MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imain Structured version   Visualization version   GIF version

Theorem imain 6631
Description: The image of an intersection is the intersection of images. (Contributed by Paul Chapman, 11-Apr-2009.)
Assertion
Ref Expression
imain (Fun 𝐹 → (𝐹 “ (𝐴𝐵)) = ((𝐹𝐴) ∩ (𝐹𝐵)))

Proof of Theorem imain
StepHypRef Expression
1 imadif 6630 . . 3 (Fun 𝐹 → (𝐹 “ (𝐴 ∖ (𝐴𝐵))) = ((𝐹𝐴) ∖ (𝐹 “ (𝐴𝐵))))
2 imadif 6630 . . . 4 (Fun 𝐹 → (𝐹 “ (𝐴𝐵)) = ((𝐹𝐴) ∖ (𝐹𝐵)))
32difeq2d 4106 . . 3 (Fun 𝐹 → ((𝐹𝐴) ∖ (𝐹 “ (𝐴𝐵))) = ((𝐹𝐴) ∖ ((𝐹𝐴) ∖ (𝐹𝐵))))
41, 3eqtrd 2769 . 2 (Fun 𝐹 → (𝐹 “ (𝐴 ∖ (𝐴𝐵))) = ((𝐹𝐴) ∖ ((𝐹𝐴) ∖ (𝐹𝐵))))
5 dfin4 4258 . . 3 (𝐴𝐵) = (𝐴 ∖ (𝐴𝐵))
65imaeq2i 6056 . 2 (𝐹 “ (𝐴𝐵)) = (𝐹 “ (𝐴 ∖ (𝐴𝐵)))
7 dfin4 4258 . 2 ((𝐹𝐴) ∩ (𝐹𝐵)) = ((𝐹𝐴) ∖ ((𝐹𝐴) ∖ (𝐹𝐵)))
84, 6, 73eqtr4g 2794 1 (Fun 𝐹 → (𝐹 “ (𝐴𝐵)) = ((𝐹𝐴) ∩ (𝐹𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  cdif 3928  cin 3930  ccnv 5664  cima 5668  Fun wfun 6535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-clab 2713  df-cleq 2726  df-clel 2808  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-br 5124  df-opab 5186  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-fun 6543
This theorem is referenced by:  inpreima  7064  rnelfmlem  23906  fmfnfmlem3  23910  spthispth  29672  swrdrndisj  32882  ballotlemfrc  34488  poimirlem1  37587  poimirlem2  37588  poimirlem3  37589  poimirlem4  37590  poimirlem6  37592  poimirlem7  37593  poimirlem11  37597  poimirlem12  37598  poimirlem16  37602  poimirlem17  37603  poimirlem19  37605  poimirlem20  37606  poimirlem23  37609  poimirlem24  37610  poimirlem25  37611  poimirlem29  37615  poimirlem31  37617
  Copyright terms: Public domain W3C validator