MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imain Structured version   Visualization version   GIF version

Theorem imain 6621
Description: The image of an intersection is the intersection of images. (Contributed by Paul Chapman, 11-Apr-2009.)
Assertion
Ref Expression
imain (Fun 𝐹 → (𝐹 “ (𝐴𝐵)) = ((𝐹𝐴) ∩ (𝐹𝐵)))

Proof of Theorem imain
StepHypRef Expression
1 imadif 6620 . . 3 (Fun 𝐹 → (𝐹 “ (𝐴 ∖ (𝐴𝐵))) = ((𝐹𝐴) ∖ (𝐹 “ (𝐴𝐵))))
2 imadif 6620 . . . 4 (Fun 𝐹 → (𝐹 “ (𝐴𝐵)) = ((𝐹𝐴) ∖ (𝐹𝐵)))
32difeq2d 4101 . . 3 (Fun 𝐹 → ((𝐹𝐴) ∖ (𝐹 “ (𝐴𝐵))) = ((𝐹𝐴) ∖ ((𝐹𝐴) ∖ (𝐹𝐵))))
41, 3eqtrd 2770 . 2 (Fun 𝐹 → (𝐹 “ (𝐴 ∖ (𝐴𝐵))) = ((𝐹𝐴) ∖ ((𝐹𝐴) ∖ (𝐹𝐵))))
5 dfin4 4253 . . 3 (𝐴𝐵) = (𝐴 ∖ (𝐴𝐵))
65imaeq2i 6045 . 2 (𝐹 “ (𝐴𝐵)) = (𝐹 “ (𝐴 ∖ (𝐴𝐵)))
7 dfin4 4253 . 2 ((𝐹𝐴) ∩ (𝐹𝐵)) = ((𝐹𝐴) ∖ ((𝐹𝐴) ∖ (𝐹𝐵)))
84, 6, 73eqtr4g 2795 1 (Fun 𝐹 → (𝐹 “ (𝐴𝐵)) = ((𝐹𝐴) ∩ (𝐹𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  cdif 3923  cin 3925  ccnv 5653  cima 5657  Fun wfun 6525
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-clab 2714  df-cleq 2727  df-clel 2809  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-br 5120  df-opab 5182  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-fun 6533
This theorem is referenced by:  inpreima  7054  rnelfmlem  23890  fmfnfmlem3  23894  spthispth  29706  swrdrndisj  32933  ballotlemfrc  34559  poimirlem1  37645  poimirlem2  37646  poimirlem3  37647  poimirlem4  37648  poimirlem6  37650  poimirlem7  37651  poimirlem11  37655  poimirlem12  37656  poimirlem16  37660  poimirlem17  37661  poimirlem19  37663  poimirlem20  37664  poimirlem23  37667  poimirlem24  37668  poimirlem25  37669  poimirlem29  37673  poimirlem31  37675
  Copyright terms: Public domain W3C validator