Step | Hyp | Ref
| Expression |
1 | | i1fadd.1 |
. . . 4
⊢ (𝜑 → 𝐹 ∈ dom
∫1) |
2 | | i1frn 24746 |
. . . 4
⊢ (𝐹 ∈ dom ∫1
→ ran 𝐹 ∈
Fin) |
3 | 1, 2 | syl 17 |
. . 3
⊢ (𝜑 → ran 𝐹 ∈ Fin) |
4 | | i1fadd.2 |
. . . . . 6
⊢ (𝜑 → 𝐺 ∈ dom
∫1) |
5 | | i1frn 24746 |
. . . . . 6
⊢ (𝐺 ∈ dom ∫1
→ ran 𝐺 ∈
Fin) |
6 | 4, 5 | syl 17 |
. . . . 5
⊢ (𝜑 → ran 𝐺 ∈ Fin) |
7 | 6 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ ran 𝐹) → ran 𝐺 ∈ Fin) |
8 | | i1ff 24745 |
. . . . . . . . . 10
⊢ (𝐹 ∈ dom ∫1
→ 𝐹:ℝ⟶ℝ) |
9 | 1, 8 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝐹:ℝ⟶ℝ) |
10 | 9 | frnd 6592 |
. . . . . . . 8
⊢ (𝜑 → ran 𝐹 ⊆ ℝ) |
11 | 10 | sselda 3917 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ ran 𝐹) → 𝑦 ∈ ℝ) |
12 | 11 | adantr 480 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑧 ∈ ran 𝐺) → 𝑦 ∈ ℝ) |
13 | 12 | recnd 10934 |
. . . . 5
⊢ (((𝜑 ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑧 ∈ ran 𝐺) → 𝑦 ∈ ℂ) |
14 | | itg1add.3 |
. . . . . . . . 9
⊢ 𝐼 = (𝑖 ∈ ℝ, 𝑗 ∈ ℝ ↦ if((𝑖 = 0 ∧ 𝑗 = 0), 0, (vol‘((◡𝐹 “ {𝑖}) ∩ (◡𝐺 “ {𝑗}))))) |
15 | 1, 4, 14 | itg1addlem2 24766 |
. . . . . . . 8
⊢ (𝜑 → 𝐼:(ℝ ×
ℝ)⟶ℝ) |
16 | 15 | ad2antrr 722 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑧 ∈ ran 𝐺) → 𝐼:(ℝ ×
ℝ)⟶ℝ) |
17 | | i1ff 24745 |
. . . . . . . . . . 11
⊢ (𝐺 ∈ dom ∫1
→ 𝐺:ℝ⟶ℝ) |
18 | 4, 17 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐺:ℝ⟶ℝ) |
19 | 18 | frnd 6592 |
. . . . . . . . 9
⊢ (𝜑 → ran 𝐺 ⊆ ℝ) |
20 | 19 | sselda 3917 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ ran 𝐺) → 𝑧 ∈ ℝ) |
21 | 20 | adantlr 711 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑧 ∈ ran 𝐺) → 𝑧 ∈ ℝ) |
22 | 16, 12, 21 | fovrnd 7422 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑧 ∈ ran 𝐺) → (𝑦𝐼𝑧) ∈ ℝ) |
23 | 22 | recnd 10934 |
. . . . 5
⊢ (((𝜑 ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑧 ∈ ran 𝐺) → (𝑦𝐼𝑧) ∈ ℂ) |
24 | 13, 23 | mulcld 10926 |
. . . 4
⊢ (((𝜑 ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑧 ∈ ran 𝐺) → (𝑦 · (𝑦𝐼𝑧)) ∈ ℂ) |
25 | 7, 24 | fsumcl 15373 |
. . 3
⊢ ((𝜑 ∧ 𝑦 ∈ ran 𝐹) → Σ𝑧 ∈ ran 𝐺(𝑦 · (𝑦𝐼𝑧)) ∈ ℂ) |
26 | 21 | recnd 10934 |
. . . . 5
⊢ (((𝜑 ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑧 ∈ ran 𝐺) → 𝑧 ∈ ℂ) |
27 | 26, 23 | mulcld 10926 |
. . . 4
⊢ (((𝜑 ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑧 ∈ ran 𝐺) → (𝑧 · (𝑦𝐼𝑧)) ∈ ℂ) |
28 | 7, 27 | fsumcl 15373 |
. . 3
⊢ ((𝜑 ∧ 𝑦 ∈ ran 𝐹) → Σ𝑧 ∈ ran 𝐺(𝑧 · (𝑦𝐼𝑧)) ∈ ℂ) |
29 | 3, 25, 28 | fsumadd 15380 |
. 2
⊢ (𝜑 → Σ𝑦 ∈ ran 𝐹(Σ𝑧 ∈ ran 𝐺(𝑦 · (𝑦𝐼𝑧)) + Σ𝑧 ∈ ran 𝐺(𝑧 · (𝑦𝐼𝑧))) = (Σ𝑦 ∈ ran 𝐹Σ𝑧 ∈ ran 𝐺(𝑦 · (𝑦𝐼𝑧)) + Σ𝑦 ∈ ran 𝐹Σ𝑧 ∈ ran 𝐺(𝑧 · (𝑦𝐼𝑧)))) |
30 | | itg1add.4 |
. . . 4
⊢ 𝑃 = ( + ↾ (ran 𝐹 × ran 𝐺)) |
31 | 1, 4, 14, 30 | itg1addlem4 24768 |
. . 3
⊢ (𝜑 →
(∫1‘(𝐹
∘f + 𝐺)) =
Σ𝑦 ∈ ran 𝐹Σ𝑧 ∈ ran 𝐺((𝑦 + 𝑧) · (𝑦𝐼𝑧))) |
32 | 13, 26, 23 | adddird 10931 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ ran 𝐹) ∧ 𝑧 ∈ ran 𝐺) → ((𝑦 + 𝑧) · (𝑦𝐼𝑧)) = ((𝑦 · (𝑦𝐼𝑧)) + (𝑧 · (𝑦𝐼𝑧)))) |
33 | 32 | sumeq2dv 15343 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ ran 𝐹) → Σ𝑧 ∈ ran 𝐺((𝑦 + 𝑧) · (𝑦𝐼𝑧)) = Σ𝑧 ∈ ran 𝐺((𝑦 · (𝑦𝐼𝑧)) + (𝑧 · (𝑦𝐼𝑧)))) |
34 | 7, 24, 27 | fsumadd 15380 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ ran 𝐹) → Σ𝑧 ∈ ran 𝐺((𝑦 · (𝑦𝐼𝑧)) + (𝑧 · (𝑦𝐼𝑧))) = (Σ𝑧 ∈ ran 𝐺(𝑦 · (𝑦𝐼𝑧)) + Σ𝑧 ∈ ran 𝐺(𝑧 · (𝑦𝐼𝑧)))) |
35 | 33, 34 | eqtrd 2778 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ ran 𝐹) → Σ𝑧 ∈ ran 𝐺((𝑦 + 𝑧) · (𝑦𝐼𝑧)) = (Σ𝑧 ∈ ran 𝐺(𝑦 · (𝑦𝐼𝑧)) + Σ𝑧 ∈ ran 𝐺(𝑧 · (𝑦𝐼𝑧)))) |
36 | 35 | sumeq2dv 15343 |
. . 3
⊢ (𝜑 → Σ𝑦 ∈ ran 𝐹Σ𝑧 ∈ ran 𝐺((𝑦 + 𝑧) · (𝑦𝐼𝑧)) = Σ𝑦 ∈ ran 𝐹(Σ𝑧 ∈ ran 𝐺(𝑦 · (𝑦𝐼𝑧)) + Σ𝑧 ∈ ran 𝐺(𝑧 · (𝑦𝐼𝑧)))) |
37 | 31, 36 | eqtrd 2778 |
. 2
⊢ (𝜑 →
(∫1‘(𝐹
∘f + 𝐺)) =
Σ𝑦 ∈ ran 𝐹(Σ𝑧 ∈ ran 𝐺(𝑦 · (𝑦𝐼𝑧)) + Σ𝑧 ∈ ran 𝐺(𝑧 · (𝑦𝐼𝑧)))) |
38 | | itg1val 24752 |
. . . . 5
⊢ (𝐹 ∈ dom ∫1
→ (∫1‘𝐹) = Σ𝑦 ∈ (ran 𝐹 ∖ {0})(𝑦 · (vol‘(◡𝐹 “ {𝑦})))) |
39 | 1, 38 | syl 17 |
. . . 4
⊢ (𝜑 →
(∫1‘𝐹)
= Σ𝑦 ∈ (ran
𝐹 ∖ {0})(𝑦 · (vol‘(◡𝐹 “ {𝑦})))) |
40 | 18 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) → 𝐺:ℝ⟶ℝ) |
41 | 6 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) → ran 𝐺 ∈ Fin) |
42 | | inss2 4160 |
. . . . . . . . . 10
⊢ ((◡𝐹 “ {𝑦}) ∩ (◡𝐺 “ {𝑧})) ⊆ (◡𝐺 “ {𝑧}) |
43 | 42 | a1i 11 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → ((◡𝐹 “ {𝑦}) ∩ (◡𝐺 “ {𝑧})) ⊆ (◡𝐺 “ {𝑧})) |
44 | | i1fima 24747 |
. . . . . . . . . . . 12
⊢ (𝐹 ∈ dom ∫1
→ (◡𝐹 “ {𝑦}) ∈ dom vol) |
45 | 1, 44 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (◡𝐹 “ {𝑦}) ∈ dom vol) |
46 | 45 | ad2antrr 722 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → (◡𝐹 “ {𝑦}) ∈ dom vol) |
47 | | i1fima 24747 |
. . . . . . . . . . . 12
⊢ (𝐺 ∈ dom ∫1
→ (◡𝐺 “ {𝑧}) ∈ dom vol) |
48 | 4, 47 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (◡𝐺 “ {𝑧}) ∈ dom vol) |
49 | 48 | ad2antrr 722 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → (◡𝐺 “ {𝑧}) ∈ dom vol) |
50 | | inmbl 24611 |
. . . . . . . . . 10
⊢ (((◡𝐹 “ {𝑦}) ∈ dom vol ∧ (◡𝐺 “ {𝑧}) ∈ dom vol) → ((◡𝐹 “ {𝑦}) ∩ (◡𝐺 “ {𝑧})) ∈ dom vol) |
51 | 46, 49, 50 | syl2anc 583 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → ((◡𝐹 “ {𝑦}) ∩ (◡𝐺 “ {𝑧})) ∈ dom vol) |
52 | 10 | ssdifssd 4073 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (ran 𝐹 ∖ {0}) ⊆
ℝ) |
53 | 52 | sselda 3917 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) → 𝑦 ∈ ℝ) |
54 | 53 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → 𝑦 ∈ ℝ) |
55 | 19 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) → ran 𝐺 ⊆ ℝ) |
56 | 55 | sselda 3917 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → 𝑧 ∈ ℝ) |
57 | | eldifsni 4720 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ (ran 𝐹 ∖ {0}) → 𝑦 ≠ 0) |
58 | 57 | ad2antlr 723 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → 𝑦 ≠ 0) |
59 | | simpl 482 |
. . . . . . . . . . . . 13
⊢ ((𝑦 = 0 ∧ 𝑧 = 0) → 𝑦 = 0) |
60 | 59 | necon3ai 2967 |
. . . . . . . . . . . 12
⊢ (𝑦 ≠ 0 → ¬ (𝑦 = 0 ∧ 𝑧 = 0)) |
61 | 58, 60 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → ¬ (𝑦 = 0 ∧ 𝑧 = 0)) |
62 | 1, 4, 14 | itg1addlem3 24767 |
. . . . . . . . . . 11
⊢ (((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) ∧ ¬
(𝑦 = 0 ∧ 𝑧 = 0)) → (𝑦𝐼𝑧) = (vol‘((◡𝐹 “ {𝑦}) ∩ (◡𝐺 “ {𝑧})))) |
63 | 54, 56, 61, 62 | syl21anc 834 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → (𝑦𝐼𝑧) = (vol‘((◡𝐹 “ {𝑦}) ∩ (◡𝐺 “ {𝑧})))) |
64 | 15 | ad2antrr 722 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → 𝐼:(ℝ ×
ℝ)⟶ℝ) |
65 | 64, 54, 56 | fovrnd 7422 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → (𝑦𝐼𝑧) ∈ ℝ) |
66 | 63, 65 | eqeltrrd 2840 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → (vol‘((◡𝐹 “ {𝑦}) ∩ (◡𝐺 “ {𝑧}))) ∈ ℝ) |
67 | 40, 41, 43, 51, 66 | itg1addlem1 24761 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) → (vol‘∪ 𝑧 ∈ ran 𝐺((◡𝐹 “ {𝑦}) ∩ (◡𝐺 “ {𝑧}))) = Σ𝑧 ∈ ran 𝐺(vol‘((◡𝐹 “ {𝑦}) ∩ (◡𝐺 “ {𝑧})))) |
68 | | iunin2 4996 |
. . . . . . . . . 10
⊢ ∪ 𝑧 ∈ ran 𝐺((◡𝐹 “ {𝑦}) ∩ (◡𝐺 “ {𝑧})) = ((◡𝐹 “ {𝑦}) ∩ ∪
𝑧 ∈ ran 𝐺(◡𝐺 “ {𝑧})) |
69 | 1 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) → 𝐹 ∈ dom
∫1) |
70 | 69, 44 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) → (◡𝐹 “ {𝑦}) ∈ dom vol) |
71 | | mblss 24600 |
. . . . . . . . . . . . 13
⊢ ((◡𝐹 “ {𝑦}) ∈ dom vol → (◡𝐹 “ {𝑦}) ⊆ ℝ) |
72 | 70, 71 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) → (◡𝐹 “ {𝑦}) ⊆ ℝ) |
73 | | iunid 4986 |
. . . . . . . . . . . . . . 15
⊢ ∪ 𝑧 ∈ ran 𝐺{𝑧} = ran 𝐺 |
74 | 73 | imaeq2i 5956 |
. . . . . . . . . . . . . 14
⊢ (◡𝐺 “ ∪
𝑧 ∈ ran 𝐺{𝑧}) = (◡𝐺 “ ran 𝐺) |
75 | | imaiun 7100 |
. . . . . . . . . . . . . 14
⊢ (◡𝐺 “ ∪
𝑧 ∈ ran 𝐺{𝑧}) = ∪
𝑧 ∈ ran 𝐺(◡𝐺 “ {𝑧}) |
76 | | cnvimarndm 5979 |
. . . . . . . . . . . . . 14
⊢ (◡𝐺 “ ran 𝐺) = dom 𝐺 |
77 | 74, 75, 76 | 3eqtr3i 2774 |
. . . . . . . . . . . . 13
⊢ ∪ 𝑧 ∈ ran 𝐺(◡𝐺 “ {𝑧}) = dom 𝐺 |
78 | 40 | fdmd 6595 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) → dom 𝐺 = ℝ) |
79 | 77, 78 | syl5eq 2791 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) → ∪ 𝑧 ∈ ran 𝐺(◡𝐺 “ {𝑧}) = ℝ) |
80 | 72, 79 | sseqtrrd 3958 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) → (◡𝐹 “ {𝑦}) ⊆ ∪ 𝑧 ∈ ran 𝐺(◡𝐺 “ {𝑧})) |
81 | | df-ss 3900 |
. . . . . . . . . . 11
⊢ ((◡𝐹 “ {𝑦}) ⊆ ∪ 𝑧 ∈ ran 𝐺(◡𝐺 “ {𝑧}) ↔ ((◡𝐹 “ {𝑦}) ∩ ∪
𝑧 ∈ ran 𝐺(◡𝐺 “ {𝑧})) = (◡𝐹 “ {𝑦})) |
82 | 80, 81 | sylib 217 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) → ((◡𝐹 “ {𝑦}) ∩ ∪
𝑧 ∈ ran 𝐺(◡𝐺 “ {𝑧})) = (◡𝐹 “ {𝑦})) |
83 | 68, 82 | eqtr2id 2792 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) → (◡𝐹 “ {𝑦}) = ∪
𝑧 ∈ ran 𝐺((◡𝐹 “ {𝑦}) ∩ (◡𝐺 “ {𝑧}))) |
84 | 83 | fveq2d 6760 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) → (vol‘(◡𝐹 “ {𝑦})) = (vol‘∪ 𝑧 ∈ ran 𝐺((◡𝐹 “ {𝑦}) ∩ (◡𝐺 “ {𝑧})))) |
85 | 63 | sumeq2dv 15343 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) → Σ𝑧 ∈ ran 𝐺(𝑦𝐼𝑧) = Σ𝑧 ∈ ran 𝐺(vol‘((◡𝐹 “ {𝑦}) ∩ (◡𝐺 “ {𝑧})))) |
86 | 67, 84, 85 | 3eqtr4d 2788 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) → (vol‘(◡𝐹 “ {𝑦})) = Σ𝑧 ∈ ran 𝐺(𝑦𝐼𝑧)) |
87 | 86 | oveq2d 7271 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) → (𝑦 · (vol‘(◡𝐹 “ {𝑦}))) = (𝑦 · Σ𝑧 ∈ ran 𝐺(𝑦𝐼𝑧))) |
88 | 53 | recnd 10934 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) → 𝑦 ∈ ℂ) |
89 | 65 | recnd 10934 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → (𝑦𝐼𝑧) ∈ ℂ) |
90 | 41, 88, 89 | fsummulc2 15424 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) → (𝑦 · Σ𝑧 ∈ ran 𝐺(𝑦𝐼𝑧)) = Σ𝑧 ∈ ran 𝐺(𝑦 · (𝑦𝐼𝑧))) |
91 | 87, 90 | eqtrd 2778 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) → (𝑦 · (vol‘(◡𝐹 “ {𝑦}))) = Σ𝑧 ∈ ran 𝐺(𝑦 · (𝑦𝐼𝑧))) |
92 | 91 | sumeq2dv 15343 |
. . . 4
⊢ (𝜑 → Σ𝑦 ∈ (ran 𝐹 ∖ {0})(𝑦 · (vol‘(◡𝐹 “ {𝑦}))) = Σ𝑦 ∈ (ran 𝐹 ∖ {0})Σ𝑧 ∈ ran 𝐺(𝑦 · (𝑦𝐼𝑧))) |
93 | | difssd 4063 |
. . . . 5
⊢ (𝜑 → (ran 𝐹 ∖ {0}) ⊆ ran 𝐹) |
94 | 54 | recnd 10934 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → 𝑦 ∈ ℂ) |
95 | 94, 89 | mulcld 10926 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑧 ∈ ran 𝐺) → (𝑦 · (𝑦𝐼𝑧)) ∈ ℂ) |
96 | 41, 95 | fsumcl 15373 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ (ran 𝐹 ∖ {0})) → Σ𝑧 ∈ ran 𝐺(𝑦 · (𝑦𝐼𝑧)) ∈ ℂ) |
97 | | dfin4 4198 |
. . . . . . . 8
⊢ (ran
𝐹 ∩ {0}) = (ran 𝐹 ∖ (ran 𝐹 ∖ {0})) |
98 | | inss2 4160 |
. . . . . . . 8
⊢ (ran
𝐹 ∩ {0}) ⊆
{0} |
99 | 97, 98 | eqsstrri 3952 |
. . . . . . 7
⊢ (ran
𝐹 ∖ (ran 𝐹 ∖ {0})) ⊆
{0} |
100 | 99 | sseli 3913 |
. . . . . 6
⊢ (𝑦 ∈ (ran 𝐹 ∖ (ran 𝐹 ∖ {0})) → 𝑦 ∈ {0}) |
101 | | elsni 4575 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ {0} → 𝑦 = 0) |
102 | 101 | ad2antlr 723 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ {0}) ∧ 𝑧 ∈ ran 𝐺) → 𝑦 = 0) |
103 | 102 | oveq1d 7270 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ {0}) ∧ 𝑧 ∈ ran 𝐺) → (𝑦 · (𝑦𝐼𝑧)) = (0 · (𝑦𝐼𝑧))) |
104 | 15 | ad2antrr 722 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ {0}) ∧ 𝑧 ∈ ran 𝐺) → 𝐼:(ℝ ×
ℝ)⟶ℝ) |
105 | | 0re 10908 |
. . . . . . . . . . . . 13
⊢ 0 ∈
ℝ |
106 | 102, 105 | eqeltrdi 2847 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ {0}) ∧ 𝑧 ∈ ran 𝐺) → 𝑦 ∈ ℝ) |
107 | 20 | adantlr 711 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ {0}) ∧ 𝑧 ∈ ran 𝐺) → 𝑧 ∈ ℝ) |
108 | 104, 106,
107 | fovrnd 7422 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ {0}) ∧ 𝑧 ∈ ran 𝐺) → (𝑦𝐼𝑧) ∈ ℝ) |
109 | 108 | recnd 10934 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ {0}) ∧ 𝑧 ∈ ran 𝐺) → (𝑦𝐼𝑧) ∈ ℂ) |
110 | 109 | mul02d 11103 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ {0}) ∧ 𝑧 ∈ ran 𝐺) → (0 · (𝑦𝐼𝑧)) = 0) |
111 | 103, 110 | eqtrd 2778 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ {0}) ∧ 𝑧 ∈ ran 𝐺) → (𝑦 · (𝑦𝐼𝑧)) = 0) |
112 | 111 | sumeq2dv 15343 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ {0}) → Σ𝑧 ∈ ran 𝐺(𝑦 · (𝑦𝐼𝑧)) = Σ𝑧 ∈ ran 𝐺0) |
113 | 6 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ {0}) → ran 𝐺 ∈ Fin) |
114 | 113 | olcd 870 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ {0}) → (ran 𝐺 ⊆ (ℤ≥‘0)
∨ ran 𝐺 ∈
Fin)) |
115 | | sumz 15362 |
. . . . . . . 8
⊢ ((ran
𝐺 ⊆
(ℤ≥‘0) ∨ ran 𝐺 ∈ Fin) → Σ𝑧 ∈ ran 𝐺0 = 0) |
116 | 114, 115 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ {0}) → Σ𝑧 ∈ ran 𝐺0 = 0) |
117 | 112, 116 | eqtrd 2778 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ {0}) → Σ𝑧 ∈ ran 𝐺(𝑦 · (𝑦𝐼𝑧)) = 0) |
118 | 100, 117 | sylan2 592 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ (ran 𝐹 ∖ (ran 𝐹 ∖ {0}))) → Σ𝑧 ∈ ran 𝐺(𝑦 · (𝑦𝐼𝑧)) = 0) |
119 | 93, 96, 118, 3 | fsumss 15365 |
. . . 4
⊢ (𝜑 → Σ𝑦 ∈ (ran 𝐹 ∖ {0})Σ𝑧 ∈ ran 𝐺(𝑦 · (𝑦𝐼𝑧)) = Σ𝑦 ∈ ran 𝐹Σ𝑧 ∈ ran 𝐺(𝑦 · (𝑦𝐼𝑧))) |
120 | 39, 92, 119 | 3eqtrd 2782 |
. . 3
⊢ (𝜑 →
(∫1‘𝐹)
= Σ𝑦 ∈ ran 𝐹Σ𝑧 ∈ ran 𝐺(𝑦 · (𝑦𝐼𝑧))) |
121 | | itg1val 24752 |
. . . . 5
⊢ (𝐺 ∈ dom ∫1
→ (∫1‘𝐺) = Σ𝑧 ∈ (ran 𝐺 ∖ {0})(𝑧 · (vol‘(◡𝐺 “ {𝑧})))) |
122 | 4, 121 | syl 17 |
. . . 4
⊢ (𝜑 →
(∫1‘𝐺)
= Σ𝑧 ∈ (ran
𝐺 ∖ {0})(𝑧 · (vol‘(◡𝐺 “ {𝑧})))) |
123 | 9 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → 𝐹:ℝ⟶ℝ) |
124 | 3 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → ran 𝐹 ∈ Fin) |
125 | | inss1 4159 |
. . . . . . . . . 10
⊢ ((◡𝐹 “ {𝑦}) ∩ (◡𝐺 “ {𝑧})) ⊆ (◡𝐹 “ {𝑦}) |
126 | 125 | a1i 11 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) ∧ 𝑦 ∈ ran 𝐹) → ((◡𝐹 “ {𝑦}) ∩ (◡𝐺 “ {𝑧})) ⊆ (◡𝐹 “ {𝑦})) |
127 | 45 | ad2antrr 722 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) ∧ 𝑦 ∈ ran 𝐹) → (◡𝐹 “ {𝑦}) ∈ dom vol) |
128 | 48 | ad2antrr 722 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) ∧ 𝑦 ∈ ran 𝐹) → (◡𝐺 “ {𝑧}) ∈ dom vol) |
129 | 127, 128,
50 | syl2anc 583 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) ∧ 𝑦 ∈ ran 𝐹) → ((◡𝐹 “ {𝑦}) ∩ (◡𝐺 “ {𝑧})) ∈ dom vol) |
130 | 10 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → ran 𝐹 ⊆ ℝ) |
131 | 130 | sselda 3917 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) ∧ 𝑦 ∈ ran 𝐹) → 𝑦 ∈ ℝ) |
132 | 19 | ssdifssd 4073 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (ran 𝐺 ∖ {0}) ⊆
ℝ) |
133 | 132 | sselda 3917 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → 𝑧 ∈ ℝ) |
134 | 133 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) ∧ 𝑦 ∈ ran 𝐹) → 𝑧 ∈ ℝ) |
135 | | eldifsni 4720 |
. . . . . . . . . . . . 13
⊢ (𝑧 ∈ (ran 𝐺 ∖ {0}) → 𝑧 ≠ 0) |
136 | 135 | ad2antlr 723 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) ∧ 𝑦 ∈ ran 𝐹) → 𝑧 ≠ 0) |
137 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ ((𝑦 = 0 ∧ 𝑧 = 0) → 𝑧 = 0) |
138 | 137 | necon3ai 2967 |
. . . . . . . . . . . 12
⊢ (𝑧 ≠ 0 → ¬ (𝑦 = 0 ∧ 𝑧 = 0)) |
139 | 136, 138 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) ∧ 𝑦 ∈ ran 𝐹) → ¬ (𝑦 = 0 ∧ 𝑧 = 0)) |
140 | 131, 134,
139, 62 | syl21anc 834 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) ∧ 𝑦 ∈ ran 𝐹) → (𝑦𝐼𝑧) = (vol‘((◡𝐹 “ {𝑦}) ∩ (◡𝐺 “ {𝑧})))) |
141 | 15 | ad2antrr 722 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) ∧ 𝑦 ∈ ran 𝐹) → 𝐼:(ℝ ×
ℝ)⟶ℝ) |
142 | 141, 131,
134 | fovrnd 7422 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) ∧ 𝑦 ∈ ran 𝐹) → (𝑦𝐼𝑧) ∈ ℝ) |
143 | 140, 142 | eqeltrrd 2840 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) ∧ 𝑦 ∈ ran 𝐹) → (vol‘((◡𝐹 “ {𝑦}) ∩ (◡𝐺 “ {𝑧}))) ∈ ℝ) |
144 | 123, 124,
126, 129, 143 | itg1addlem1 24761 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → (vol‘∪ 𝑦 ∈ ran 𝐹((◡𝐹 “ {𝑦}) ∩ (◡𝐺 “ {𝑧}))) = Σ𝑦 ∈ ran 𝐹(vol‘((◡𝐹 “ {𝑦}) ∩ (◡𝐺 “ {𝑧})))) |
145 | | incom 4131 |
. . . . . . . . . . . . 13
⊢ ((◡𝐹 “ {𝑦}) ∩ (◡𝐺 “ {𝑧})) = ((◡𝐺 “ {𝑧}) ∩ (◡𝐹 “ {𝑦})) |
146 | 145 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ ran 𝐹 → ((◡𝐹 “ {𝑦}) ∩ (◡𝐺 “ {𝑧})) = ((◡𝐺 “ {𝑧}) ∩ (◡𝐹 “ {𝑦}))) |
147 | 146 | iuneq2i 4942 |
. . . . . . . . . . 11
⊢ ∪ 𝑦 ∈ ran 𝐹((◡𝐹 “ {𝑦}) ∩ (◡𝐺 “ {𝑧})) = ∪
𝑦 ∈ ran 𝐹((◡𝐺 “ {𝑧}) ∩ (◡𝐹 “ {𝑦})) |
148 | | iunin2 4996 |
. . . . . . . . . . 11
⊢ ∪ 𝑦 ∈ ran 𝐹((◡𝐺 “ {𝑧}) ∩ (◡𝐹 “ {𝑦})) = ((◡𝐺 “ {𝑧}) ∩ ∪
𝑦 ∈ ran 𝐹(◡𝐹 “ {𝑦})) |
149 | 147, 148 | eqtri 2766 |
. . . . . . . . . 10
⊢ ∪ 𝑦 ∈ ran 𝐹((◡𝐹 “ {𝑦}) ∩ (◡𝐺 “ {𝑧})) = ((◡𝐺 “ {𝑧}) ∩ ∪
𝑦 ∈ ran 𝐹(◡𝐹 “ {𝑦})) |
150 | | cnvimass 5978 |
. . . . . . . . . . . . 13
⊢ (◡𝐺 “ {𝑧}) ⊆ dom 𝐺 |
151 | 18 | fdmd 6595 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → dom 𝐺 = ℝ) |
152 | 151 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → dom 𝐺 = ℝ) |
153 | 150, 152 | sseqtrid 3969 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → (◡𝐺 “ {𝑧}) ⊆ ℝ) |
154 | | iunid 4986 |
. . . . . . . . . . . . . . 15
⊢ ∪ 𝑦 ∈ ran 𝐹{𝑦} = ran 𝐹 |
155 | 154 | imaeq2i 5956 |
. . . . . . . . . . . . . 14
⊢ (◡𝐹 “ ∪
𝑦 ∈ ran 𝐹{𝑦}) = (◡𝐹 “ ran 𝐹) |
156 | | imaiun 7100 |
. . . . . . . . . . . . . 14
⊢ (◡𝐹 “ ∪
𝑦 ∈ ran 𝐹{𝑦}) = ∪
𝑦 ∈ ran 𝐹(◡𝐹 “ {𝑦}) |
157 | | cnvimarndm 5979 |
. . . . . . . . . . . . . 14
⊢ (◡𝐹 “ ran 𝐹) = dom 𝐹 |
158 | 155, 156,
157 | 3eqtr3i 2774 |
. . . . . . . . . . . . 13
⊢ ∪ 𝑦 ∈ ran 𝐹(◡𝐹 “ {𝑦}) = dom 𝐹 |
159 | 9 | fdmd 6595 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → dom 𝐹 = ℝ) |
160 | 159 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → dom 𝐹 = ℝ) |
161 | 158, 160 | syl5eq 2791 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → ∪ 𝑦 ∈ ran 𝐹(◡𝐹 “ {𝑦}) = ℝ) |
162 | 153, 161 | sseqtrrd 3958 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → (◡𝐺 “ {𝑧}) ⊆ ∪ 𝑦 ∈ ran 𝐹(◡𝐹 “ {𝑦})) |
163 | | df-ss 3900 |
. . . . . . . . . . 11
⊢ ((◡𝐺 “ {𝑧}) ⊆ ∪ 𝑦 ∈ ran 𝐹(◡𝐹 “ {𝑦}) ↔ ((◡𝐺 “ {𝑧}) ∩ ∪
𝑦 ∈ ran 𝐹(◡𝐹 “ {𝑦})) = (◡𝐺 “ {𝑧})) |
164 | 162, 163 | sylib 217 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → ((◡𝐺 “ {𝑧}) ∩ ∪
𝑦 ∈ ran 𝐹(◡𝐹 “ {𝑦})) = (◡𝐺 “ {𝑧})) |
165 | 149, 164 | eqtr2id 2792 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → (◡𝐺 “ {𝑧}) = ∪
𝑦 ∈ ran 𝐹((◡𝐹 “ {𝑦}) ∩ (◡𝐺 “ {𝑧}))) |
166 | 165 | fveq2d 6760 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → (vol‘(◡𝐺 “ {𝑧})) = (vol‘∪ 𝑦 ∈ ran 𝐹((◡𝐹 “ {𝑦}) ∩ (◡𝐺 “ {𝑧})))) |
167 | 140 | sumeq2dv 15343 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → Σ𝑦 ∈ ran 𝐹(𝑦𝐼𝑧) = Σ𝑦 ∈ ran 𝐹(vol‘((◡𝐹 “ {𝑦}) ∩ (◡𝐺 “ {𝑧})))) |
168 | 144, 166,
167 | 3eqtr4d 2788 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → (vol‘(◡𝐺 “ {𝑧})) = Σ𝑦 ∈ ran 𝐹(𝑦𝐼𝑧)) |
169 | 168 | oveq2d 7271 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → (𝑧 · (vol‘(◡𝐺 “ {𝑧}))) = (𝑧 · Σ𝑦 ∈ ran 𝐹(𝑦𝐼𝑧))) |
170 | 133 | recnd 10934 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → 𝑧 ∈ ℂ) |
171 | 142 | recnd 10934 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) ∧ 𝑦 ∈ ran 𝐹) → (𝑦𝐼𝑧) ∈ ℂ) |
172 | 124, 170,
171 | fsummulc2 15424 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → (𝑧 · Σ𝑦 ∈ ran 𝐹(𝑦𝐼𝑧)) = Σ𝑦 ∈ ran 𝐹(𝑧 · (𝑦𝐼𝑧))) |
173 | 169, 172 | eqtrd 2778 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → (𝑧 · (vol‘(◡𝐺 “ {𝑧}))) = Σ𝑦 ∈ ran 𝐹(𝑧 · (𝑦𝐼𝑧))) |
174 | 173 | sumeq2dv 15343 |
. . . 4
⊢ (𝜑 → Σ𝑧 ∈ (ran 𝐺 ∖ {0})(𝑧 · (vol‘(◡𝐺 “ {𝑧}))) = Σ𝑧 ∈ (ran 𝐺 ∖ {0})Σ𝑦 ∈ ran 𝐹(𝑧 · (𝑦𝐼𝑧))) |
175 | | difssd 4063 |
. . . . . 6
⊢ (𝜑 → (ran 𝐺 ∖ {0}) ⊆ ran 𝐺) |
176 | 170 | adantr 480 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) ∧ 𝑦 ∈ ran 𝐹) → 𝑧 ∈ ℂ) |
177 | 176, 171 | mulcld 10926 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) ∧ 𝑦 ∈ ran 𝐹) → (𝑧 · (𝑦𝐼𝑧)) ∈ ℂ) |
178 | 124, 177 | fsumcl 15373 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ (ran 𝐺 ∖ {0})) → Σ𝑦 ∈ ran 𝐹(𝑧 · (𝑦𝐼𝑧)) ∈ ℂ) |
179 | | dfin4 4198 |
. . . . . . . . 9
⊢ (ran
𝐺 ∩ {0}) = (ran 𝐺 ∖ (ran 𝐺 ∖ {0})) |
180 | | inss2 4160 |
. . . . . . . . 9
⊢ (ran
𝐺 ∩ {0}) ⊆
{0} |
181 | 179, 180 | eqsstrri 3952 |
. . . . . . . 8
⊢ (ran
𝐺 ∖ (ran 𝐺 ∖ {0})) ⊆
{0} |
182 | 181 | sseli 3913 |
. . . . . . 7
⊢ (𝑧 ∈ (ran 𝐺 ∖ (ran 𝐺 ∖ {0})) → 𝑧 ∈ {0}) |
183 | | elsni 4575 |
. . . . . . . . . . . 12
⊢ (𝑧 ∈ {0} → 𝑧 = 0) |
184 | 183 | ad2antlr 723 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ {0}) ∧ 𝑦 ∈ ran 𝐹) → 𝑧 = 0) |
185 | 184 | oveq1d 7270 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ {0}) ∧ 𝑦 ∈ ran 𝐹) → (𝑧 · (𝑦𝐼𝑧)) = (0 · (𝑦𝐼𝑧))) |
186 | 15 | ad2antrr 722 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑧 ∈ {0}) ∧ 𝑦 ∈ ran 𝐹) → 𝐼:(ℝ ×
ℝ)⟶ℝ) |
187 | 11 | adantlr 711 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑧 ∈ {0}) ∧ 𝑦 ∈ ran 𝐹) → 𝑦 ∈ ℝ) |
188 | 184, 105 | eqeltrdi 2847 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑧 ∈ {0}) ∧ 𝑦 ∈ ran 𝐹) → 𝑧 ∈ ℝ) |
189 | 186, 187,
188 | fovrnd 7422 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑧 ∈ {0}) ∧ 𝑦 ∈ ran 𝐹) → (𝑦𝐼𝑧) ∈ ℝ) |
190 | 189 | recnd 10934 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ {0}) ∧ 𝑦 ∈ ran 𝐹) → (𝑦𝐼𝑧) ∈ ℂ) |
191 | 190 | mul02d 11103 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ {0}) ∧ 𝑦 ∈ ran 𝐹) → (0 · (𝑦𝐼𝑧)) = 0) |
192 | 185, 191 | eqtrd 2778 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ {0}) ∧ 𝑦 ∈ ran 𝐹) → (𝑧 · (𝑦𝐼𝑧)) = 0) |
193 | 192 | sumeq2dv 15343 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ {0}) → Σ𝑦 ∈ ran 𝐹(𝑧 · (𝑦𝐼𝑧)) = Σ𝑦 ∈ ran 𝐹0) |
194 | 3 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ {0}) → ran 𝐹 ∈ Fin) |
195 | 194 | olcd 870 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ {0}) → (ran 𝐹 ⊆ (ℤ≥‘0)
∨ ran 𝐹 ∈
Fin)) |
196 | | sumz 15362 |
. . . . . . . . 9
⊢ ((ran
𝐹 ⊆
(ℤ≥‘0) ∨ ran 𝐹 ∈ Fin) → Σ𝑦 ∈ ran 𝐹0 = 0) |
197 | 195, 196 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ {0}) → Σ𝑦 ∈ ran 𝐹0 = 0) |
198 | 193, 197 | eqtrd 2778 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ {0}) → Σ𝑦 ∈ ran 𝐹(𝑧 · (𝑦𝐼𝑧)) = 0) |
199 | 182, 198 | sylan2 592 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ (ran 𝐺 ∖ (ran 𝐺 ∖ {0}))) → Σ𝑦 ∈ ran 𝐹(𝑧 · (𝑦𝐼𝑧)) = 0) |
200 | 175, 178,
199, 6 | fsumss 15365 |
. . . . 5
⊢ (𝜑 → Σ𝑧 ∈ (ran 𝐺 ∖ {0})Σ𝑦 ∈ ran 𝐹(𝑧 · (𝑦𝐼𝑧)) = Σ𝑧 ∈ ran 𝐺Σ𝑦 ∈ ran 𝐹(𝑧 · (𝑦𝐼𝑧))) |
201 | 20 | adantr 480 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐹) → 𝑧 ∈ ℝ) |
202 | 201 | recnd 10934 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐹) → 𝑧 ∈ ℂ) |
203 | 15 | ad2antrr 722 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐹) → 𝐼:(ℝ ×
ℝ)⟶ℝ) |
204 | 10 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ ran 𝐺) → ran 𝐹 ⊆ ℝ) |
205 | 204 | sselda 3917 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐹) → 𝑦 ∈ ℝ) |
206 | 203, 205,
201 | fovrnd 7422 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐹) → (𝑦𝐼𝑧) ∈ ℝ) |
207 | 206 | recnd 10934 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐹) → (𝑦𝐼𝑧) ∈ ℂ) |
208 | 202, 207 | mulcld 10926 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ ran 𝐺) ∧ 𝑦 ∈ ran 𝐹) → (𝑧 · (𝑦𝐼𝑧)) ∈ ℂ) |
209 | 208 | anasss 466 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑧 ∈ ran 𝐺 ∧ 𝑦 ∈ ran 𝐹)) → (𝑧 · (𝑦𝐼𝑧)) ∈ ℂ) |
210 | 6, 3, 209 | fsumcom 15415 |
. . . . 5
⊢ (𝜑 → Σ𝑧 ∈ ran 𝐺Σ𝑦 ∈ ran 𝐹(𝑧 · (𝑦𝐼𝑧)) = Σ𝑦 ∈ ran 𝐹Σ𝑧 ∈ ran 𝐺(𝑧 · (𝑦𝐼𝑧))) |
211 | 200, 210 | eqtrd 2778 |
. . . 4
⊢ (𝜑 → Σ𝑧 ∈ (ran 𝐺 ∖ {0})Σ𝑦 ∈ ran 𝐹(𝑧 · (𝑦𝐼𝑧)) = Σ𝑦 ∈ ran 𝐹Σ𝑧 ∈ ran 𝐺(𝑧 · (𝑦𝐼𝑧))) |
212 | 122, 174,
211 | 3eqtrd 2782 |
. . 3
⊢ (𝜑 →
(∫1‘𝐺)
= Σ𝑦 ∈ ran 𝐹Σ𝑧 ∈ ran 𝐺(𝑧 · (𝑦𝐼𝑧))) |
213 | 120, 212 | oveq12d 7273 |
. 2
⊢ (𝜑 →
((∫1‘𝐹) + (∫1‘𝐺)) = (Σ𝑦 ∈ ran 𝐹Σ𝑧 ∈ ran 𝐺(𝑦 · (𝑦𝐼𝑧)) + Σ𝑦 ∈ ran 𝐹Σ𝑧 ∈ ran 𝐺(𝑧 · (𝑦𝐼𝑧)))) |
214 | 29, 37, 213 | 3eqtr4d 2788 |
1
⊢ (𝜑 →
(∫1‘(𝐹
∘f + 𝐺)) =
((∫1‘𝐹) + (∫1‘𝐺))) |