MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resin Structured version   Visualization version   GIF version

Theorem resin 6780
Description: The restriction of a one-to-one onto function to an intersection maps onto the intersection of the images. (Contributed by Paul Chapman, 11-Apr-2009.)
Assertion
Ref Expression
resin ((Fun 𝐹 ∧ (𝐹𝐴):𝐴onto𝐶 ∧ (𝐹𝐵):𝐵onto𝐷) → (𝐹 ↾ (𝐴𝐵)):(𝐴𝐵)–1-1-onto→(𝐶𝐷))

Proof of Theorem resin
StepHypRef Expression
1 resdif 6779 . . . 4 ((Fun 𝐹 ∧ (𝐹𝐴):𝐴onto𝐶 ∧ (𝐹𝐵):𝐵onto𝐷) → (𝐹 ↾ (𝐴𝐵)):(𝐴𝐵)–1-1-onto→(𝐶𝐷))
2 f1ofo 6765 . . . 4 ((𝐹 ↾ (𝐴𝐵)):(𝐴𝐵)–1-1-onto→(𝐶𝐷) → (𝐹 ↾ (𝐴𝐵)):(𝐴𝐵)–onto→(𝐶𝐷))
31, 2syl 17 . . 3 ((Fun 𝐹 ∧ (𝐹𝐴):𝐴onto𝐶 ∧ (𝐹𝐵):𝐵onto𝐷) → (𝐹 ↾ (𝐴𝐵)):(𝐴𝐵)–onto→(𝐶𝐷))
4 resdif 6779 . . 3 ((Fun 𝐹 ∧ (𝐹𝐴):𝐴onto𝐶 ∧ (𝐹 ↾ (𝐴𝐵)):(𝐴𝐵)–onto→(𝐶𝐷)) → (𝐹 ↾ (𝐴 ∖ (𝐴𝐵))):(𝐴 ∖ (𝐴𝐵))–1-1-onto→(𝐶 ∖ (𝐶𝐷)))
53, 4syld3an3 1411 . 2 ((Fun 𝐹 ∧ (𝐹𝐴):𝐴onto𝐶 ∧ (𝐹𝐵):𝐵onto𝐷) → (𝐹 ↾ (𝐴 ∖ (𝐴𝐵))):(𝐴 ∖ (𝐴𝐵))–1-1-onto→(𝐶 ∖ (𝐶𝐷)))
6 dfin4 4223 . . . 4 (𝐶𝐷) = (𝐶 ∖ (𝐶𝐷))
7 f1oeq3 6748 . . . 4 ((𝐶𝐷) = (𝐶 ∖ (𝐶𝐷)) → ((𝐹 ↾ (𝐴𝐵)):(𝐴𝐵)–1-1-onto→(𝐶𝐷) ↔ (𝐹 ↾ (𝐴𝐵)):(𝐴𝐵)–1-1-onto→(𝐶 ∖ (𝐶𝐷))))
86, 7ax-mp 5 . . 3 ((𝐹 ↾ (𝐴𝐵)):(𝐴𝐵)–1-1-onto→(𝐶𝐷) ↔ (𝐹 ↾ (𝐴𝐵)):(𝐴𝐵)–1-1-onto→(𝐶 ∖ (𝐶𝐷)))
9 dfin4 4223 . . . 4 (𝐴𝐵) = (𝐴 ∖ (𝐴𝐵))
10 f1oeq2 6747 . . . 4 ((𝐴𝐵) = (𝐴 ∖ (𝐴𝐵)) → ((𝐹 ↾ (𝐴𝐵)):(𝐴𝐵)–1-1-onto→(𝐶 ∖ (𝐶𝐷)) ↔ (𝐹 ↾ (𝐴𝐵)):(𝐴 ∖ (𝐴𝐵))–1-1-onto→(𝐶 ∖ (𝐶𝐷))))
119, 10ax-mp 5 . . 3 ((𝐹 ↾ (𝐴𝐵)):(𝐴𝐵)–1-1-onto→(𝐶 ∖ (𝐶𝐷)) ↔ (𝐹 ↾ (𝐴𝐵)):(𝐴 ∖ (𝐴𝐵))–1-1-onto→(𝐶 ∖ (𝐶𝐷)))
129reseq2i 5920 . . . 4 (𝐹 ↾ (𝐴𝐵)) = (𝐹 ↾ (𝐴 ∖ (𝐴𝐵)))
13 f1oeq1 6746 . . . 4 ((𝐹 ↾ (𝐴𝐵)) = (𝐹 ↾ (𝐴 ∖ (𝐴𝐵))) → ((𝐹 ↾ (𝐴𝐵)):(𝐴 ∖ (𝐴𝐵))–1-1-onto→(𝐶 ∖ (𝐶𝐷)) ↔ (𝐹 ↾ (𝐴 ∖ (𝐴𝐵))):(𝐴 ∖ (𝐴𝐵))–1-1-onto→(𝐶 ∖ (𝐶𝐷))))
1412, 13ax-mp 5 . . 3 ((𝐹 ↾ (𝐴𝐵)):(𝐴 ∖ (𝐴𝐵))–1-1-onto→(𝐶 ∖ (𝐶𝐷)) ↔ (𝐹 ↾ (𝐴 ∖ (𝐴𝐵))):(𝐴 ∖ (𝐴𝐵))–1-1-onto→(𝐶 ∖ (𝐶𝐷)))
158, 11, 143bitrri 298 . 2 ((𝐹 ↾ (𝐴 ∖ (𝐴𝐵))):(𝐴 ∖ (𝐴𝐵))–1-1-onto→(𝐶 ∖ (𝐶𝐷)) ↔ (𝐹 ↾ (𝐴𝐵)):(𝐴𝐵)–1-1-onto→(𝐶𝐷))
165, 15sylib 218 1 ((Fun 𝐹 ∧ (𝐹𝐴):𝐴onto𝐶 ∧ (𝐹𝐵):𝐵onto𝐷) → (𝐹 ↾ (𝐴𝐵)):(𝐴𝐵)–1-1-onto→(𝐶𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086   = wceq 1541  cdif 3894  cin 3896  ccnv 5610  cres 5613  Fun wfun 6470  ontowfo 6474  1-1-ontowf1o 6475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-br 5087  df-opab 5149  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator