| Step | Hyp | Ref
| Expression |
| 1 | | i1fadd.1 |
. . . 4
⊢ (𝜑 → 𝐹 ∈ dom
∫1) |
| 2 | | i1frn 25712 |
. . . 4
⊢ (𝐹 ∈ dom ∫1
→ ran 𝐹 ∈
Fin) |
| 3 | 1, 2 | syl 17 |
. . 3
⊢ (𝜑 → ran 𝐹 ∈ Fin) |
| 4 | | i1fadd.2 |
. . . . . 6
⊢ (𝜑 → 𝐺 ∈ dom
∫1) |
| 5 | | i1frn 25712 |
. . . . . 6
⊢ (𝐺 ∈ dom ∫1
→ ran 𝐺 ∈
Fin) |
| 6 | 4, 5 | syl 17 |
. . . . 5
⊢ (𝜑 → ran 𝐺 ∈ Fin) |
| 7 | 6 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ ran 𝐹) → ran 𝐺 ∈ Fin) |
| 8 | | i1ff 25711 |
. . . . . . . . . 10
⊢ (𝐹 ∈ dom ∫1
→ 𝐹:ℝ⟶ℝ) |
| 9 | 1, 8 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝐹:ℝ⟶ℝ) |
| 10 | 9 | frnd 6744 |
. . . . . . . 8
⊢ (𝜑 → ran 𝐹 ⊆ ℝ) |
| 11 | 10 | sselda 3983 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ ran 𝐹) → 𝑦 ∈ ℝ) |
| 12 | 11 | adantr 480 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑧 ∈ ran 𝐺) → 𝑦 ∈ ℝ) |
| 13 | 12 | recnd 11289 |
. . . . 5
⊢ (((𝜑 ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑧 ∈ ran 𝐺) → 𝑦 ∈ ℂ) |
| 14 | | itg1add.3 |
. . . . . . . . 9
⊢ 𝐼 = (𝑖 ∈ ℝ, 𝑗 ∈ ℝ ↦ if((𝑖 = 0 ∧ 𝑗 = 0), 0, (vol‘((◡𝐹 “ {𝑖}) ∩ (◡𝐺 “ {𝑗}))))) |
| 15 | 1, 4, 14 | itg1addlem2 25732 |
. . . . . . . 8
⊢ (𝜑 → 𝐼:(ℝ ×
ℝ)⟶ℝ) |
| 16 | 15 | ad2antrr 726 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑧 ∈ ran 𝐺) → 𝐼:(ℝ ×
ℝ)⟶ℝ) |
| 17 | | i1ff 25711 |
. . . . . . . . . . 11
⊢ (𝐺 ∈ dom ∫1
→ 𝐺:ℝ⟶ℝ) |
| 18 | 4, 17 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐺:ℝ⟶ℝ) |
| 19 | 18 | frnd 6744 |
. . . . . . . . 9
⊢ (𝜑 → ran 𝐺 ⊆ ℝ) |
| 20 | 19 | sselda 3983 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ ran 𝐺) → 𝑧 ∈ ℝ) |
| 21 | 20 | adantlr 715 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑧 ∈ ran 𝐺) → 𝑧 ∈ ℝ) |
| 22 | 16, 12, 21 | fovcdmd 7605 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑧 ∈ ran 𝐺) → (𝑦𝐼𝑧) ∈ ℝ) |
| 23 | 22 | recnd 11289 |
. . . . 5
⊢ (((𝜑 ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑧 ∈ ran 𝐺) → (𝑦𝐼𝑧) ∈ ℂ) |
| 24 | 13, 23 | mulcld 11281 |
. . . 4
⊢ (((𝜑 ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑧 ∈ ran 𝐺) → (𝑦 · (𝑦𝐼𝑧)) ∈ ℂ) |
| 25 | 7, 24 | fsumcl 15769 |
. . 3
⊢ ((𝜑 ∧ 𝑦 ∈ ran 𝐹) → Σ𝑧 ∈ ran 𝐺(𝑦 · (𝑦𝐼𝑧)) ∈ ℂ) |
| 26 | 21 | recnd 11289 |
. . . . 5
⊢ (((𝜑 ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑧 ∈ ran 𝐺) → 𝑧 ∈ ℂ) |
| 27 | 26, 23 | mulcld 11281 |
. . . 4
⊢ (((𝜑 ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑧 ∈ ran 𝐺) → (𝑧 · (𝑦𝐼𝑧)) ∈ ℂ) |
| 28 | 7, 27 | fsumcl 15769 |
. . 3
⊢ ((𝜑 ∧ 𝑦 ∈ ran 𝐹) → Σ𝑧 ∈ ran 𝐺(𝑧 · (𝑦𝐼𝑧)) ∈ ℂ) |
| 29 | 3, 25, 28 | fsumadd 15776 |
. 2
⊢ (𝜑 → Σ𝑦 ∈ ran 𝐹(Σ𝑧 ∈ ran 𝐺(𝑦 · (𝑦𝐼𝑧)) + Σ𝑧 ∈ ran 𝐺(𝑧 · (𝑦𝐼𝑧))) = (Σ𝑦 ∈ ran 𝐹Σ𝑧 ∈ ran 𝐺(𝑦 · (𝑦𝐼𝑧)) + Σ𝑦 ∈ ran 𝐹Σ𝑧 ∈ ran 𝐺(𝑧 · (𝑦𝐼𝑧)))) |
| 30 | | itg1add.4 |
. . . 4
⊢ 𝑃 = ( + ↾ (ran 𝐹 × ran 𝐺)) |
| 31 | 1, 4, 14, 30 | itg1addlem4 25734 |
. . 3
⊢ (𝜑 →
(∫1‘(𝐹
∘f + 𝐺)) =
Σ𝑦 ∈ ran 𝐹Σ𝑧 ∈ ran 𝐺((𝑦 + 𝑧) · (𝑦𝐼𝑧))) |
| 32 | 13, 26, 23 | adddird 11286 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑧 ∈ ran 𝐺) → ((𝑦 + 𝑧) · (𝑦𝐼𝑧)) = ((𝑦 · (𝑦𝐼𝑧)) + (𝑧 · (𝑦𝐼𝑧)))) |
| 33 | 32 | sumeq2dv 15738 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ ran 𝐹) → Σ𝑧 ∈ ran 𝐺((𝑦 + 𝑧) · (𝑦𝐼𝑧)) = Σ𝑧 ∈ ran 𝐺((𝑦 · (𝑦𝐼𝑧)) + (𝑧 · (𝑦𝐼𝑧)))) |
| 34 | 7, 24, 27 | fsumadd 15776 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ ran 𝐹) → Σ𝑧 ∈ ran 𝐺((𝑦 · (𝑦𝐼𝑧)) + (𝑧 · (𝑦𝐼𝑧))) = (Σ𝑧 ∈ ran 𝐺(𝑦 · (𝑦𝐼𝑧)) + Σ𝑧 ∈ ran 𝐺(𝑧 · (𝑦𝐼𝑧)))) |
| 35 | 33, 34 | eqtrd 2777 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ ran 𝐹) → Σ𝑧 ∈ ran 𝐺((𝑦 + 𝑧) · (𝑦𝐼𝑧)) = (Σ𝑧 ∈ ran 𝐺(𝑦 · (𝑦𝐼𝑧)) + Σ𝑧 ∈ ran 𝐺(𝑧 · (𝑦𝐼𝑧)))) |
| 36 | 35 | sumeq2dv 15738 |
. . 3
⊢ (𝜑 → Σ𝑦 ∈ ran 𝐹Σ𝑧 ∈ ran 𝐺((𝑦 + 𝑧) · (𝑦𝐼𝑧)) = Σ𝑦 ∈ ran 𝐹(Σ𝑧 ∈ ran 𝐺(𝑦 · (𝑦𝐼𝑧)) + Σ𝑧 ∈ ran 𝐺(𝑧 · (𝑦𝐼𝑧)))) |
| 37 | 31, 36 | eqtrd 2777 |
. 2
⊢ (𝜑 →
(∫1‘(𝐹
∘f + 𝐺)) =
Σ𝑦 ∈ ran 𝐹(Σ𝑧 ∈ ran 𝐺(𝑦 · (𝑦𝐼𝑧)) + Σ𝑧 ∈ ran 𝐺(𝑧 · (𝑦𝐼𝑧)))) |
| 38 | | itg1val 25718 |
. . . . 5
⊢ (𝐹 ∈ dom ∫1
→ (∫1‘𝐹) = Σ𝑦 ∈ (ran 𝐹 ∖ {0})(𝑦 · (vol‘(◡𝐹 “ {𝑦})))) |
| 39 | 1, 38 | syl 17 |
. . . 4
⊢ (𝜑 →
(∫1‘𝐹)
= Σ𝑦 ∈ (ran
𝐹 ∖ {0})(𝑦 · (vol‘(◡𝐹 “ {𝑦})))) |
| 40 | 18 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) → 𝐺:ℝ⟶ℝ) |
| 41 | 6 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) → ran 𝐺 ∈ Fin) |
| 42 | | inss2 4238 |
. . . . . . . . . 10
⊢ ((◡𝐹 “ {𝑦}) ∩ (◡𝐺 “ {𝑧})) ⊆ (◡𝐺 “ {𝑧}) |
| 43 | 42 | a1i 11 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → ((◡𝐹 “ {𝑦}) ∩ (◡𝐺 “ {𝑧})) ⊆ (◡𝐺 “ {𝑧})) |
| 44 | | i1fima 25713 |
. . . . . . . . . . . 12
⊢ (𝐹 ∈ dom ∫1
→ (◡𝐹 “ {𝑦}) ∈ dom vol) |
| 45 | 1, 44 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (◡𝐹 “ {𝑦}) ∈ dom vol) |
| 46 | 45 | ad2antrr 726 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → (◡𝐹 “ {𝑦}) ∈ dom vol) |
| 47 | | i1fima 25713 |
. . . . . . . . . . . 12
⊢ (𝐺 ∈ dom ∫1
→ (◡𝐺 “ {𝑧}) ∈ dom vol) |
| 48 | 4, 47 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (◡𝐺 “ {𝑧}) ∈ dom vol) |
| 49 | 48 | ad2antrr 726 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → (◡𝐺 “ {𝑧}) ∈ dom vol) |
| 50 | | inmbl 25577 |
. . . . . . . . . 10
⊢ (((◡𝐹 “ {𝑦}) ∈ dom vol ∧ (◡𝐺 “ {𝑧}) ∈ dom vol) → ((◡𝐹 “ {𝑦}) ∩ (◡𝐺 “ {𝑧})) ∈ dom vol) |
| 51 | 46, 49, 50 | syl2anc 584 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → ((◡𝐹 “ {𝑦}) ∩ (◡𝐺 “ {𝑧})) ∈ dom vol) |
| 52 | 10 | ssdifssd 4147 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (ran 𝐹 ∖ {0}) ⊆
ℝ) |
| 53 | 52 | sselda 3983 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) → 𝑦 ∈ ℝ) |
| 54 | 53 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → 𝑦 ∈ ℝ) |
| 55 | 19 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) → ran 𝐺 ⊆ ℝ) |
| 56 | 55 | sselda 3983 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → 𝑧 ∈ ℝ) |
| 57 | | eldifsni 4790 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ (ran 𝐹 ∖ {0}) → 𝑦 ≠ 0) |
| 58 | 57 | ad2antlr 727 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → 𝑦 ≠ 0) |
| 59 | | simpl 482 |
. . . . . . . . . . . . 13
⊢ ((𝑦 = 0 ∧ 𝑧 = 0) → 𝑦 = 0) |
| 60 | 59 | necon3ai 2965 |
. . . . . . . . . . . 12
⊢ (𝑦 ≠ 0 → ¬ (𝑦 = 0 ∧ 𝑧 = 0)) |
| 61 | 58, 60 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → ¬ (𝑦 = 0 ∧ 𝑧 = 0)) |
| 62 | 1, 4, 14 | itg1addlem3 25733 |
. . . . . . . . . . 11
⊢ (((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) ∧ ¬
(𝑦 = 0 ∧ 𝑧 = 0)) → (𝑦𝐼𝑧) = (vol‘((◡𝐹 “ {𝑦}) ∩ (◡𝐺 “ {𝑧})))) |
| 63 | 54, 56, 61, 62 | syl21anc 838 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → (𝑦𝐼𝑧) = (vol‘((◡𝐹 “ {𝑦}) ∩ (◡𝐺 “ {𝑧})))) |
| 64 | 15 | ad2antrr 726 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → 𝐼:(ℝ ×
ℝ)⟶ℝ) |
| 65 | 64, 54, 56 | fovcdmd 7605 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → (𝑦𝐼𝑧) ∈ ℝ) |
| 66 | 63, 65 | eqeltrrd 2842 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → (vol‘((◡𝐹 “ {𝑦}) ∩ (◡𝐺 “ {𝑧}))) ∈ ℝ) |
| 67 | 40, 41, 43, 51, 66 | itg1addlem1 25727 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) → (vol‘∪ 𝑧 ∈ ran 𝐺((◡𝐹 “ {𝑦}) ∩ (◡𝐺 “ {𝑧}))) = Σ𝑧 ∈ ran 𝐺(vol‘((◡𝐹 “ {𝑦}) ∩ (◡𝐺 “ {𝑧})))) |
| 68 | | iunin2 5071 |
. . . . . . . . . 10
⊢ ∪ 𝑧 ∈ ran 𝐺((◡𝐹 “ {𝑦}) ∩ (◡𝐺 “ {𝑧})) = ((◡𝐹 “ {𝑦}) ∩ ∪
𝑧 ∈ ran 𝐺(◡𝐺 “ {𝑧})) |
| 69 | 1 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) → 𝐹 ∈ dom
∫1) |
| 70 | 69, 44 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) → (◡𝐹 “ {𝑦}) ∈ dom vol) |
| 71 | | mblss 25566 |
. . . . . . . . . . . . 13
⊢ ((◡𝐹 “ {𝑦}) ∈ dom vol → (◡𝐹 “ {𝑦}) ⊆ ℝ) |
| 72 | 70, 71 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) → (◡𝐹 “ {𝑦}) ⊆ ℝ) |
| 73 | | iunid 5060 |
. . . . . . . . . . . . . . 15
⊢ ∪ 𝑧 ∈ ran 𝐺{𝑧} = ran 𝐺 |
| 74 | 73 | imaeq2i 6076 |
. . . . . . . . . . . . . 14
⊢ (◡𝐺 “ ∪
𝑧 ∈ ran 𝐺{𝑧}) = (◡𝐺 “ ran 𝐺) |
| 75 | | imaiun 7265 |
. . . . . . . . . . . . . 14
⊢ (◡𝐺 “ ∪
𝑧 ∈ ran 𝐺{𝑧}) = ∪
𝑧 ∈ ran 𝐺(◡𝐺 “ {𝑧}) |
| 76 | | cnvimarndm 6101 |
. . . . . . . . . . . . . 14
⊢ (◡𝐺 “ ran 𝐺) = dom 𝐺 |
| 77 | 74, 75, 76 | 3eqtr3i 2773 |
. . . . . . . . . . . . 13
⊢ ∪ 𝑧 ∈ ran 𝐺(◡𝐺 “ {𝑧}) = dom 𝐺 |
| 78 | 40 | fdmd 6746 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) → dom 𝐺 = ℝ) |
| 79 | 77, 78 | eqtrid 2789 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) → ∪ 𝑧 ∈ ran 𝐺(◡𝐺 “ {𝑧}) = ℝ) |
| 80 | 72, 79 | sseqtrrd 4021 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) → (◡𝐹 “ {𝑦}) ⊆ ∪ 𝑧 ∈ ran 𝐺(◡𝐺 “ {𝑧})) |
| 81 | | dfss2 3969 |
. . . . . . . . . . 11
⊢ ((◡𝐹 “ {𝑦}) ⊆ ∪ 𝑧 ∈ ran 𝐺(◡𝐺 “ {𝑧}) ↔ ((◡𝐹 “ {𝑦}) ∩ ∪
𝑧 ∈ ran 𝐺(◡𝐺 “ {𝑧})) = (◡𝐹 “ {𝑦})) |
| 82 | 80, 81 | sylib 218 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) → ((◡𝐹 “ {𝑦}) ∩ ∪
𝑧 ∈ ran 𝐺(◡𝐺 “ {𝑧})) = (◡𝐹 “ {𝑦})) |
| 83 | 68, 82 | eqtr2id 2790 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) → (◡𝐹 “ {𝑦}) = ∪
𝑧 ∈ ran 𝐺((◡𝐹 “ {𝑦}) ∩ (◡𝐺 “ {𝑧}))) |
| 84 | 83 | fveq2d 6910 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) → (vol‘(◡𝐹 “ {𝑦})) = (vol‘∪ 𝑧 ∈ ran 𝐺((◡𝐹 “ {𝑦}) ∩ (◡𝐺 “ {𝑧})))) |
| 85 | 63 | sumeq2dv 15738 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) → Σ𝑧 ∈ ran 𝐺(𝑦𝐼𝑧) = Σ𝑧 ∈ ran 𝐺(vol‘((◡𝐹 “ {𝑦}) ∩ (◡𝐺 “ {𝑧})))) |
| 86 | 67, 84, 85 | 3eqtr4d 2787 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) → (vol‘(◡𝐹 “ {𝑦})) = Σ𝑧 ∈ ran 𝐺(𝑦𝐼𝑧)) |
| 87 | 86 | oveq2d 7447 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) → (𝑦 · (vol‘(◡𝐹 “ {𝑦}))) = (𝑦 · Σ𝑧 ∈ ran 𝐺(𝑦𝐼𝑧))) |
| 88 | 53 | recnd 11289 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) → 𝑦 ∈ ℂ) |
| 89 | 65 | recnd 11289 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → (𝑦𝐼𝑧) ∈ ℂ) |
| 90 | 41, 88, 89 | fsummulc2 15820 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) → (𝑦 · Σ𝑧 ∈ ran 𝐺(𝑦𝐼𝑧)) = Σ𝑧 ∈ ran 𝐺(𝑦 · (𝑦𝐼𝑧))) |
| 91 | 87, 90 | eqtrd 2777 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) → (𝑦 · (vol‘(◡𝐹 “ {𝑦}))) = Σ𝑧 ∈ ran 𝐺(𝑦 · (𝑦𝐼𝑧))) |
| 92 | 91 | sumeq2dv 15738 |
. . . 4
⊢ (𝜑 → Σ𝑦 ∈ (ran 𝐹 ∖ {0})(𝑦 · (vol‘(◡𝐹 “ {𝑦}))) = Σ𝑦 ∈ (ran 𝐹 ∖ {0})Σ𝑧 ∈ ran 𝐺(𝑦 · (𝑦𝐼𝑧))) |
| 93 | | difssd 4137 |
. . . . 5
⊢ (𝜑 → (ran 𝐹 ∖ {0}) ⊆ ran 𝐹) |
| 94 | 54 | recnd 11289 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → 𝑦 ∈ ℂ) |
| 95 | 94, 89 | mulcld 11281 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → (𝑦 · (𝑦𝐼𝑧)) ∈ ℂ) |
| 96 | 41, 95 | fsumcl 15769 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) → Σ𝑧 ∈ ran 𝐺(𝑦 · (𝑦𝐼𝑧)) ∈ ℂ) |
| 97 | | dfin4 4278 |
. . . . . . . 8
⊢ (ran
𝐹 ∩ {0}) = (ran 𝐹 ∖ (ran 𝐹 ∖ {0})) |
| 98 | | inss2 4238 |
. . . . . . . 8
⊢ (ran
𝐹 ∩ {0}) ⊆
{0} |
| 99 | 97, 98 | eqsstrri 4031 |
. . . . . . 7
⊢ (ran
𝐹 ∖ (ran 𝐹 ∖ {0})) ⊆
{0} |
| 100 | 99 | sseli 3979 |
. . . . . 6
⊢ (𝑦 ∈ (ran 𝐹 ∖ (ran 𝐹 ∖ {0})) → 𝑦 ∈ {0}) |
| 101 | | elsni 4643 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ {0} → 𝑦 = 0) |
| 102 | 101 | ad2antlr 727 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ {0}) ∧ 𝑧 ∈ ran 𝐺) → 𝑦 = 0) |
| 103 | 102 | oveq1d 7446 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ {0}) ∧ 𝑧 ∈ ran 𝐺) → (𝑦 · (𝑦𝐼𝑧)) = (0 · (𝑦𝐼𝑧))) |
| 104 | 15 | ad2antrr 726 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ {0}) ∧ 𝑧 ∈ ran 𝐺) → 𝐼:(ℝ ×
ℝ)⟶ℝ) |
| 105 | | 0re 11263 |
. . . . . . . . . . . . 13
⊢ 0 ∈
ℝ |
| 106 | 102, 105 | eqeltrdi 2849 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ {0}) ∧ 𝑧 ∈ ran 𝐺) → 𝑦 ∈ ℝ) |
| 107 | 20 | adantlr 715 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ {0}) ∧ 𝑧 ∈ ran 𝐺) → 𝑧 ∈ ℝ) |
| 108 | 104, 106,
107 | fovcdmd 7605 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ {0}) ∧ 𝑧 ∈ ran 𝐺) → (𝑦𝐼𝑧) ∈ ℝ) |
| 109 | 108 | recnd 11289 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ {0}) ∧ 𝑧 ∈ ran 𝐺) → (𝑦𝐼𝑧) ∈ ℂ) |
| 110 | 109 | mul02d 11459 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ {0}) ∧ 𝑧 ∈ ran 𝐺) → (0 · (𝑦𝐼𝑧)) = 0) |
| 111 | 103, 110 | eqtrd 2777 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ {0}) ∧ 𝑧 ∈ ran 𝐺) → (𝑦 · (𝑦𝐼𝑧)) = 0) |
| 112 | 111 | sumeq2dv 15738 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ {0}) → Σ𝑧 ∈ ran 𝐺(𝑦 · (𝑦𝐼𝑧)) = Σ𝑧 ∈ ran 𝐺0) |
| 113 | 6 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ {0}) → ran 𝐺 ∈ Fin) |
| 114 | 113 | olcd 875 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ {0}) → (ran 𝐺 ⊆ (ℤ≥‘0)
∨ ran 𝐺 ∈
Fin)) |
| 115 | | sumz 15758 |
. . . . . . . 8
⊢ ((ran
𝐺 ⊆
(ℤ≥‘0) ∨ ran 𝐺 ∈ Fin) → Σ𝑧 ∈ ran 𝐺0 = 0) |
| 116 | 114, 115 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ {0}) → Σ𝑧 ∈ ran 𝐺0 = 0) |
| 117 | 112, 116 | eqtrd 2777 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ {0}) → Σ𝑧 ∈ ran 𝐺(𝑦 · (𝑦𝐼𝑧)) = 0) |
| 118 | 100, 117 | sylan2 593 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ (ran 𝐹 ∖ (ran 𝐹 ∖ {0}))) → Σ𝑧 ∈ ran 𝐺(𝑦 · (𝑦𝐼𝑧)) = 0) |
| 119 | 93, 96, 118, 3 | fsumss 15761 |
. . . 4
⊢ (𝜑 → Σ𝑦 ∈ (ran 𝐹 ∖ {0})Σ𝑧 ∈ ran 𝐺(𝑦 · (𝑦𝐼𝑧)) = Σ𝑦 ∈ ran 𝐹Σ𝑧 ∈ ran 𝐺(𝑦 · (𝑦𝐼𝑧))) |
| 120 | 39, 92, 119 | 3eqtrd 2781 |
. . 3
⊢ (𝜑 →
(∫1‘𝐹)
= Σ𝑦 ∈ ran 𝐹Σ𝑧 ∈ ran 𝐺(𝑦 · (𝑦𝐼𝑧))) |
| 121 | | itg1val 25718 |
. . . . 5
⊢ (𝐺 ∈ dom ∫1
→ (∫1‘𝐺) = Σ𝑧 ∈ (ran 𝐺 ∖ {0})(𝑧 · (vol‘(◡𝐺 “ {𝑧})))) |
| 122 | 4, 121 | syl 17 |
. . . 4
⊢ (𝜑 →
(∫1‘𝐺)
= Σ𝑧 ∈ (ran
𝐺 ∖ {0})(𝑧 · (vol‘(◡𝐺 “ {𝑧})))) |
| 123 | 9 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → 𝐹:ℝ⟶ℝ) |
| 124 | 3 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → ran 𝐹 ∈ Fin) |
| 125 | | inss1 4237 |
. . . . . . . . . 10
⊢ ((◡𝐹 “ {𝑦}) ∩ (◡𝐺 “ {𝑧})) ⊆ (◡𝐹 “ {𝑦}) |
| 126 | 125 | a1i 11 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) ∧ 𝑦 ∈ ran 𝐹) → ((◡𝐹 “ {𝑦}) ∩ (◡𝐺 “ {𝑧})) ⊆ (◡𝐹 “ {𝑦})) |
| 127 | 45 | ad2antrr 726 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) ∧ 𝑦 ∈ ran 𝐹) → (◡𝐹 “ {𝑦}) ∈ dom vol) |
| 128 | 48 | ad2antrr 726 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) ∧ 𝑦 ∈ ran 𝐹) → (◡𝐺 “ {𝑧}) ∈ dom vol) |
| 129 | 127, 128,
50 | syl2anc 584 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) ∧ 𝑦 ∈ ran 𝐹) → ((◡𝐹 “ {𝑦}) ∩ (◡𝐺 “ {𝑧})) ∈ dom vol) |
| 130 | 10 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → ran 𝐹 ⊆ ℝ) |
| 131 | 130 | sselda 3983 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) ∧ 𝑦 ∈ ran 𝐹) → 𝑦 ∈ ℝ) |
| 132 | 19 | ssdifssd 4147 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (ran 𝐺 ∖ {0}) ⊆
ℝ) |
| 133 | 132 | sselda 3983 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → 𝑧 ∈ ℝ) |
| 134 | 133 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) ∧ 𝑦 ∈ ran 𝐹) → 𝑧 ∈ ℝ) |
| 135 | | eldifsni 4790 |
. . . . . . . . . . . . 13
⊢ (𝑧 ∈ (ran 𝐺 ∖ {0}) → 𝑧 ≠ 0) |
| 136 | 135 | ad2antlr 727 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) ∧ 𝑦 ∈ ran 𝐹) → 𝑧 ≠ 0) |
| 137 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ ((𝑦 = 0 ∧ 𝑧 = 0) → 𝑧 = 0) |
| 138 | 137 | necon3ai 2965 |
. . . . . . . . . . . 12
