| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cosn | Structured version Visualization version GIF version | ||
| Description: Composition with an ordered pair singleton. (Contributed by Zhi Wang, 6-Oct-2025.) |
| Ref | Expression |
|---|---|
| cosn | ⊢ ((𝐵 ∈ 𝑈 ∧ 𝐶 ∈ 𝑉) → (𝐴 ∘ {〈𝐵, 𝐶〉}) = ({𝐵} × (𝐴 “ {𝐶}))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpsng 7072 | . . 3 ⊢ ((𝐵 ∈ 𝑈 ∧ 𝐶 ∈ 𝑉) → ({𝐵} × {𝐶}) = {〈𝐵, 𝐶〉}) | |
| 2 | 1 | coeq2d 5801 | . 2 ⊢ ((𝐵 ∈ 𝑈 ∧ 𝐶 ∈ 𝑉) → (𝐴 ∘ ({𝐵} × {𝐶})) = (𝐴 ∘ {〈𝐵, 𝐶〉})) |
| 3 | coxp 48943 | . 2 ⊢ (𝐴 ∘ ({𝐵} × {𝐶})) = ({𝐵} × (𝐴 “ {𝐶})) | |
| 4 | 2, 3 | eqtr3di 2781 | 1 ⊢ ((𝐵 ∈ 𝑈 ∧ 𝐶 ∈ 𝑉) → (𝐴 ∘ {〈𝐵, 𝐶〉}) = ({𝐵} × (𝐴 “ {𝐶}))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 {csn 4573 〈cop 4579 × cxp 5612 “ cima 5617 ∘ ccom 5618 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 |
| This theorem is referenced by: cosni 48945 |
| Copyright terms: Public domain | W3C validator |