MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imain Structured version   Visualization version   GIF version

Theorem imain 6653
Description: The image of an intersection is the intersection of images. (Contributed by Paul Chapman, 11-Apr-2009.)
Assertion
Ref Expression
imain (Fun 𝐹 → (𝐹 “ (𝐴𝐵)) = ((𝐹𝐴) ∩ (𝐹𝐵)))

Proof of Theorem imain
StepHypRef Expression
1 imadif 6652 . . 3 (Fun 𝐹 → (𝐹 “ (𝐴 ∖ (𝐴𝐵))) = ((𝐹𝐴) ∖ (𝐹 “ (𝐴𝐵))))
2 imadif 6652 . . . 4 (Fun 𝐹 → (𝐹 “ (𝐴𝐵)) = ((𝐹𝐴) ∖ (𝐹𝐵)))
32difeq2d 4136 . . 3 (Fun 𝐹 → ((𝐹𝐴) ∖ (𝐹 “ (𝐴𝐵))) = ((𝐹𝐴) ∖ ((𝐹𝐴) ∖ (𝐹𝐵))))
41, 3eqtrd 2775 . 2 (Fun 𝐹 → (𝐹 “ (𝐴 ∖ (𝐴𝐵))) = ((𝐹𝐴) ∖ ((𝐹𝐴) ∖ (𝐹𝐵))))
5 dfin4 4284 . . 3 (𝐴𝐵) = (𝐴 ∖ (𝐴𝐵))
65imaeq2i 6078 . 2 (𝐹 “ (𝐴𝐵)) = (𝐹 “ (𝐴 ∖ (𝐴𝐵)))
7 dfin4 4284 . 2 ((𝐹𝐴) ∩ (𝐹𝐵)) = ((𝐹𝐴) ∖ ((𝐹𝐴) ∖ (𝐹𝐵)))
84, 6, 73eqtr4g 2800 1 (Fun 𝐹 → (𝐹 “ (𝐴𝐵)) = ((𝐹𝐴) ∩ (𝐹𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  cdif 3960  cin 3962  ccnv 5688  cima 5692  Fun wfun 6557
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-clab 2713  df-cleq 2727  df-clel 2814  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-br 5149  df-opab 5211  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-fun 6565
This theorem is referenced by:  inpreima  7084  rnelfmlem  23976  fmfnfmlem3  23980  spthispth  29759  swrdrndisj  32927  ballotlemfrc  34508  poimirlem1  37608  poimirlem2  37609  poimirlem3  37610  poimirlem4  37611  poimirlem6  37613  poimirlem7  37614  poimirlem11  37618  poimirlem12  37619  poimirlem16  37623  poimirlem17  37624  poimirlem19  37626  poimirlem20  37627  poimirlem23  37630  poimirlem24  37631  poimirlem25  37632  poimirlem29  37636  poimirlem31  37638
  Copyright terms: Public domain W3C validator