MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resin Structured version   Visualization version   GIF version

Theorem resin 6825
Description: The restriction of a one-to-one onto function to an intersection maps onto the intersection of the images. (Contributed by Paul Chapman, 11-Apr-2009.)
Assertion
Ref Expression
resin ((Fun 𝐹 ∧ (𝐹𝐴):𝐴onto𝐶 ∧ (𝐹𝐵):𝐵onto𝐷) → (𝐹 ↾ (𝐴𝐵)):(𝐴𝐵)–1-1-onto→(𝐶𝐷))

Proof of Theorem resin
StepHypRef Expression
1 resdif 6824 . . . 4 ((Fun 𝐹 ∧ (𝐹𝐴):𝐴onto𝐶 ∧ (𝐹𝐵):𝐵onto𝐷) → (𝐹 ↾ (𝐴𝐵)):(𝐴𝐵)–1-1-onto→(𝐶𝐷))
2 f1ofo 6810 . . . 4 ((𝐹 ↾ (𝐴𝐵)):(𝐴𝐵)–1-1-onto→(𝐶𝐷) → (𝐹 ↾ (𝐴𝐵)):(𝐴𝐵)–onto→(𝐶𝐷))
31, 2syl 17 . . 3 ((Fun 𝐹 ∧ (𝐹𝐴):𝐴onto𝐶 ∧ (𝐹𝐵):𝐵onto𝐷) → (𝐹 ↾ (𝐴𝐵)):(𝐴𝐵)–onto→(𝐶𝐷))
4 resdif 6824 . . 3 ((Fun 𝐹 ∧ (𝐹𝐴):𝐴onto𝐶 ∧ (𝐹 ↾ (𝐴𝐵)):(𝐴𝐵)–onto→(𝐶𝐷)) → (𝐹 ↾ (𝐴 ∖ (𝐴𝐵))):(𝐴 ∖ (𝐴𝐵))–1-1-onto→(𝐶 ∖ (𝐶𝐷)))
53, 4syld3an3 1411 . 2 ((Fun 𝐹 ∧ (𝐹𝐴):𝐴onto𝐶 ∧ (𝐹𝐵):𝐵onto𝐷) → (𝐹 ↾ (𝐴 ∖ (𝐴𝐵))):(𝐴 ∖ (𝐴𝐵))–1-1-onto→(𝐶 ∖ (𝐶𝐷)))
6 dfin4 4244 . . . 4 (𝐶𝐷) = (𝐶 ∖ (𝐶𝐷))
7 f1oeq3 6793 . . . 4 ((𝐶𝐷) = (𝐶 ∖ (𝐶𝐷)) → ((𝐹 ↾ (𝐴𝐵)):(𝐴𝐵)–1-1-onto→(𝐶𝐷) ↔ (𝐹 ↾ (𝐴𝐵)):(𝐴𝐵)–1-1-onto→(𝐶 ∖ (𝐶𝐷))))
86, 7ax-mp 5 . . 3 ((𝐹 ↾ (𝐴𝐵)):(𝐴𝐵)–1-1-onto→(𝐶𝐷) ↔ (𝐹 ↾ (𝐴𝐵)):(𝐴𝐵)–1-1-onto→(𝐶 ∖ (𝐶𝐷)))
9 dfin4 4244 . . . 4 (𝐴𝐵) = (𝐴 ∖ (𝐴𝐵))
10 f1oeq2 6792 . . . 4 ((𝐴𝐵) = (𝐴 ∖ (𝐴𝐵)) → ((𝐹 ↾ (𝐴𝐵)):(𝐴𝐵)–1-1-onto→(𝐶 ∖ (𝐶𝐷)) ↔ (𝐹 ↾ (𝐴𝐵)):(𝐴 ∖ (𝐴𝐵))–1-1-onto→(𝐶 ∖ (𝐶𝐷))))
119, 10ax-mp 5 . . 3 ((𝐹 ↾ (𝐴𝐵)):(𝐴𝐵)–1-1-onto→(𝐶 ∖ (𝐶𝐷)) ↔ (𝐹 ↾ (𝐴𝐵)):(𝐴 ∖ (𝐴𝐵))–1-1-onto→(𝐶 ∖ (𝐶𝐷)))
129reseq2i 5950 . . . 4 (𝐹 ↾ (𝐴𝐵)) = (𝐹 ↾ (𝐴 ∖ (𝐴𝐵)))
13 f1oeq1 6791 . . . 4 ((𝐹 ↾ (𝐴𝐵)) = (𝐹 ↾ (𝐴 ∖ (𝐴𝐵))) → ((𝐹 ↾ (𝐴𝐵)):(𝐴 ∖ (𝐴𝐵))–1-1-onto→(𝐶 ∖ (𝐶𝐷)) ↔ (𝐹 ↾ (𝐴 ∖ (𝐴𝐵))):(𝐴 ∖ (𝐴𝐵))–1-1-onto→(𝐶 ∖ (𝐶𝐷))))
1412, 13ax-mp 5 . . 3 ((𝐹 ↾ (𝐴𝐵)):(𝐴 ∖ (𝐴𝐵))–1-1-onto→(𝐶 ∖ (𝐶𝐷)) ↔ (𝐹 ↾ (𝐴 ∖ (𝐴𝐵))):(𝐴 ∖ (𝐴𝐵))–1-1-onto→(𝐶 ∖ (𝐶𝐷)))
158, 11, 143bitrri 298 . 2 ((𝐹 ↾ (𝐴 ∖ (𝐴𝐵))):(𝐴 ∖ (𝐴𝐵))–1-1-onto→(𝐶 ∖ (𝐶𝐷)) ↔ (𝐹 ↾ (𝐴𝐵)):(𝐴𝐵)–1-1-onto→(𝐶𝐷))
165, 15sylib 218 1 ((Fun 𝐹 ∧ (𝐹𝐴):𝐴onto𝐶 ∧ (𝐹𝐵):𝐵onto𝐷) → (𝐹 ↾ (𝐴𝐵)):(𝐴𝐵)–1-1-onto→(𝐶𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086   = wceq 1540  cdif 3914  cin 3916  ccnv 5640  cres 5643  Fun wfun 6508  ontowfo 6512  1-1-ontowf1o 6513
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator