| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imain | Structured version Visualization version GIF version | ||
| Description: The image of an intersection is the intersection of images. (Contributed by Paul Chapman, 11-Apr-2009.) |
| Ref | Expression |
|---|---|
| imain | ⊢ (Fun ◡𝐹 → (𝐹 “ (𝐴 ∩ 𝐵)) = ((𝐹 “ 𝐴) ∩ (𝐹 “ 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imadif 6573 | . . 3 ⊢ (Fun ◡𝐹 → (𝐹 “ (𝐴 ∖ (𝐴 ∖ 𝐵))) = ((𝐹 “ 𝐴) ∖ (𝐹 “ (𝐴 ∖ 𝐵)))) | |
| 2 | imadif 6573 | . . . 4 ⊢ (Fun ◡𝐹 → (𝐹 “ (𝐴 ∖ 𝐵)) = ((𝐹 “ 𝐴) ∖ (𝐹 “ 𝐵))) | |
| 3 | 2 | difeq2d 4075 | . . 3 ⊢ (Fun ◡𝐹 → ((𝐹 “ 𝐴) ∖ (𝐹 “ (𝐴 ∖ 𝐵))) = ((𝐹 “ 𝐴) ∖ ((𝐹 “ 𝐴) ∖ (𝐹 “ 𝐵)))) |
| 4 | 1, 3 | eqtrd 2768 | . 2 ⊢ (Fun ◡𝐹 → (𝐹 “ (𝐴 ∖ (𝐴 ∖ 𝐵))) = ((𝐹 “ 𝐴) ∖ ((𝐹 “ 𝐴) ∖ (𝐹 “ 𝐵)))) |
| 5 | dfin4 4227 | . . 3 ⊢ (𝐴 ∩ 𝐵) = (𝐴 ∖ (𝐴 ∖ 𝐵)) | |
| 6 | 5 | imaeq2i 6014 | . 2 ⊢ (𝐹 “ (𝐴 ∩ 𝐵)) = (𝐹 “ (𝐴 ∖ (𝐴 ∖ 𝐵))) |
| 7 | dfin4 4227 | . 2 ⊢ ((𝐹 “ 𝐴) ∩ (𝐹 “ 𝐵)) = ((𝐹 “ 𝐴) ∖ ((𝐹 “ 𝐴) ∖ (𝐹 “ 𝐵))) | |
| 8 | 4, 6, 7 | 3eqtr4g 2793 | 1 ⊢ (Fun ◡𝐹 → (𝐹 “ (𝐴 ∩ 𝐵)) = ((𝐹 “ 𝐴) ∩ (𝐹 “ 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∖ cdif 3895 ∩ cin 3897 ◡ccnv 5620 “ cima 5624 Fun wfun 6483 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5096 df-opab 5158 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-fun 6491 |
| This theorem is referenced by: inpreima 7006 rnelfmlem 23887 fmfnfmlem3 23891 spthispth 29723 swrdrndisj 32967 ballotlemfrc 34612 poimirlem1 37734 poimirlem2 37735 poimirlem3 37736 poimirlem4 37737 poimirlem6 37739 poimirlem7 37740 poimirlem11 37744 poimirlem12 37745 poimirlem16 37749 poimirlem17 37750 poimirlem19 37752 poimirlem20 37753 poimirlem23 37756 poimirlem24 37757 poimirlem25 37758 poimirlem29 37762 poimirlem31 37764 |
| Copyright terms: Public domain | W3C validator |