⊢ (𝑧 ≠ 0 → ¬ (𝑦 = 0 ∧ 𝑧 = 0)) |
| 139 | 136, 138 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) ∧ 𝑦 ∈ ran 𝐹) → ¬ (𝑦 = 0 ∧ 𝑧 = 0)) |
| 140 | 131, 134,
139, 62 | syl21anc 838 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) ∧ 𝑦 ∈ ran 𝐹) → (𝑦𝐼𝑧) = (vol‘((◡𝐹 “ {𝑦}) ∩ (◡𝐺 “ {𝑧})))) |
| 141 | 15 | ad2antrr 726 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) ∧ 𝑦 ∈ ran 𝐹) → 𝐼:(ℝ ×
ℝ)⟶ℝ) |
| 142 | 141, 131,
134 | fovcdmd 7605 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) ∧ 𝑦 ∈ ran 𝐹) → (𝑦𝐼𝑧) ∈ ℝ) |
| 143 | 140, 142 | eqeltrrd 2842 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) ∧ 𝑦 ∈ ran 𝐹) → (vol‘((◡𝐹 “ {𝑦}) ∩ (◡𝐺 “ {𝑧}))) ∈ ℝ) |
| 144 | 123, 124,
126, 129, 143 | itg1addlem1 25727 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → (vol‘∪ 𝑦 ∈ ran 𝐹((◡𝐹 “ {𝑦}) ∩ (◡𝐺 “ {𝑧}))) = Σ𝑦 ∈ ran 𝐹(vol‘((◡𝐹 “ {𝑦}) ∩ (◡𝐺 “ {𝑧})))) |
| 145 | | incom 4209 |
. . . . . . . . . . . . 13
⊢ ((◡𝐹 “ {𝑦}) ∩ (◡𝐺 “ {𝑧})) = ((◡𝐺 “ {𝑧}) ∩ (◡𝐹 “ {𝑦})) |
| 146 | 145 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ ran 𝐹 → ((◡𝐹 “ {𝑦}) ∩ (◡𝐺 “ {𝑧})) = ((◡𝐺 “ {𝑧}) ∩ (◡𝐹 “ {𝑦}))) |
| 147 | 146 | iuneq2i 5013 |
. . . . . . . . . . 11
⊢ ∪ 𝑦 ∈ ran 𝐹((◡𝐹 “ {𝑦}) ∩ (◡𝐺 “ {𝑧})) = ∪
𝑦 ∈ ran 𝐹((◡𝐺 “ {𝑧}) ∩ (◡𝐹 “ {𝑦})) |
| 148 | | iunin2 5071 |
. . . . . . . . . . 11
⊢ ∪ 𝑦 ∈ ran 𝐹((◡𝐺 “ {𝑧}) ∩ (◡𝐹 “ {𝑦})) = ((◡𝐺 “ {𝑧}) ∩ ∪
𝑦 ∈ ran 𝐹(◡𝐹 “ {𝑦})) |
| 149 | 147, 148 | eqtri 2765 |
. . . . . . . . . 10
⊢ ∪ 𝑦 ∈ ran 𝐹((◡𝐹 “ {𝑦}) ∩ (◡𝐺 “ {𝑧})) = ((◡𝐺 “ {𝑧}) ∩ ∪
𝑦 ∈ ran 𝐹(◡𝐹 “ {𝑦})) |
| 150 | | cnvimass 6100 |
. . . . . . . . . . . . 13
⊢ (◡𝐺 “ {𝑧}) ⊆ dom 𝐺 |
| 151 | 18 | fdmd 6746 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → dom 𝐺 = ℝ) |
| 152 | 151 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → dom 𝐺 = ℝ) |
| 153 | 150, 152 | sseqtrid 4026 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → (◡𝐺 “ {𝑧}) ⊆ ℝ) |
| 154 | | iunid 5060 |
. . . . . . . . . . . . . . 15
⊢ ∪ 𝑦 ∈ ran 𝐹{𝑦} = ran 𝐹 |
| 155 | 154 | imaeq2i 6076 |
. . . . . . . . . . . . . 14
⊢ (◡𝐹 “ ∪
𝑦 ∈ ran 𝐹{𝑦}) = (◡𝐹 “ ran 𝐹) |
| 156 | | imaiun 7265 |
. . . . . . . . . . . . . 14
⊢ (◡𝐹 “ ∪
𝑦 ∈ ran 𝐹{𝑦}) = ∪
𝑦 ∈ ran 𝐹(◡𝐹 “ {𝑦}) |
| 157 | | cnvimarndm 6101 |
. . . . . . . . . . . . . 14
⊢ (◡𝐹 “ ran 𝐹) = dom 𝐹 |
| 158 | 155, 156,
157 | 3eqtr3i 2773 |
. . . . . . . . . . . . 13
⊢ ∪ 𝑦 ∈ ran 𝐹(◡𝐹 “ {𝑦}) = dom 𝐹 |
| 159 | 9 | fdmd 6746 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → dom 𝐹 = ℝ) |
| 160 | 159 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → dom 𝐹 = ℝ) |
| 161 | 158, 160 | eqtrid 2789 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → ∪ 𝑦 ∈ ran 𝐹(◡𝐹 “ {𝑦}) = ℝ) |
| 162 | 153, 161 | sseqtrrd 4021 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → (◡𝐺 “ {𝑧}) ⊆ ∪ 𝑦 ∈ ran 𝐹(◡𝐹 “ {𝑦})) |
| 163 | | dfss2 3969 |
. . . . . . . . . . 11
⊢ ((◡𝐺 “ {𝑧}) ⊆ ∪ 𝑦 ∈ ran 𝐹(◡𝐹 “ {𝑦}) ↔ ((◡𝐺 “ {𝑧}) ∩ ∪
𝑦 ∈ ran 𝐹(◡𝐹 “ {𝑦})) = (◡𝐺 “ {𝑧})) |
