈) ∪ ((𝐹 ∘ (t+‘𝐹)) “ 𝑈))
6862, 67eqtri 2753 . . . . 5 (𝐹 “ (((t+‘𝐹) “ 𝑈) ∪ ((t+‘𝐹) “ 𝑈))) = (((𝐹(t+‘𝐹)) “ 𝑈) ∪ ((𝐹 ∘ (t+‘𝐹)) “ 𝑈))
6968uneq2i 4131 . . . 4 ((𝐹𝑈) ∪ (𝐹 “ (((t+‘𝐹) “ 𝑈) ∪ ((t+‘𝐹) “ 𝑈)))) = ((𝐹𝑈) ∪ (((𝐹(t+‘𝐹)) “ 𝑈) ∪ ((𝐹 ∘ (t+‘𝐹)) “ 𝑈)))
7061, 69eqtri 2753 . . 3 (𝐹 “ (𝑈 ∪ (((t+‘𝐹) “ 𝑈) ∪ ((t+‘𝐹) “ 𝑈)))) = ((𝐹𝑈) ∪ (((𝐹(t+‘𝐹)) “ 𝑈) ∪ ((𝐹 ∘ (t+‘𝐹)) “ 𝑈)))
7160, 70eqtrdi 2781 . 2 (𝜑 → (𝐹𝐴) = ((𝐹𝑈) ∪ (((𝐹(t+‘𝐹)) “ 𝑈) ∪ ((𝐹 ∘ (t+‘𝐹)) “ 𝑈))))
7258, 71, 593sstr4d 4005 1 (𝜑 → (𝐹𝐴) ⊆ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3450  cun 3915  wss 3917   I cid 5535  ccnv 5640  ran crn 5642  cres 5643  cima 5644  ccom 5645  Fun wfun 6508  cfv 6514  t+ctcl 14958
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-n0 12450  df-z 12537  df-uz 12801  df-fz 13476  df-seq 13974  df-trcl 14960  df-relexp 14993
This theorem is referenced by:  frege133d  43761
  Copyright terms: Public domain W3C validator