| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imain | Structured version Visualization version GIF version | ||
| Description: The image of an intersection is the intersection of images. (Contributed by Paul Chapman, 11-Apr-2009.) |
| Ref | Expression |
|---|---|
| imain | ⊢ (Fun ◡𝐹 → (𝐹 “ (𝐴 ∩ 𝐵)) = ((𝐹 “ 𝐴) ∩ (𝐹 “ 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imadif 6584 | . . 3 ⊢ (Fun ◡𝐹 → (𝐹 “ (𝐴 ∖ (𝐴 ∖ 𝐵))) = ((𝐹 “ 𝐴) ∖ (𝐹 “ (𝐴 ∖ 𝐵)))) | |
| 2 | imadif 6584 | . . . 4 ⊢ (Fun ◡𝐹 → (𝐹 “ (𝐴 ∖ 𝐵)) = ((𝐹 “ 𝐴) ∖ (𝐹 “ 𝐵))) | |
| 3 | 2 | difeq2d 4085 | . . 3 ⊢ (Fun ◡𝐹 → ((𝐹 “ 𝐴) ∖ (𝐹 “ (𝐴 ∖ 𝐵))) = ((𝐹 “ 𝐴) ∖ ((𝐹 “ 𝐴) ∖ (𝐹 “ 𝐵)))) |
| 4 | 1, 3 | eqtrd 2764 | . 2 ⊢ (Fun ◡𝐹 → (𝐹 “ (𝐴 ∖ (𝐴 ∖ 𝐵))) = ((𝐹 “ 𝐴) ∖ ((𝐹 “ 𝐴) ∖ (𝐹 “ 𝐵)))) |
| 5 | dfin4 4237 | . . 3 ⊢ (𝐴 ∩ 𝐵) = (𝐴 ∖ (𝐴 ∖ 𝐵)) | |
| 6 | 5 | imaeq2i 6018 | . 2 ⊢ (𝐹 “ (𝐴 ∩ 𝐵)) = (𝐹 “ (𝐴 ∖ (𝐴 ∖ 𝐵))) |
| 7 | dfin4 4237 | . 2 ⊢ ((𝐹 “ 𝐴) ∩ (𝐹 “ 𝐵)) = ((𝐹 “ 𝐴) ∖ ((𝐹 “ 𝐴) ∖ (𝐹 “ 𝐵))) | |
| 8 | 4, 6, 7 | 3eqtr4g 2789 | 1 ⊢ (Fun ◡𝐹 → (𝐹 “ (𝐴 ∩ 𝐵)) = ((𝐹 “ 𝐴) ∩ (𝐹 “ 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∖ cdif 3908 ∩ cin 3910 ◡ccnv 5630 “ cima 5634 Fun wfun 6493 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 df-opab 5165 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-fun 6501 |
| This theorem is referenced by: inpreima 7018 rnelfmlem 23815 fmfnfmlem3 23819 spthispth 29627 swrdrndisj 32852 ballotlemfrc 34491 poimirlem1 37588 poimirlem2 37589 poimirlem3 37590 poimirlem4 37591 poimirlem6 37593 poimirlem7 37594 poimirlem11 37598 poimirlem12 37599 poimirlem16 37603 poimirlem17 37604 poimirlem19 37606 poimirlem20 37607 poimirlem23 37610 poimirlem24 37611 poimirlem25 37612 poimirlem29 37616 poimirlem31 37618 |
| Copyright terms: Public domain | W3C validator |