| 164 | 162, 163 | sylib 218 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → ((◡𝐺 “ {𝑧}) ∩ ∪
𝑦 ∈ ran 𝐹(◡𝐹 “ {𝑦})) = (◡𝐺 “ {𝑧})) |
| 165 | 149, 164 | eqtr2id 2790 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → (◡𝐺 “ {𝑧}) = ∪
𝑦 ∈ ran 𝐹((◡𝐹 “ {𝑦}) ∩ (◡𝐺 “ {𝑧}))) |
| 166 | 165 | fveq2d 6910 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → (vol‘(◡𝐺 “ {𝑧})) = (vol‘∪ 𝑦 ∈ ran 𝐹((◡𝐹 “ {𝑦}) ∩ (◡𝐺 “ {𝑧})))) |
| 167 | 140 | sumeq2dv 15738 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → Σ𝑦 ∈ ran 𝐹(𝑦𝐼𝑧) = Σ𝑦 ∈ ran 𝐹(vol‘((◡𝐹 “ {𝑦}) ∩ (◡𝐺 “ {𝑧})))) |
| 168 | 144, 166,
167 | 3eqtr4d 2787 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → (vol‘(◡𝐺 “ {𝑧})) = Σ𝑦 ∈ ran 𝐹(𝑦𝐼𝑧)) |
| 169 | 168 | oveq2d 7447 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → (𝑧 · (vol‘(◡𝐺 “ {𝑧}))) = (𝑧 · Σ𝑦 ∈ ran 𝐹(𝑦𝐼𝑧))) |
| 170 | 133 | recnd 11289 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → 𝑧 ∈ ℂ) |
| 171 | 142 | recnd 11289 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) ∧ 𝑦 ∈ ran 𝐹) → (𝑦𝐼𝑧) ∈ ℂ) |
| 172 | 124, 170,
171 | fsummulc2 15820 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → (𝑧 · Σ𝑦 ∈ ran 𝐹(𝑦𝐼𝑧)) = Σ𝑦 ∈ ran 𝐹(𝑧 · (𝑦𝐼𝑧))) |
| 173 | 169, 172 | eqtrd 2777 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → (𝑧 · (vol‘(◡𝐺 “ {𝑧}))) = Σ𝑦 ∈ ran 𝐹(𝑧 · (𝑦𝐼𝑧))) |
| 174 | 173 | sumeq2dv 15738 |
. . . 4
⊢ (𝜑 → Σ𝑧 ∈ (ran 𝐺 ∖ {0})(𝑧 · (vol‘(◡𝐺 “ {𝑧}))) = Σ𝑧 ∈ (ran 𝐺 ∖ {0})Σ𝑦 ∈ ran 𝐹(𝑧 · (𝑦𝐼𝑧))) |
| 175 | | difssd 4137 |
. . . . . 6
⊢ (𝜑 → (ran 𝐺 ∖ {0}) ⊆ ran 𝐺) |
| 176 | 170 | adantr 480 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) ∧ 𝑦 ∈ ran 𝐹) → 𝑧 ∈ ℂ) |
| 177 | 176, 171 | mulcld 11281 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) ∧ 𝑦 ∈ ran 𝐹) → (𝑧 · (𝑦𝐼𝑧)) ∈ ℂ) |
| 178 | 124, 177 | fsumcl 15769 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → Σ𝑦 ∈ ran 𝐹(𝑧 · (𝑦𝐼𝑧)) ∈ ℂ) |
| 179 | | dfin4 4278 |
. . . . . . . . 9
⊢ (ran
𝐺 ∩ {0}) = (ran 𝐺 ∖ (ran 𝐺 ∖ {0})) |
| 180 | | inss2 4238 |
. . . . . . . . 9
⊢ (ran
𝐺 ∩ {0}) ⊆
{0} |
| 181 | 179, 180 | eqsstrri 4031 |
. . . . . . . 8
⊢ (ran
𝐺 ∖ (ran 𝐺 ∖ {0})) ⊆
{0} |
| 182 | 181 | sseli 3979 |
. . . . . . 7
⊢ (𝑧 ∈ (ran 𝐺 ∖ (ran 𝐺 ∖ {0})) → 𝑧 ∈ {0}) |
| 183 | | elsni 4643 |
. . . . . . . . . . . 12
⊢ (𝑧 ∈ {0} → 𝑧 = 0) |
| 184 | 183 | ad2antlr 727 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ {0}) ∧ 𝑦 ∈ ran 𝐹) → 𝑧 = 0) |
| 185 | 184 | oveq1d 7446 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ {0}) ∧ 𝑦 ∈ ran 𝐹) → (𝑧 · (𝑦𝐼𝑧)) = (0 · (𝑦𝐼𝑧))) |
| 186 | 15 | ad2antrr 726 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑧 ∈ {0}) ∧ 𝑦 ∈ ran 𝐹) → 𝐼:(ℝ ×
ℝ)⟶ℝ) |
| 187 | 11 | adantlr 715 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑧 ∈ {0}) ∧ 𝑦 ∈ ran 𝐹) → 𝑦 ∈ ℝ) |
| 188 | 184, 105 | eqeltrdi 2849 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑧 ∈ {0}) ∧ 𝑦 ∈ ran 𝐹) → 𝑧 ∈ ℝ) |
| 189 | 186, 187,
