Step | Hyp | Ref
| Expression |
1 | | inundif 4378 |
. . . . 5
⊢ (((◡(𝑥 ∈ 𝐵 ↦ 𝐷) “ 𝑦) ∩ (◡(𝑥 ∈ 𝐵 ↦ 𝐶) “ 𝑦)) ∪ ((◡(𝑥 ∈ 𝐵 ↦ 𝐷) “ 𝑦) ∖ (◡(𝑥 ∈ 𝐵 ↦ 𝐶) “ 𝑦))) = (◡(𝑥 ∈ 𝐵 ↦ 𝐷) “ 𝑦) |
2 | | incom 4101 |
. . . . . . . 8
⊢ ((◡(𝑥 ∈ 𝐵 ↦ 𝐷) “ 𝑦) ∩ (◡(𝑥 ∈ 𝐵 ↦ 𝐶) “ 𝑦)) = ((◡(𝑥 ∈ 𝐵 ↦ 𝐶) “ 𝑦) ∩ (◡(𝑥 ∈ 𝐵 ↦ 𝐷) “ 𝑦)) |
3 | | dfin4 4168 |
. . . . . . . 8
⊢ ((◡(𝑥 ∈ 𝐵 ↦ 𝐶) “ 𝑦) ∩ (◡(𝑥 ∈ 𝐵 ↦ 𝐷) “ 𝑦)) = ((◡(𝑥 ∈ 𝐵 ↦ 𝐶) “ 𝑦) ∖ ((◡(𝑥 ∈ 𝐵 ↦ 𝐶) “ 𝑦) ∖ (◡(𝑥 ∈ 𝐵 ↦ 𝐷) “ 𝑦))) |
4 | 2, 3 | eqtri 2762 |
. . . . . . 7
⊢ ((◡(𝑥 ∈ 𝐵 ↦ 𝐷) “ 𝑦) ∩ (◡(𝑥 ∈ 𝐵 ↦ 𝐶) “ 𝑦)) = ((◡(𝑥 ∈ 𝐵 ↦ 𝐶) “ 𝑦) ∖ ((◡(𝑥 ∈ 𝐵 ↦ 𝐶) “ 𝑦) ∖ (◡(𝑥 ∈ 𝐵 ↦ 𝐷) “ 𝑦))) |
5 | | id 22 |
. . . . . . . 8
⊢ ((◡(𝑥 ∈ 𝐵 ↦ 𝐶) “ 𝑦) ∈ dom vol → (◡(𝑥 ∈ 𝐵 ↦ 𝐶) “ 𝑦) ∈ dom vol) |
6 | | mbfeqa.1 |
. . . . . . . . 9
⊢ (𝜑 → 𝐴 ⊆ ℝ) |
7 | | mbfeqa.2 |
. . . . . . . . 9
⊢ (𝜑 → (vol*‘𝐴) = 0) |
8 | | mbfeqa.3 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐵 ∖ 𝐴)) → 𝐶 = 𝐷) |
9 | | mbfeqalem.4 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐶 ∈ ℝ) |
10 | | mbfeqalem.5 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐷 ∈ ℝ) |
11 | 6, 7, 8, 9, 10 | mbfeqalem1 24405 |
. . . . . . . 8
⊢ (𝜑 → ((◡(𝑥 ∈ 𝐵 ↦ 𝐶) “ 𝑦) ∖ (◡(𝑥 ∈ 𝐵 ↦ 𝐷) “ 𝑦)) ∈ dom vol) |
12 | | difmbl 24307 |
. . . . . . . 8
⊢ (((◡(𝑥 ∈ 𝐵 ↦ 𝐶) “ 𝑦) ∈ dom vol ∧ ((◡(𝑥 ∈ 𝐵 ↦ 𝐶) “ 𝑦) ∖ (◡(𝑥 ∈ 𝐵 ↦ 𝐷) “ 𝑦)) ∈ dom vol) → ((◡(𝑥 ∈ 𝐵 ↦ 𝐶) “ 𝑦) ∖ ((◡(𝑥 ∈ 𝐵 ↦ 𝐶) “ 𝑦) ∖ (◡(𝑥 ∈ 𝐵 ↦ 𝐷) “ 𝑦))) ∈ dom vol) |
