MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imain Structured version   Visualization version   GIF version

Theorem imain 6601
Description: The image of an intersection is the intersection of images. (Contributed by Paul Chapman, 11-Apr-2009.)
Assertion
Ref Expression
imain (Fun 𝐹 → (𝐹 “ (𝐴𝐵)) = ((𝐹𝐴) ∩ (𝐹𝐵)))

Proof of Theorem imain
StepHypRef Expression
1 imadif 6600 . . 3 (Fun 𝐹 → (𝐹 “ (𝐴 ∖ (𝐴𝐵))) = ((𝐹𝐴) ∖ (𝐹 “ (𝐴𝐵))))
2 imadif 6600 . . . 4 (Fun 𝐹 → (𝐹 “ (𝐴𝐵)) = ((𝐹𝐴) ∖ (𝐹𝐵)))
32difeq2d 4089 . . 3 (Fun 𝐹 → ((𝐹𝐴) ∖ (𝐹 “ (𝐴𝐵))) = ((𝐹𝐴) ∖ ((𝐹𝐴) ∖ (𝐹𝐵))))
41, 3eqtrd 2764 . 2 (Fun 𝐹 → (𝐹 “ (𝐴 ∖ (𝐴𝐵))) = ((𝐹𝐴) ∖ ((𝐹𝐴) ∖ (𝐹𝐵))))
5 dfin4 4241 . . 3 (𝐴𝐵) = (𝐴 ∖ (𝐴𝐵))
65imaeq2i 6029 . 2 (𝐹 “ (𝐴𝐵)) = (𝐹 “ (𝐴 ∖ (𝐴𝐵)))
7 dfin4 4241 . 2 ((𝐹𝐴) ∩ (𝐹𝐵)) = ((𝐹𝐴) ∖ ((𝐹𝐴) ∖ (𝐹𝐵)))
84, 6, 73eqtr4g 2789 1 (Fun 𝐹 → (𝐹 “ (𝐴𝐵)) = ((𝐹𝐴) ∩ (𝐹𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  cdif 3911  cin 3913  ccnv 5637  cima 5641  Fun wfun 6505
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-fun 6513
This theorem is referenced by:  inpreima  7036  rnelfmlem  23839  fmfnfmlem3  23843  spthispth  29654  swrdrndisj  32879  ballotlemfrc  34518  poimirlem1  37615  poimirlem2  37616  poimirlem3  37617  poimirlem4  37618  poimirlem6  37620  poimirlem7  37621  poimirlem11  37625  poimirlem12  37626  poimirlem16  37630  poimirlem17  37631  poimirlem19  37633  poimirlem20  37634  poimirlem23  37637  poimirlem24  37638  poimirlem25  37639  poimirlem29  37643  poimirlem31  37645
  Copyright terms: Public domain W3C validator