188 | fovcdmd 7605 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑧 ∈ {0}) ∧ 𝑦 ∈ ran 𝐹) → (𝑦𝐼𝑧) ∈ ℝ) |
| 190 | 189 | recnd 11289 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ {0}) ∧ 𝑦 ∈ ran 𝐹) → (𝑦𝐼𝑧) ∈ ℂ) |
| 191 | 190 | mul02d 11459 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ {0}) ∧ 𝑦 ∈ ran 𝐹) → (0 · (𝑦𝐼𝑧)) = 0) |
| 192 | 185, 191 | eqtrd 2777 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ {0}) ∧ 𝑦 ∈ ran 𝐹) → (𝑧 · (𝑦𝐼𝑧)) = 0) |
| 193 | 192 | sumeq2dv 15738 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ {0}) → Σ𝑦 ∈ ran 𝐹(𝑧 · (𝑦𝐼𝑧)) = Σ𝑦 ∈ ran 𝐹0) |
| 194 | 3 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ {0}) → ran 𝐹 ∈ Fin) |
| 195 | 194 | olcd 875 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ {0}) → (ran 𝐹 ⊆ (ℤ≥‘0)
∨ ran 𝐹 ∈
Fin)) |
| 196 | | sumz 15758 |
. . . . . . . . 9
⊢ ((ran
𝐹 ⊆
(ℤ≥‘0) ∨ ran 𝐹 ∈ Fin) → Σ𝑦 ∈ ran 𝐹0 = 0) |
| 197 | 195, 196 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ {0}) → Σ𝑦 ∈ ran 𝐹0 = 0) |
| 198 | 193, 197 | eqtrd 2777 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ {0}) → Σ𝑦 ∈ ran 𝐹(𝑧 · (𝑦𝐼𝑧)) = 0) |
| 199 | 182, 198 | sylan2 593 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ (ran 𝐺 ∖ (ran 𝐺 ∖ {0}))) → Σ𝑦 ∈ ran 𝐹(𝑧 · (𝑦𝐼𝑧)) = 0) |
| 200 | 175, 178,
199, 6 | fsumss 15761 |
. . . . 5
⊢ (𝜑 → Σ𝑧 ∈ (ran 𝐺 ∖ {0})Σ𝑦 ∈ ran 𝐹(𝑧 · (𝑦𝐼𝑧)) = Σ𝑧 ∈ ran 𝐺Σ𝑦 ∈ ran 𝐹(𝑧 · (𝑦𝐼𝑧))) |
| 201 | 20 | adantr 480 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐹) → 𝑧 ∈ ℝ) |
| 202 | 201 | recnd 11289 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐹) → 𝑧 ∈ ℂ) |
| 203 | 15 | ad2antrr 726 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐹) → 𝐼:(ℝ ×
ℝ)⟶ℝ) |
| 204 | 10 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ ran 𝐺) → ran 𝐹 ⊆ ℝ) |
| 205 | 204 | sselda 3983 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐹) → 𝑦 ∈ ℝ) |
| 206 | 203, 205,
201 | fovcdmd 7605 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐹) → (𝑦𝐼𝑧) ∈ ℝ) |
| 207 | 206 | recnd 11289 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐹) → (𝑦𝐼𝑧) ∈ ℂ) |
| 208 | 202, 207 | mulcld 11281 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐹) → (𝑧 · (𝑦𝐼𝑧)) ∈ ℂ) |
| 209 | 208 | anasss 466 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑧 ∈ ran 𝐺 ∧ 𝑦 ∈ ran 𝐹)) → (𝑧 · (𝑦𝐼𝑧)) ∈ ℂ) |
| 210 | 6, 3, 209 | fsumcom 15811 |
. . . . 5
⊢ (𝜑 → Σ𝑧 ∈ ran 𝐺Σ𝑦 ∈ ran 𝐹(𝑧 · (𝑦𝐼𝑧)) = Σ𝑦 ∈ ran 𝐹Σ𝑧 ∈ ran 𝐺(𝑧 · (𝑦𝐼𝑧))) |
| 211 | 200, 210 | eqtrd 2777 |
. . . 4
⊢ (𝜑 → Σ𝑧 ∈ (ran 𝐺 ∖ {0})Σ𝑦 ∈ ran 𝐹(𝑧 · (𝑦𝐼𝑧)) = Σ𝑦 ∈ ran 𝐹Σ𝑧 ∈ ran 𝐺(𝑧 · (𝑦𝐼𝑧))) |
| 212 | 122, 174,
211 | 3eqtrd 2781 |
. . 3
⊢ (𝜑 →
(∫1‘𝐺)
= Σ𝑦 ∈ ran 𝐹Σ𝑧 ∈ ran 𝐺(𝑧 · (𝑦𝐼𝑧))) |
| 213 | 120, 212 | oveq12d 7449 |
. 2
⊢ (𝜑 →
((∫1‘𝐹) + (∫1‘𝐺)) = (Σ𝑦 ∈ ran 𝐹Σ𝑧 ∈ ran 𝐺(𝑦 · (𝑦𝐼𝑧)) + Σ𝑦 ∈ ran 𝐹Σ𝑧 ∈ ran 𝐺(𝑧 · (𝑦𝐼𝑧)))) |
| 214 | 29, 37, 213 | 3eqtr4d 2787 |
1
⊢ (𝜑 →
(∫1‘(𝐹
∘f + 𝐺)) =
((∫1‘𝐹) + (∫1‘𝐺))) |