MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resin Structured version   Visualization version   GIF version

Theorem resin 6341
Description: The restriction of a one-to-one onto function to an intersection maps onto the intersection of the images. (Contributed by Paul Chapman, 11-Apr-2009.)
Assertion
Ref Expression
resin ((Fun 𝐹 ∧ (𝐹𝐴):𝐴onto𝐶 ∧ (𝐹𝐵):𝐵onto𝐷) → (𝐹 ↾ (𝐴𝐵)):(𝐴𝐵)–1-1-onto→(𝐶𝐷))

Proof of Theorem resin
StepHypRef Expression
1 resdif 6340 . . . 4 ((Fun 𝐹 ∧ (𝐹𝐴):𝐴onto𝐶 ∧ (𝐹𝐵):𝐵onto𝐷) → (𝐹 ↾ (𝐴𝐵)):(𝐴𝐵)–1-1-onto→(𝐶𝐷))
2 f1ofo 6327 . . . 4 ((𝐹 ↾ (𝐴𝐵)):(𝐴𝐵)–1-1-onto→(𝐶𝐷) → (𝐹 ↾ (𝐴𝐵)):(𝐴𝐵)–onto→(𝐶𝐷))
31, 2syl 17 . . 3 ((Fun 𝐹 ∧ (𝐹𝐴):𝐴onto𝐶 ∧ (𝐹𝐵):𝐵onto𝐷) → (𝐹 ↾ (𝐴𝐵)):(𝐴𝐵)–onto→(𝐶𝐷))
4 resdif 6340 . . 3 ((Fun 𝐹 ∧ (𝐹𝐴):𝐴onto𝐶 ∧ (𝐹 ↾ (𝐴𝐵)):(𝐴𝐵)–onto→(𝐶𝐷)) → (𝐹 ↾ (𝐴 ∖ (𝐴𝐵))):(𝐴 ∖ (𝐴𝐵))–1-1-onto→(𝐶 ∖ (𝐶𝐷)))
53, 4syld3an3 1528 . 2 ((Fun 𝐹 ∧ (𝐹𝐴):𝐴onto𝐶 ∧ (𝐹𝐵):𝐵onto𝐷) → (𝐹 ↾ (𝐴 ∖ (𝐴𝐵))):(𝐴 ∖ (𝐴𝐵))–1-1-onto→(𝐶 ∖ (𝐶𝐷)))
6 dfin4 4032 . . . 4 (𝐶𝐷) = (𝐶 ∖ (𝐶𝐷))
7 f1oeq3 6312 . . . 4 ((𝐶𝐷) = (𝐶 ∖ (𝐶𝐷)) → ((𝐹 ↾ (𝐴𝐵)):(𝐴𝐵)–1-1-onto→(𝐶𝐷) ↔ (𝐹 ↾ (𝐴𝐵)):(𝐴𝐵)–1-1-onto→(𝐶 ∖ (𝐶𝐷))))
86, 7ax-mp 5 . . 3 ((𝐹 ↾ (𝐴𝐵)):(𝐴𝐵)–1-1-onto→(𝐶𝐷) ↔ (𝐹 ↾ (𝐴𝐵)):(𝐴𝐵)–1-1-onto→(𝐶 ∖ (𝐶𝐷)))
9 dfin4 4032 . . . 4 (𝐴𝐵) = (𝐴 ∖ (𝐴𝐵))
10 f1oeq2 6311 . . . 4 ((𝐴𝐵) = (𝐴 ∖ (𝐴𝐵)) → ((𝐹 ↾ (𝐴𝐵)):(𝐴𝐵)–1-1-onto→(𝐶 ∖ (𝐶𝐷)) ↔ (𝐹 ↾ (𝐴𝐵)):(𝐴 ∖ (𝐴𝐵))–1-1-onto→(𝐶 ∖ (𝐶𝐷))))
119, 10ax-mp 5 . . 3 ((𝐹 ↾ (𝐴𝐵)):(𝐴𝐵)–1-1-onto→(𝐶 ∖ (𝐶𝐷)) ↔ (𝐹 ↾ (𝐴𝐵)):(𝐴 ∖ (𝐴𝐵))–1-1-onto→(𝐶 ∖ (𝐶𝐷)))
129reseq2i 5562 . . . 4 (𝐹 ↾ (𝐴𝐵)) = (𝐹 ↾ (𝐴 ∖ (𝐴𝐵)))
13 f1oeq1 6310 . . . 4 ((𝐹 ↾ (𝐴𝐵)) = (𝐹 ↾ (𝐴 ∖ (𝐴𝐵))) → ((𝐹 ↾ (𝐴𝐵)):(𝐴 ∖ (𝐴𝐵))–1-1-onto→(𝐶 ∖ (𝐶𝐷)) ↔ (𝐹 ↾ (𝐴 ∖ (𝐴𝐵))):(𝐴 ∖ (𝐴𝐵))–1-1-onto→(𝐶 ∖ (𝐶𝐷))))
1412, 13ax-mp 5 . . 3 ((𝐹 ↾ (𝐴𝐵)):(𝐴 ∖ (𝐴𝐵))–1-1-onto→(𝐶 ∖ (𝐶𝐷)) ↔ (𝐹 ↾ (𝐴 ∖ (𝐴𝐵))):(𝐴 ∖ (𝐴𝐵))–1-1-onto→(𝐶 ∖ (𝐶𝐷)))
158, 11, 143bitrri 289 . 2 ((𝐹 ↾ (𝐴 ∖ (𝐴𝐵))):(𝐴 ∖ (𝐴𝐵))–1-1-onto→(𝐶 ∖ (𝐶𝐷)) ↔ (𝐹 ↾ (𝐴𝐵)):(𝐴𝐵)–1-1-onto→(𝐶𝐷))
165, 15sylib 209 1 ((Fun 𝐹 ∧ (𝐹𝐴):𝐴onto𝐶 ∧ (𝐹𝐵):𝐵onto𝐷) → (𝐹 ↾ (𝐴𝐵)):(𝐴𝐵)–1-1-onto→(𝐶𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  w3a 1107   = wceq 1652  cdif 3729  cin 3731  ccnv 5276  cres 5279  Fun wfun 6062  ontowfo 6066  1-1-ontowf1o 6067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4941  ax-nul 4949  ax-pr 5062
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ral 3060  df-rex 3061  df-rab 3064  df-v 3352  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-nul 4080  df-if 4244  df-sn 4335  df-pr 4337  df-op 4341  df-br 4810  df-opab 4872  df-id 5185  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator