Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem50 Structured version   Visualization version   GIF version

Theorem stoweidlem50 46006
Description: This lemma proves that sets U(t) as defined in Lemma 1 of [BrosowskiDeutsh] p. 90, contain a finite subcover of T \ U. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem50.1 𝑡𝑈
stoweidlem50.2 𝑡𝜑
stoweidlem50.3 𝐾 = (topGen‘ran (,))
stoweidlem50.4 𝑄 = {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))}
stoweidlem50.5 𝑊 = {𝑤𝐽 ∣ ∃𝑄 𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}}
stoweidlem50.6 𝑇 = 𝐽
stoweidlem50.7 𝐶 = (𝐽 Cn 𝐾)
stoweidlem50.8 (𝜑𝐽 ∈ Comp)
stoweidlem50.9 (𝜑𝐴𝐶)
stoweidlem50.10 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
stoweidlem50.11 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
stoweidlem50.12 ((𝜑𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
stoweidlem50.13 ((𝜑 ∧ (𝑟𝑇𝑡𝑇𝑟𝑡)) → ∃𝑞𝐴 (𝑞𝑟) ≠ (𝑞𝑡))
stoweidlem50.14 (𝜑𝑈𝐽)
stoweidlem50.15 (𝜑𝑍𝑈)
Assertion
Ref Expression
stoweidlem50 (𝜑 → ∃𝑢(𝑢 ∈ Fin ∧ 𝑢𝑊 ∧ (𝑇𝑈) ⊆ 𝑢))
Distinct variable groups:   𝑢,𝐽   𝑢,𝑇   𝑢,𝑈   𝑢,𝑊   𝑓,𝑔,,𝑡,𝑇   𝑓,𝑞,𝑔,𝑡,𝑇   𝑓,𝑟,𝐴,𝑞,𝑡   𝑥,𝑓,𝑞,𝑡,𝑇   𝑄,𝑓,𝑔   𝑈,𝑓,𝑔,𝑞   𝑓,𝑍,𝑔,,𝑡   𝜑,𝑓,𝑔,𝑞   𝑤,𝑔,,𝑡,𝑇   𝐴,𝑔,   𝑔,𝑊   𝑍,𝑞,𝑥   𝑇,𝑟   𝑈,𝑟   𝜑,𝑟   𝑡,𝐽,𝑤   𝑡,𝐾   𝜑,𝑢   𝑤,𝑄   𝑥,𝐴   𝑥,𝑈   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑤,𝑡,)   𝐴(𝑤,𝑢)   𝐶(𝑥,𝑤,𝑢,𝑡,𝑓,𝑔,,𝑟,𝑞)   𝑄(𝑥,𝑢,𝑡,,𝑟,𝑞)   𝑈(𝑤,𝑡,)   𝐽(𝑥,𝑓,𝑔,,𝑟,𝑞)   𝐾(𝑥,𝑤,𝑢,𝑓,𝑔,,𝑟,𝑞)   𝑊(𝑥,𝑤,𝑡,𝑓,,𝑟,𝑞)   𝑍(𝑤,𝑢,𝑟)

Proof of Theorem stoweidlem50
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 stoweidlem50.1 . . 3 𝑡𝑈
2 stoweidlem50.4 . . . 4 𝑄 = {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))}
3 nfrab1 3454 . . . 4 {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))}
42, 3nfcxfr 2901 . . 3 𝑄
5 nfv 1912 . . 3 𝑞𝜑
6 stoweidlem50.2 . . 3 𝑡𝜑
7 stoweidlem50.3 . . 3 𝐾 = (topGen‘ran (,))
