Proof of Theorem resin
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | resdif 6869 | . . . 4
⊢ ((Fun
◡𝐹 ∧ (𝐹 ↾ 𝐴):𝐴–onto→𝐶 ∧ (𝐹 ↾ 𝐵):𝐵–onto→𝐷) → (𝐹 ↾ (𝐴 ∖ 𝐵)):(𝐴 ∖ 𝐵)–1-1-onto→(𝐶 ∖ 𝐷)) | 
| 2 |  | f1ofo 6855 | . . . 4
⊢ ((𝐹 ↾ (𝐴 ∖ 𝐵)):(𝐴 ∖ 𝐵)–1-1-onto→(𝐶 ∖ 𝐷) → (𝐹 ↾ (𝐴 ∖ 𝐵)):(𝐴 ∖ 𝐵)–onto→(𝐶 ∖ 𝐷)) | 
| 3 | 1, 2 | syl 17 | . . 3
⊢ ((Fun
◡𝐹 ∧ (𝐹 ↾ 𝐴):𝐴–onto→𝐶 ∧ (𝐹 ↾ 𝐵):𝐵–onto→𝐷) → (𝐹 ↾ (𝐴 ∖ 𝐵)):(𝐴 ∖ 𝐵)–onto→(𝐶 ∖ 𝐷)) | 
| 4 |  | resdif 6869 | . . 3
⊢ ((Fun
◡𝐹 ∧ (𝐹 ↾ 𝐴):𝐴–onto→𝐶 ∧ (𝐹 ↾ (𝐴 ∖ 𝐵)):(𝐴 ∖ 𝐵)–onto→(𝐶 ∖ 𝐷)) → (𝐹 ↾ (𝐴 ∖ (𝐴 ∖ 𝐵))):(𝐴 ∖ (𝐴 ∖ 𝐵))–1-1-onto→(𝐶 ∖ (𝐶 ∖ 𝐷))) | 
| 5 | 3, 4 | syld3an3 1411 | . 2
⊢ ((Fun
◡𝐹 ∧ (𝐹 ↾ 𝐴):𝐴–onto→𝐶 ∧ (𝐹 ↾ 𝐵):𝐵–onto→𝐷) → (𝐹 ↾ (𝐴 ∖ (𝐴 ∖ 𝐵))):(𝐴 ∖ (𝐴 ∖ 𝐵))–1-1-onto→(𝐶 ∖ (𝐶 ∖ 𝐷))) | 
| 6 |  | dfin4 4278 | . . . 4
⊢ (𝐶 ∩ 𝐷) = (𝐶 ∖ (𝐶 ∖ 𝐷)) | 
| 7 |  | f1oeq3 6838 | . . . 4
⊢ ((𝐶 ∩ 𝐷) = (𝐶 ∖ (𝐶 ∖ 𝐷)) → ((𝐹 ↾ (𝐴 ∩ 𝐵)):(𝐴 ∩ 𝐵)–1-1-onto→(𝐶 ∩ 𝐷) ↔ (𝐹 ↾ (𝐴 ∩ 𝐵)):(𝐴 ∩ 𝐵)–1-1-onto→(𝐶 ∖ (𝐶 ∖ 𝐷)))) | 
| 8 | 6, 7 | ax-mp 5 | . . 3
⊢ ((𝐹 ↾ (𝐴 ∩ 𝐵)):(𝐴 ∩ 𝐵)–1-1-onto→(𝐶 ∩ 𝐷) ↔ (𝐹 ↾ (𝐴 ∩ 𝐵)):(𝐴 ∩ 𝐵)–1-1-onto→(𝐶 ∖ (𝐶 ∖ 𝐷))) | 
| 9 |  | dfin4 4278 | . . . 4
⊢ (𝐴 ∩ 𝐵) = (𝐴 ∖ (𝐴 ∖ 𝐵)) | 
| 10 |  | f1oeq2 6837 | . . . 4
⊢ ((𝐴 ∩ 𝐵) = (𝐴 ∖ (𝐴 ∖ 𝐵)) → ((𝐹 ↾ (𝐴 ∩ 𝐵)):(𝐴 ∩ 𝐵)–1-1-onto→(𝐶 ∖ (𝐶 ∖ 𝐷)) ↔ (𝐹 ↾ (𝐴 ∩ 𝐵)):(𝐴 ∖ (𝐴 ∖ 𝐵))–1-1-onto→(𝐶 ∖ (𝐶 ∖ 𝐷)))) | 
| 11 | 9, 10 | ax-mp 5 | . . 3
⊢ ((𝐹 ↾ (𝐴 ∩ 𝐵)):(𝐴 ∩ 𝐵)–1-1-onto→(𝐶 ∖ (𝐶 ∖ 𝐷)) ↔ (𝐹 ↾ (𝐴 ∩ 𝐵)):(𝐴 ∖ (𝐴 ∖ 𝐵))–1-1-onto→(𝐶 ∖ (𝐶 ∖ 𝐷))) | 
| 12 | 9 | reseq2i 5994 | . . . 4
⊢ (𝐹 ↾ (𝐴 ∩ 𝐵)) = (𝐹 ↾ (𝐴 ∖ (𝐴 ∖ 𝐵))) | 
| 13 |  | f1oeq1 6836 | . . . 4
⊢ ((𝐹 ↾ (𝐴 ∩ 𝐵)) = (𝐹 ↾ (𝐴 ∖ (𝐴 ∖ 𝐵))) → ((𝐹 ↾ (𝐴 ∩ 𝐵)):(𝐴 ∖ (𝐴 ∖ 𝐵))–1-1-onto→(𝐶 ∖ (𝐶 ∖ 𝐷)) ↔ (𝐹 ↾ (𝐴 ∖ (𝐴 ∖ 𝐵))):(𝐴 ∖ (𝐴 ∖ 𝐵))–1-1-onto→(𝐶 ∖ (𝐶 ∖ 𝐷)))) | 
| 14 | 12, 13 | ax-mp 5 | . . 3
⊢ ((𝐹 ↾ (𝐴 ∩ 𝐵)):(𝐴 ∖ (𝐴 ∖ 𝐵))–1-1-onto→(𝐶 ∖ (𝐶 ∖ 𝐷)) ↔ (𝐹 ↾ (𝐴 ∖ (𝐴 ∖ 𝐵))):(𝐴 ∖ (𝐴 ∖ 𝐵))–1-1-onto→(𝐶 ∖ (𝐶 ∖ 𝐷))) | 
| 15 | 8, 11, 14 | 3bitrri 298 | . 2
⊢ ((𝐹 ↾ (𝐴 ∖ (𝐴 ∖ 𝐵))):(𝐴 ∖ (𝐴 ∖ 𝐵))–1-1-onto→(𝐶 ∖ (𝐶 ∖ 𝐷)) ↔ (𝐹 ↾ (𝐴 ∩ 𝐵)):(𝐴 ∩ 𝐵)–1-1-onto→(𝐶 ∩ 𝐷)) | 
| 16 | 5, 15 | sylib 218 | 1
⊢ ((Fun
◡𝐹 ∧ (𝐹 ↾ 𝐴):𝐴–onto→𝐶 ∧ (𝐹 ↾ 𝐵):𝐵–onto→𝐷) → (𝐹 ↾ (𝐴 ∩ 𝐵)):(𝐴 ∩ 𝐵)–1-1-onto→(𝐶 ∩ 𝐷)) |