Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cosn Structured version   Visualization version   GIF version

Theorem cosn 48812
Description: Composition with an ordered pair singleton. (Contributed by Zhi Wang, 6-Oct-2025.)
Assertion
Ref Expression
cosn ((𝐵𝑈𝐶𝑉) → (𝐴 ∘ {⟨𝐵, 𝐶⟩}) = ({𝐵} × (𝐴 “ {𝐶})))

Proof of Theorem cosn
StepHypRef Expression
1 xpsng 7113 . . 3 ((𝐵𝑈𝐶𝑉) → ({𝐵} × {𝐶}) = {⟨𝐵, 𝐶⟩})
21coeq2d 5828 . 2 ((𝐵𝑈𝐶𝑉) → (𝐴 ∘ ({𝐵} × {𝐶})) = (𝐴 ∘ {⟨𝐵, 𝐶⟩}))
3 coxp 48811 . 2 (𝐴 ∘ ({𝐵} × {𝐶})) = ({𝐵} × (𝐴 “ {𝐶}))
42, 3eqtr3di 2780 1 ((𝐵𝑈𝐶𝑉) → (𝐴 ∘ {⟨𝐵, 𝐶⟩}) = ({𝐵} × (𝐴 “ {𝐶})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {csn 4591  cop 4597   × cxp 5638  cima 5643  ccom 5644
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pr 5389
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-sn 4592  df-pr 4594  df-op 4598  df-br 5110  df-opab 5172  df-mpt 5191  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520
This theorem is referenced by:  cosni  48813
  Copyright terms: Public domain W3C validator