| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imain | Structured version Visualization version GIF version | ||
| Description: The image of an intersection is the intersection of images. (Contributed by Paul Chapman, 11-Apr-2009.) |
| Ref | Expression |
|---|---|
| imain | ⊢ (Fun ◡𝐹 → (𝐹 “ (𝐴 ∩ 𝐵)) = ((𝐹 “ 𝐴) ∩ (𝐹 “ 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imadif 6630 | . . 3 ⊢ (Fun ◡𝐹 → (𝐹 “ (𝐴 ∖ (𝐴 ∖ 𝐵))) = ((𝐹 “ 𝐴) ∖ (𝐹 “ (𝐴 ∖ 𝐵)))) | |
| 2 | imadif 6630 | . . . 4 ⊢ (Fun ◡𝐹 → (𝐹 “ (𝐴 ∖ 𝐵)) = ((𝐹 “ 𝐴) ∖ (𝐹 “ 𝐵))) | |
| 3 | 2 | difeq2d 4106 | . . 3 ⊢ (Fun ◡𝐹 → ((𝐹 “ 𝐴) ∖ (𝐹 “ (𝐴 ∖ 𝐵))) = ((𝐹 “ 𝐴) ∖ ((𝐹 “ 𝐴) ∖ (𝐹 “ 𝐵)))) |
| 4 | 1, 3 | eqtrd 2769 | . 2 ⊢ (Fun ◡𝐹 → (𝐹 “ (𝐴 ∖ (𝐴 ∖ 𝐵))) = ((𝐹 “ 𝐴) ∖ ((𝐹 “ 𝐴) ∖ (𝐹 “ 𝐵)))) |
| 5 | dfin4 4258 | . . 3 ⊢ (𝐴 ∩ 𝐵) = (𝐴 ∖ (𝐴 ∖ 𝐵)) | |
| 6 | 5 | imaeq2i 6056 | . 2 ⊢ (𝐹 “ (𝐴 ∩ 𝐵)) = (𝐹 “ (𝐴 ∖ (𝐴 ∖ 𝐵))) |
| 7 | dfin4 4258 | . 2 ⊢ ((𝐹 “ 𝐴) ∩ (𝐹 “ 𝐵)) = ((𝐹 “ 𝐴) ∖ ((𝐹 “ 𝐴) ∖ (𝐹 “ 𝐵))) | |
| 8 | 4, 6, 7 | 3eqtr4g 2794 | 1 ⊢ (Fun ◡𝐹 → (𝐹 “ (𝐴 ∩ 𝐵)) = ((𝐹 “ 𝐴) ∩ (𝐹 “ 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∖ cdif 3928 ∩ cin 3930 ◡ccnv 5664 “ cima 5668 Fun wfun 6535 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5124 df-opab 5186 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-fun 6543 |
| This theorem is referenced by: inpreima 7064 rnelfmlem 23906 fmfnfmlem3 23910 spthispth 29672 swrdrndisj 32882 ballotlemfrc 34488 poimirlem1 37587 poimirlem2 37588 poimirlem3 37589 poimirlem4 37590 poimirlem6 37592 poimirlem7 37593 poimirlem11 37597 poimirlem12 37598 poimirlem16 37602 poimirlem17 37603 poimirlem19 37605 poimirlem20 37606 poimirlem23 37609 poimirlem24 37610 poimirlem25 37611 poimirlem29 37615 poimirlem31 37617 |
| Copyright terms: Public domain | W3C validator |