Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cosn Structured version   Visualization version   GIF version

Theorem cosn 48718
Description: Composition with an ordered pair singleton. (Contributed by Zhi Wang, 6-Oct-2025.)
Assertion
Ref Expression
cosn ((𝐵𝑈𝐶𝑉) → (𝐴 ∘ {⟨𝐵, 𝐶⟩}) = ({𝐵} × (𝐴 “ {𝐶})))

Proof of Theorem cosn
StepHypRef Expression
1 xpsng 7157 . . 3 ((𝐵𝑈𝐶𝑉) → ({𝐵} × {𝐶}) = {⟨𝐵, 𝐶⟩})
21coeq2d 5871 . 2 ((𝐵𝑈𝐶𝑉) → (𝐴 ∘ ({𝐵} × {𝐶})) = (𝐴 ∘ {⟨𝐵, 𝐶⟩}))
3 coxp 48717 . 2 (𝐴 ∘ ({𝐵} × {𝐶})) = ({𝐵} × (𝐴 “ {𝐶}))
42, 3eqtr3di 2791 1 ((𝐵𝑈𝐶𝑉) → (𝐴 ∘ {⟨𝐵, 𝐶⟩}) = ({𝐵} × (𝐴 “ {𝐶})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  {csn 4624  cop 4630   × cxp 5681  cima 5686  ccom 5687
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5294  ax-nul 5304  ax-pr 5430
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-br 5142  df-opab 5204  df-mpt 5224  df-id 5576  df-xp 5689  df-rel 5690  df-cnv 5691  df-co 5692  df-dm 5693  df-rn 5694  df-res 5695  df-ima 5696  df-fun 6561  df-fn 6562  df-f 6563  df-f1 6564  df-fo 6565  df-f1o 6566
This theorem is referenced by:  cosni  48719
  Copyright terms: Public domain W3C validator