Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfeqalem2 Structured version   Visualization version   GIF version

Theorem mbfeqalem2 24177
 Description: Lemma for mbfeqa 24178. (Contributed by Mario Carneiro, 2-Sep-2014.) (Proof shortened by AV, 19-Aug-2022.)
Hypotheses
Ref Expression
mbfeqa.1 (𝜑𝐴 ⊆ ℝ)
mbfeqa.2 (𝜑 → (vol*‘𝐴) = 0)
mbfeqa.3 ((𝜑𝑥 ∈ (𝐵𝐴)) → 𝐶 = 𝐷)
mbfeqalem.4 ((𝜑𝑥𝐵) → 𝐶 ∈ ℝ)
mbfeqalem.5 ((𝜑𝑥𝐵) → 𝐷 ∈ ℝ)
Assertion
Ref Expression
mbfeqalem2 (𝜑 → ((𝑥𝐵𝐶) ∈ MblFn ↔ (𝑥𝐵𝐷) ∈ MblFn))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥
Allowed substitution hints:   𝐶(𝑥)   𝐷(𝑥)

Proof of Theorem mbfeqalem2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 inundif 4430 . . . . 5 ((((𝑥𝐵𝐷) “ 𝑦) ∩ ((𝑥𝐵𝐶) “ 𝑦)) ∪ (((𝑥𝐵𝐷) “ 𝑦) ∖ ((𝑥𝐵𝐶) “ 𝑦))) = ((𝑥𝐵𝐷) “ 𝑦)
2 incom 4182 . . . . . . . 8 (((𝑥𝐵𝐷) “ 𝑦) ∩ ((𝑥𝐵𝐶) “ 𝑦)) = (((𝑥𝐵𝐶) “ 𝑦) ∩ ((𝑥𝐵𝐷) “ 𝑦))
3 dfin4 4248 . . . . . . . 8 (((𝑥𝐵𝐶) “ 𝑦) ∩ ((𝑥𝐵𝐷) “ 𝑦)) = (((𝑥𝐵𝐶) “ 𝑦) ∖ (((𝑥𝐵𝐶) “ 𝑦) ∖ ((𝑥𝐵𝐷) “ 𝑦)))
42, 3eqtri 2849 . . . . . . 7 (((𝑥𝐵𝐷) “ 𝑦) ∩ ((𝑥𝐵𝐶) “ 𝑦)) = (((𝑥𝐵𝐶) “ 𝑦) ∖ (((𝑥𝐵𝐶) “ 𝑦) ∖ ((𝑥𝐵𝐷) “ 𝑦)))
5 id 22 . . . . . . . 8 (((𝑥𝐵𝐶) “ 𝑦) ∈ dom vol → ((𝑥𝐵𝐶) “ 𝑦) ∈ dom vol)
6 mbfeqa.1 . . . . . . . . 9 (𝜑𝐴 ⊆ ℝ)
7 mbfeqa.2 . . . . . . . . 9 (𝜑 → (vol*‘𝐴) = 0)
8 mbfeqa.3 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐵𝐴)) → 𝐶 = 𝐷)
9 mbfeqalem.4 . . . . . . . . 9 ((𝜑𝑥𝐵) → 𝐶 ∈ ℝ)
10 mbfeqalem.5 . . . . . . . . 9 ((𝜑𝑥𝐵) → 𝐷 ∈ ℝ)
116, 7, 8, 9, 10mbfeqalem1 24176 . . . . . . . 8 (𝜑 → (((𝑥𝐵𝐶) “ 𝑦) ∖ ((𝑥𝐵𝐷) “ 𝑦)) ∈ dom vol)
12 difmbl 24078 . . . . . . . 8 ((((𝑥𝐵𝐶) “ 𝑦) ∈ dom vol ∧ (((𝑥𝐵𝐶) “ 𝑦) ∖ ((𝑥𝐵𝐷) “ 𝑦)) ∈ dom vol) → (((𝑥𝐵𝐶) “ 𝑦) ∖ (((𝑥𝐵𝐶) “ 𝑦) ∖ ((𝑥𝐵𝐷) “ 𝑦))) ∈ dom vol)
135, 11, 12syl2anr 596 . . . . . . 7 ((𝜑 ∧ ((𝑥𝐵𝐶) “ 𝑦) ∈ dom vol) → (((𝑥𝐵𝐶) “ 𝑦) ∖ (((𝑥𝐵𝐶) “ 𝑦) ∖ ((𝑥𝐵𝐷) “ 𝑦))) ∈ dom vol)
144, 13eqeltrid 2922 . . . . . 6 ((𝜑 ∧ ((𝑥𝐵𝐶) “ 𝑦) ∈ dom vol) → (((𝑥𝐵𝐷) “ 𝑦) ∩ ((𝑥𝐵𝐶) “ 𝑦)) ∈ dom vol)
158eqcomd 2832 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐵𝐴)) → 𝐷 = 𝐶)
166, 7, 15, 10, 9mbfeqalem1 24176 . . . . . . 7 (𝜑 → (((𝑥𝐵𝐷) “ 𝑦) ∖ ((𝑥𝐵𝐶) “ 𝑦)) ∈ dom vol)