13 | 5, 11, 12 | syl2anr 600 |
. . . . . . 7
⊢ ((𝜑 ∧ (◡(𝑥 ∈ 𝐵 ↦ 𝐶) “ 𝑦) ∈ dom vol) → ((◡(𝑥 ∈ 𝐵 ↦ 𝐶) “ 𝑦) ∖ ((◡(𝑥 ∈ 𝐵 ↦ 𝐶) “ 𝑦) ∖ (◡(𝑥 ∈ 𝐵 ↦ 𝐷) “ 𝑦))) ∈ dom vol) |
14 | 4, 13 | eqeltrid 2838 |
. . . . . 6
⊢ ((𝜑 ∧ (◡(𝑥 ∈ 𝐵 ↦ 𝐶) “ 𝑦) ∈ dom vol) → ((◡(𝑥 ∈ 𝐵 ↦ 𝐷) “ 𝑦) ∩ (◡(𝑥 ∈ 𝐵 ↦ 𝐶) “ 𝑦)) ∈ dom vol) |
15 | 8 | eqcomd 2745 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐵 ∖ 𝐴)) → 𝐷 = 𝐶) |
16 | 6, 7, 15, 10, 9 | mbfeqalem1 24405 |
. . . . . . 7
⊢ (𝜑 → ((◡(𝑥 ∈ 𝐵 ↦ 𝐷) “ 𝑦) ∖ (◡(𝑥 ∈ 𝐵 ↦ 𝐶) “ 𝑦)) ∈ dom vol) |
17 | 16 | adantr 484 |
. . . . . 6
⊢ ((𝜑 ∧ (◡(𝑥 ∈ 𝐵 ↦ 𝐶) “ 𝑦) ∈ dom vol) → ((◡(𝑥 ∈ 𝐵 ↦ 𝐷) “ 𝑦) ∖ (◡(𝑥 ∈ 𝐵 ↦ 𝐶) “ 𝑦)) ∈ dom vol) |
18 | | unmbl 24301 |
. . . . . 6
⊢ ((((◡(𝑥 ∈ 𝐵 ↦ 𝐷) “ 𝑦) ∩ (◡(𝑥 ∈ 𝐵 ↦ 𝐶) “ 𝑦)) ∈ dom vol ∧ ((◡(𝑥 ∈ 𝐵 ↦ 𝐷) “ 𝑦) ∖ (◡(𝑥 ∈ 𝐵 ↦ 𝐶) “ 𝑦)) ∈ dom vol) → (((◡(𝑥 ∈ 𝐵 ↦ 𝐷) “ 𝑦) ∩ (◡(𝑥 ∈ 𝐵 ↦ 𝐶) “ 𝑦)) ∪ ((◡(𝑥 ∈ 𝐵 ↦ 𝐷) “ 𝑦) ∖ (◡(𝑥 ∈ 𝐵 ↦ 𝐶) “ 𝑦))) ∈ dom vol) |
19 | 14, 17, 18 | syl2anc 587 |
. . . . 5
⊢ ((𝜑 ∧ (◡(𝑥 ∈ 𝐵 ↦ 𝐶) “ 𝑦) ∈ dom vol) → (((◡(𝑥 ∈ 𝐵 ↦ 𝐷) “ 𝑦) ∩ (◡(𝑥 ∈ 𝐵 ↦ 𝐶) “ 𝑦)) ∪ ((◡(𝑥 ∈ 𝐵 ↦ 𝐷) “ 𝑦) ∖ (◡(𝑥 ∈ 𝐵 ↦ 𝐶) “ 𝑦))) ∈ dom vol) |
20 | 1, 19 | eqeltrrid 2839 |
. . . 4
⊢ ((𝜑 ∧ (◡(𝑥 ∈ 𝐵 ↦ 𝐶) “ 𝑦) ∈ dom vol) → (◡(𝑥 ∈ 𝐵 ↦ 𝐷) “ 𝑦) ∈ dom vol) |
21 | | inundif 4378 |
. . . . 5
⊢ (((◡(𝑥 ∈ 𝐵 ↦ 𝐶) “ 𝑦) ∩ (◡(𝑥 ∈ 𝐵 ↦ 𝐷) “ 𝑦)) ∪ ((◡(𝑥 ∈ 𝐵 ↦ 𝐶) “ 𝑦) ∖ (◡(𝑥 ∈ 𝐵 ↦ 𝐷) “ 𝑦))) = (◡(𝑥 ∈ 𝐵 ↦ 𝐶) “ 𝑦) |
22 | | incom 4101 |
. . . . . . . 8
⊢ ((◡(𝑥 ∈ 𝐵 ↦ 𝐶) “ 𝑦) ∩ (◡(𝑥 ∈ 𝐵 ↦ 𝐷) “ 𝑦)) = ((◡(𝑥 ∈ 𝐵 ↦ 𝐷) “ 𝑦) ∩ (◡(𝑥 ∈ 𝐵 ↦ 𝐶) “ 𝑦)) |
23 | | dfin4 4168 |
. . . . . . . 8
⊢ ((◡(𝑥 ∈ 𝐵 ↦ 𝐷) “ 𝑦) ∩ (◡(𝑥 ∈ 𝐵 ↦ 𝐶) “ 𝑦)) = ((◡(𝑥 ∈ 𝐵 ↦ 𝐷) “ 𝑦) ∖ ((◡(𝑥 ∈ 𝐵 ↦ 𝐷) “ 𝑦) ∖ (◡(𝑥 ∈ 𝐵 ↦ 𝐶) “ 𝑦))) |
24 | 22, 23 | eqtri 2762 |
. . . . . . 7
⊢ ((◡(𝑥 ∈ 𝐵 ↦ 𝐶) “ 𝑦) ∩ (◡(𝑥 ∈ 𝐵 ↦ 𝐷) “ 𝑦)) = ((◡(𝑥 ∈ 𝐵 ↦ 𝐷) “ 𝑦) ∖ ((◡(𝑥 ∈ 𝐵 ↦ 𝐷) “ 𝑦) ∖ (◡(𝑥 ∈ 𝐵 ↦ 𝐶) “ 𝑦))) |
25 | | id 22 |
. . . . . . . 8
⊢ ((◡(𝑥 ∈ 𝐵 ↦ 𝐷) “ 𝑦) ∈ dom vol → (◡(𝑥 ∈ 𝐵 ↦ 𝐷) “ 𝑦) ∈ dom vol) |
26 | | difmbl 24307 |
. . . . . . . 8
⊢ (((◡(𝑥 ∈ 𝐵 ↦ 𝐷) “ 𝑦) ∈ dom vol ∧ ((◡(𝑥 ∈ 𝐵 ↦ 𝐷) “ 𝑦) ∖ (◡(𝑥 ∈ 𝐵 ↦ 𝐶) “ 𝑦)) ∈ dom vol) → ((◡(𝑥 ∈ 𝐵 ↦ 𝐷) “ 𝑦) ∖ ((◡(𝑥 ∈ 𝐵 ↦ 𝐷) “ 𝑦) ∖ (◡(𝑥 ∈ 𝐵 ↦ 𝐶) “ 𝑦))) ∈ dom vol) |
27 | 25, 16, 26 | syl2anr 600 |
. . . . . . 7
⊢ ((𝜑 ∧ (◡(𝑥 ∈ 𝐵 ↦ 𝐷) “ 𝑦) ∈ dom vol) → ((◡(𝑥 ∈ 𝐵 ↦ 𝐷) “ 𝑦) ∖ ((◡(𝑥 ∈ 𝐵 ↦ 𝐷) “ 𝑦) ∖ (◡(𝑥 ∈ 𝐵 ↦ 𝐶) “ 𝑦))) ∈ dom vol) |
28 | 24, 27 | eqeltrid 2838 |
. . . . . 6
⊢ ((𝜑 ∧ (◡(𝑥 ∈ 𝐵 ↦ 𝐷) “ 𝑦) ∈ dom vol) → ((◡(𝑥 ∈ 𝐵 ↦ 𝐶) “ 𝑦) ∩ (◡(𝑥 ∈ 𝐵 ↦ 𝐷) “ 𝑦)) ∈ dom vol) |
29 | 11 | adantr 484 |
. . . . . 6
⊢ ((𝜑 ∧ (◡(𝑥 ∈ 𝐵 ↦ 𝐷) “ 𝑦) ∈ dom vol) → ((◡(𝑥 ∈ 𝐵 ↦ 𝐶) “ 𝑦) ∖ (◡(𝑥 ∈ 𝐵 ↦ 𝐷) “ 𝑦)) ∈ dom vol) |
30 | | unmbl 24301 |
. . . . . 6
⊢ ((((◡(𝑥 ∈ 𝐵 ↦ 𝐶) “ 𝑦) ∩ (◡(𝑥 ∈ 𝐵 ↦ 𝐷) “ 𝑦)) ∈ dom vol ∧ ((◡(𝑥 ∈ 𝐵 ↦ 𝐶) “ 𝑦) ∖ (◡(𝑥 ∈ 𝐵 ↦ 𝐷) “ 𝑦)) ∈ dom vol) → (((◡(𝑥 ∈ 𝐵 ↦ 𝐶) “ 𝑦) ∩ (◡(𝑥 ∈ 𝐵 ↦ 𝐷) “ 𝑦)) ∪ ((◡(𝑥 ∈ 𝐵 ↦ 𝐶) “ 𝑦) ∖ (◡(𝑥 ∈ 𝐵 ↦ 𝐷) “ 𝑦))) ∈ dom vol) |
31 | 28, 29, 30 | syl2anc 587 |
. . . . 5
⊢ ((𝜑 ∧ (◡(𝑥 ∈ 𝐵 ↦ 𝐷) “ 𝑦) ∈ dom vol) → (((◡(𝑥 ∈ 𝐵 ↦ 𝐶) “ 𝑦) ∩ (◡(𝑥 ∈ 𝐵 ↦ 𝐷) “ 𝑦)) ∪ ((◡(𝑥 ∈ 𝐵 ↦ 𝐶) “ 𝑦) ∖ (◡(𝑥 ∈ 𝐵 ↦ 𝐷) “ 𝑦))) ∈ dom vol) |
32 | 21, 31 | eqeltrrid 2839 |
. . . 4
⊢ ((𝜑 ∧ (◡(𝑥 ∈ 𝐵 ↦ 𝐷) “ 𝑦) ∈ dom vol) → (◡(𝑥 ∈ 𝐵 ↦ 𝐶) “ 𝑦) ∈ dom vol) |
33 | 20, 32 | impbida 801 |
. . 3
⊢ (𝜑 → ((◡(𝑥 ∈ 𝐵 ↦ 𝐶) “ 𝑦) ∈ dom vol ↔ (◡(𝑥 ∈ 𝐵 ↦ 𝐷) “ 𝑦) ∈ dom vol)) |
34 | 33 | ralbidv 3110 |
. 2
⊢ (𝜑 → (∀𝑦 ∈ ran (,)(◡(𝑥 ∈ 𝐵 ↦ 𝐶) “ 𝑦) ∈ dom vol ↔ ∀𝑦 ∈ ran (,)(◡(𝑥 ∈ 𝐵 ↦ 𝐷) “ 𝑦) ∈ dom vol)) |
35 | 9 | fmpttd 6901 |
. . 3
⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ 𝐶):𝐵⟶ℝ) |
36 | | ismbf 24392 |
. . 3
⊢ ((𝑥 ∈ 𝐵 ↦ 𝐶):𝐵⟶ℝ → ((𝑥 ∈ 𝐵 ↦ 𝐶) ∈ MblFn ↔ ∀𝑦 ∈ ran (,)(◡(𝑥 ∈ 𝐵 ↦ 𝐶) “ 𝑦) ∈ dom vol)) |
37 | 35, 36 | syl 17 |
. 2
⊢ (𝜑 → ((𝑥 ∈ 𝐵 ↦ 𝐶) ∈ MblFn ↔ ∀𝑦 ∈ ran (,)(◡(𝑥 ∈ 𝐵 ↦ 𝐶) “ 𝑦) ∈ dom vol)) |
38 | 10 | fmpttd 6901 |
. . 3
⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ 𝐷):𝐵⟶ℝ) |
39 | | ismbf 24392 |
. . 3
⊢ ((𝑥 ∈ 𝐵 ↦ 𝐷):𝐵⟶ℝ → ((𝑥 ∈ 𝐵 ↦ 𝐷) ∈ MblFn ↔ ∀𝑦 ∈ ran (,)(◡(𝑥 ∈ 𝐵 ↦ 𝐷) “ 𝑦) ∈ dom vol)) |
40 | 38, 39 | syl 17 |
. 2
⊢ (𝜑 → ((𝑥 ∈ 𝐵 ↦ 𝐷) ∈ MblFn ↔ ∀𝑦 ∈ ran (,)(◡(𝑥 ∈ 𝐵 ↦ 𝐷) “ 𝑦) ∈ dom vol)) |
41 | 34, 37, 40 | 3bitr4d 314 |
1
⊢ (𝜑 → ((𝑥 ∈ 𝐵 ↦ 𝐶) ∈ MblFn ↔ (𝑥 ∈ 𝐵 ↦ 𝐷) ∈ MblFn)) |