![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > imain | Structured version Visualization version GIF version |
Description: The image of an intersection is the intersection of images. (Contributed by Paul Chapman, 11-Apr-2009.) |
Ref | Expression |
---|---|
imain | ⊢ (Fun ◡𝐹 → (𝐹 “ (𝐴 ∩ 𝐵)) = ((𝐹 “ 𝐴) ∩ (𝐹 “ 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imadif 6629 | . . 3 ⊢ (Fun ◡𝐹 → (𝐹 “ (𝐴 ∖ (𝐴 ∖ 𝐵))) = ((𝐹 “ 𝐴) ∖ (𝐹 “ (𝐴 ∖ 𝐵)))) | |
2 | imadif 6629 | . . . 4 ⊢ (Fun ◡𝐹 → (𝐹 “ (𝐴 ∖ 𝐵)) = ((𝐹 “ 𝐴) ∖ (𝐹 “ 𝐵))) | |
3 | 2 | difeq2d 4121 | . . 3 ⊢ (Fun ◡𝐹 → ((𝐹 “ 𝐴) ∖ (𝐹 “ (𝐴 ∖ 𝐵))) = ((𝐹 “ 𝐴) ∖ ((𝐹 “ 𝐴) ∖ (𝐹 “ 𝐵)))) |
4 | 1, 3 | eqtrd 2772 | . 2 ⊢ (Fun ◡𝐹 → (𝐹 “ (𝐴 ∖ (𝐴 ∖ 𝐵))) = ((𝐹 “ 𝐴) ∖ ((𝐹 “ 𝐴) ∖ (𝐹 “ 𝐵)))) |
5 | dfin4 4266 | . . 3 ⊢ (𝐴 ∩ 𝐵) = (𝐴 ∖ (𝐴 ∖ 𝐵)) | |
6 | 5 | imaeq2i 6055 | . 2 ⊢ (𝐹 “ (𝐴 ∩ 𝐵)) = (𝐹 “ (𝐴 ∖ (𝐴 ∖ 𝐵))) |
7 | dfin4 4266 | . 2 ⊢ ((𝐹 “ 𝐴) ∩ (𝐹 “ 𝐵)) = ((𝐹 “ 𝐴) ∖ ((𝐹 “ 𝐴) ∖ (𝐹 “ 𝐵))) | |
8 | 4, 6, 7 | 3eqtr4g 2797 | 1 ⊢ (Fun ◡𝐹 → (𝐹 “ (𝐴 ∩ 𝐵)) = ((𝐹 “ 𝐴) ∩ (𝐹 “ 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∖ cdif 3944 ∩ cin 3946 ◡ccnv 5674 “ cima 5678 Fun wfun 6534 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-clab 2710 df-cleq 2724 df-clel 2810 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-br 5148 df-opab 5210 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-fun 6542 |
This theorem is referenced by: inpreima 7062 rnelfmlem 23447 fmfnfmlem3 23451 spthispth 28972 swrdrndisj 32108 ballotlemfrc 33513 poimirlem1 36477 poimirlem2 36478 poimirlem3 36479 poimirlem4 36480 poimirlem6 36482 poimirlem7 36483 poimirlem11 36487 poimirlem12 36488 poimirlem16 36492 poimirlem17 36493 poimirlem19 36495 poimirlem20 36496 poimirlem23 36499 poimirlem24 36500 poimirlem25 36501 poimirlem29 36505 poimirlem31 36507 |
Copyright terms: Public domain | W3C validator |