MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imain Structured version   Visualization version   GIF version

Theorem imain 6561
Description: The image of an intersection is the intersection of images. (Contributed by Paul Chapman, 11-Apr-2009.)
Assertion
Ref Expression
imain (Fun 𝐹 → (𝐹 “ (𝐴𝐵)) = ((𝐹𝐴) ∩ (𝐹𝐵)))

Proof of Theorem imain
StepHypRef Expression
1 imadif 6560 . . 3 (Fun 𝐹 → (𝐹 “ (𝐴 ∖ (𝐴𝐵))) = ((𝐹𝐴) ∖ (𝐹 “ (𝐴𝐵))))
2 imadif 6560 . . . 4 (Fun 𝐹 → (𝐹 “ (𝐴𝐵)) = ((𝐹𝐴) ∖ (𝐹𝐵)))
32difeq2d 4071 . . 3 (Fun 𝐹 → ((𝐹𝐴) ∖ (𝐹 “ (𝐴𝐵))) = ((𝐹𝐴) ∖ ((𝐹𝐴) ∖ (𝐹𝐵))))
41, 3eqtrd 2766 . 2 (Fun 𝐹 → (𝐹 “ (𝐴 ∖ (𝐴𝐵))) = ((𝐹𝐴) ∖ ((𝐹𝐴) ∖ (𝐹𝐵))))
5 dfin4 4223 . . 3 (𝐴𝐵) = (𝐴 ∖ (𝐴𝐵))
65imaeq2i 6002 . 2 (𝐹 “ (𝐴𝐵)) = (𝐹 “ (𝐴 ∖ (𝐴𝐵)))
7 dfin4 4223 . 2 ((𝐹𝐴) ∩ (𝐹𝐵)) = ((𝐹𝐴) ∖ ((𝐹𝐴) ∖ (𝐹𝐵)))
84, 6, 73eqtr4g 2791 1 (Fun 𝐹 → (𝐹 “ (𝐴𝐵)) = ((𝐹𝐴) ∩ (𝐹𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  cdif 3894  cin 3896  ccnv 5610  cima 5614  Fun wfun 6470
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-br 5087  df-opab 5149  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-fun 6478
This theorem is referenced by:  inpreima  6992  rnelfmlem  23862  fmfnfmlem3  23866  spthispth  29697  swrdrndisj  32930  ballotlemfrc  34532  poimirlem1  37661  poimirlem2  37662  poimirlem3  37663  poimirlem4  37664  poimirlem6  37666  poimirlem7  37667  poimirlem11  37671  poimirlem12  37672  poimirlem16  37676  poimirlem17  37677  poimirlem19  37679  poimirlem20  37680  poimirlem23  37683  poimirlem24  37684  poimirlem25  37685  poimirlem29  37689  poimirlem31  37691
  Copyright terms: Public domain W3C validator