1716adantr 481 . . . . . 6 ((𝜑 ∧ ((𝑥𝐵𝐶) “ 𝑦) ∈ dom vol) → (((𝑥𝐵𝐷) “ 𝑦) ∖ ((𝑥𝐵𝐶) “ 𝑦)) ∈ dom vol)
18 unmbl 24072 . . . . . 6 (((((𝑥𝐵𝐷) “ 𝑦) ∩ ((𝑥𝐵𝐶) “ 𝑦)) ∈ dom vol ∧ (((𝑥𝐵𝐷) “ 𝑦) ∖ ((𝑥𝐵𝐶) “ 𝑦)) ∈ dom vol) → ((((𝑥𝐵𝐷) “ 𝑦) ∩ ((𝑥𝐵𝐶) “ 𝑦)) ∪ (((𝑥𝐵𝐷) “ 𝑦) ∖ ((𝑥𝐵𝐶) “ 𝑦))) ∈ dom vol)
1914, 17, 18syl2anc 584 . . . . 5 ((𝜑 ∧ ((𝑥𝐵𝐶) “ 𝑦) ∈ dom vol) → ((((𝑥𝐵𝐷) “ 𝑦) ∩ ((𝑥𝐵𝐶) “ 𝑦)) ∪ (((𝑥𝐵𝐷) “ 𝑦) ∖ ((𝑥𝐵𝐶) “ 𝑦))) ∈ dom vol)
201, 19eqeltrrid 2923 . . . 4 ((𝜑 ∧ ((𝑥𝐵𝐶) “ 𝑦) ∈ dom vol) → ((𝑥𝐵𝐷) “ 𝑦) ∈ dom vol)
21 inundif 4430 . . . . 5 ((((𝑥𝐵𝐶) “ 𝑦) ∩ ((𝑥𝐵𝐷) “ 𝑦)) ∪ (((𝑥𝐵𝐶) “ 𝑦) ∖ ((𝑥𝐵𝐷) “ 𝑦))) = ((𝑥𝐵𝐶) “ 𝑦)
22 incom 4182 . . . . . . . 8 (((𝑥𝐵𝐶) “ 𝑦) ∩ ((𝑥𝐵𝐷) “ 𝑦)) = (((𝑥𝐵𝐷) “ 𝑦) ∩ ((𝑥𝐵𝐶) “ 𝑦))
23 dfin4 4248 . . . . . . . 8 (((𝑥𝐵𝐷) “ 𝑦) ∩ ((𝑥𝐵𝐶) “ 𝑦)) = (((𝑥𝐵𝐷) “ 𝑦) ∖ (((𝑥𝐵𝐷) “ 𝑦) ∖ ((𝑥𝐵𝐶) “ 𝑦)))
2422, 23eqtri 2849 . . . . . . 7 (((𝑥𝐵𝐶) “ 𝑦) ∩ ((𝑥𝐵𝐷) “ 𝑦)) = (((𝑥𝐵𝐷) “ 𝑦) ∖ (((𝑥𝐵𝐷) “ 𝑦) ∖ ((𝑥𝐵𝐶) “ 𝑦)))
25 id 22 . . . . . . . 8 (((𝑥𝐵𝐷) “ 𝑦) ∈ dom vol → ((𝑥𝐵𝐷) “ 𝑦) ∈ dom vol)
26 difmbl 24078 . . . . . . . 8 ((((𝑥𝐵𝐷) “ 𝑦) ∈ dom vol ∧ (((𝑥𝐵𝐷) “ 𝑦) ∖ ((𝑥𝐵𝐶) “ 𝑦)) ∈ dom vol) → (((𝑥𝐵𝐷) “ 𝑦) ∖ (((𝑥𝐵𝐷) “ 𝑦) ∖ ((𝑥𝐵𝐶) “ 𝑦))) ∈ dom vol)
2725, 16, 26syl2anr 596 . . . . . . 7 ((𝜑 ∧ ((𝑥𝐵𝐷) “ 𝑦) ∈ dom vol) → (((𝑥𝐵𝐷) “ 𝑦) ∖ (((𝑥𝐵𝐷) “ 𝑦) ∖ ((𝑥𝐵𝐶) “ 𝑦))) ∈ dom vol)
2824, 27eqeltrid 2922 . . . . . 6 ((𝜑 ∧ ((𝑥𝐵𝐷) “ 𝑦) ∈ dom vol) → (((𝑥𝐵𝐶) “ 𝑦) ∩ ((𝑥𝐵𝐷) “ 𝑦)) ∈ dom vol)
2911adantr 481 . . . . . 6 ((𝜑 ∧ ((𝑥𝐵𝐷) “ 𝑦) ∈ dom vol) → (((𝑥𝐵𝐶) “ 𝑦) ∖ ((𝑥𝐵𝐷) “ 𝑦)) ∈ dom vol)
30 unmbl 24072 . . . . . 6 (((((𝑥𝐵𝐶) “ 𝑦) ∩ ((𝑥𝐵𝐷) “ 𝑦)) ∈ dom vol ∧ (((𝑥𝐵𝐶) “ 𝑦) ∖ ((𝑥𝐵𝐷) “ 𝑦)) ∈ dom vol) → ((((𝑥𝐵𝐶) “ 𝑦) ∩ ((𝑥𝐵𝐷) “ 𝑦)) ∪ (((𝑥𝐵𝐶) “ 𝑦) ∖ ((𝑥𝐵𝐷) “ 𝑦))) ∈ dom vol)
3128, 29, 30syl2anc 584 . . . . 5 ((𝜑 ∧ ((𝑥𝐵𝐷) “ 𝑦) ∈ dom vol) → ((((𝑥𝐵𝐶) “ 𝑦) ∩ ((𝑥𝐵𝐷) “ 𝑦)) ∪ (((𝑥𝐵𝐶) “ 𝑦) ∖ ((𝑥𝐵𝐷) “ 𝑦))) ∈ dom vol)
3221, 31eqeltrrid 2923 . . . 4 ((𝜑 ∧ ((𝑥𝐵𝐷) “ 𝑦) ∈ dom vol) → ((𝑥𝐵𝐶) “ 𝑦) ∈ dom vol)
3320, 32impbida 797 . . 3 (𝜑 → (((𝑥𝐵𝐶) “ 𝑦) ∈ dom vol ↔ ((𝑥𝐵𝐷) “ 𝑦) ∈ dom vol))
3433ralbidv 3202 . 2 (𝜑 → (∀𝑦 ∈ ran (,)((𝑥𝐵𝐶) “ 𝑦) ∈ dom vol ↔ ∀𝑦 ∈ ran (,)((𝑥𝐵𝐷) “ 𝑦) ∈ dom vol))
359fmpttd 6877 . . 3 (𝜑 → (𝑥𝐵𝐶):𝐵⟶ℝ)
36 ismbf 24163 . . 3 ((𝑥𝐵𝐶):𝐵⟶ℝ → ((𝑥𝐵𝐶) ∈ MblFn ↔ ∀𝑦 ∈ ran (,)((𝑥𝐵𝐶) “ 𝑦) ∈ dom vol))
3735, 36syl 17 . 2 (𝜑 → ((𝑥𝐵𝐶) ∈ MblFn ↔ ∀𝑦 ∈ ran (,)((𝑥𝐵𝐶) “ 𝑦) ∈ dom vol))
3810fmpttd 6877 . . 3 (𝜑 → (𝑥𝐵𝐷):𝐵⟶ℝ)
39 ismbf 24163 . . 3 ((𝑥𝐵𝐷):𝐵⟶ℝ → ((𝑥𝐵𝐷) ∈ MblFn ↔ ∀𝑦 ∈ ran (,)((𝑥𝐵𝐷) “ 𝑦) ∈ dom vol))
4038, 39syl 17 . 2 (𝜑 → ((𝑥𝐵𝐷) ∈ MblFn ↔ ∀𝑦 ∈ ran (,)((𝑥𝐵𝐷) “ 𝑦) ∈ dom vol))
4134, 37, 403bitr4d 312 1 (𝜑 → ((𝑥𝐵𝐶) ∈ MblFn ↔ (𝑥𝐵𝐷) ∈ MblFn))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 207   ∧ wa 396   = wceq 1530   ∈ wcel 2107  ∀wral 3143   ∖ cdif 3937   ∪ cun 3938   ∩ cin 3939   ⊆ wss 3940   ↦ cmpt 5143  ◡ccnv 5553  dom cdm 5554  ran crn 5555   “ cima 5557  ⟶wf 6350  ‘cfv 6354  ℝcr 10530  0cc0 10531  (,)cioo 12733  vol*covol 23997  volcvol 23998  MblFncmbf 24149 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7455  ax-inf2 9098  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609 This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-fal 1543  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rmo 3151  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-symdif 4223  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-int 4875  df-iun 4919  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-se 5514  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-isom 6363  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7403  df-om 7574  df-1st 7685  df-2nd 7686  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-1o 8098  df-2o 8099  df-oadd 8102  df-er 8284  df-map 8403  df-pm 8404  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-sup 8900  df-inf 8901  df-oi 8968  df-dju 9324  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-n0 11892  df-z 11976  df-uz 12238  df-q 12343  df-rp 12385  df-xadd 12503  df-ioo 12737  df-ico 12739  df-icc 12740  df-fz 12888  df-fzo 13029  df-fl 13157  df-seq 13365  df-exp 13425  df-hash 13686  df-cj 14453  df-re 14454  df-im 14455  df-sqrt 14589  df-abs 14590  df-clim 14840  df-sum 15038  df-xmet 20473  df-met 20474  df-ovol 23999  df-vol 24000  df-mbf 24154 This theorem is referenced by:  mbfeqa  24178
 Copyright terms: Public domain W3C validator