8 stoweidlem50.5 . . 3 𝑊 = {𝑤𝐽 ∣ ∃𝑄 𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}}
9 stoweidlem50.6 . . 3 𝑇 = 𝐽
10 stoweidlem50.8 . . 3 (𝜑𝐽 ∈ Comp)
11 stoweidlem50.9 . . . 4 (𝜑𝐴𝐶)
12 stoweidlem50.7 . . . 4 𝐶 = (𝐽 Cn 𝐾)
1311, 12sseqtrdi 4046 . . 3 (𝜑𝐴 ⊆ (𝐽 Cn 𝐾))
14 stoweidlem50.10 . . 3 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
15 stoweidlem50.11 . . 3 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
16 stoweidlem50.12 . . 3 ((𝜑𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
17 stoweidlem50.13 . . 3 ((𝜑 ∧ (𝑟𝑇𝑡𝑇𝑟𝑡)) → ∃𝑞𝐴 (𝑞𝑟) ≠ (𝑞𝑡))
18 stoweidlem50.14 . . 3 (𝜑𝑈𝐽)
19 stoweidlem50.15 . . 3 (𝜑𝑍𝑈)
2010uniexd 7761 . . . 4 (𝜑 𝐽 ∈ V)
219, 20eqeltrid 2843 . . 3 (𝜑𝑇 ∈ V)
221, 4, 5, 6, 7, 2, 8, 9, 10, 13, 14, 15, 16, 17, 18, 19, 21stoweidlem46 46002 . 2 (𝜑 → (𝑇𝑈) ⊆ 𝑊)
23 dfin4 4284 . . . . . . . . . . 11 (𝑇𝑈) = (𝑇 ∖ (𝑇𝑈))
24 elssuni 4942 . . . . . . . . . . . . . 14 (𝑈𝐽𝑈 𝐽)
2518, 24syl 17 . . . . . . . . . . . . 13 (𝜑𝑈 𝐽)
2625, 9sseqtrrdi 4047 . . . . . . . . . . . 12 (𝜑𝑈𝑇)
27 sseqin2 4231 . . . . . . . . . . . 12 (𝑈𝑇 ↔ (𝑇𝑈) = 𝑈)
2826, 27sylib 218 . . . . . . . . . . 11 (𝜑 → (𝑇𝑈) = 𝑈)
2923, 28eqtr3id 2789 . . . . . . . . . 10 (𝜑 → (𝑇 ∖ (𝑇𝑈)) = 𝑈)
3029, 18eqeltrd 2839 . . . . . . . . 9 (𝜑 → (𝑇 ∖ (𝑇𝑈)) ∈ 𝐽)
31 cmptop 23419 . . . . . . . . . . 11 (𝐽 ∈ Comp → 𝐽 ∈ Top)
3210, 31syl 17 . . . . . . . . . 10 (𝜑𝐽 ∈ Top)
33 difssd 4147 . . . . . . . . . 10 (𝜑 → (𝑇𝑈) ⊆ 𝑇)
349iscld2 23052 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ (𝑇𝑈) ⊆ 𝑇) → ((𝑇𝑈) ∈ (Clsd‘𝐽) ↔ (𝑇 ∖ (𝑇𝑈)) ∈ 𝐽))
3532, 33, 34syl2anc 584 . . . . . . . . 9 (𝜑 → ((𝑇𝑈) ∈ (Clsd‘𝐽) ↔ (𝑇 ∖ (𝑇𝑈)) ∈ 𝐽))
3630, 35mpbird 257 . . . . . . . 8 (𝜑 → (𝑇𝑈) ∈ (Clsd‘𝐽))
37 cmpcld 23426 . . . . . . . 8 ((𝐽 ∈ Comp ∧ (𝑇𝑈) ∈ (Clsd‘𝐽)) → (𝐽t (𝑇𝑈)) ∈ Comp)
3810, 36, 37syl2anc 584 . . . . . . 7 (𝜑 → (𝐽t (𝑇𝑈)) ∈ Comp)
399cmpsub 23424 . . . . . . . 8 ((𝐽 ∈ Top ∧ (𝑇𝑈) ⊆ 𝑇) → ((𝐽t (𝑇𝑈)) ∈ Comp ↔ ∀𝑐 ∈ 𝒫 𝐽((𝑇𝑈) ⊆ 𝑐 → ∃𝑢 ∈ (𝒫 𝑐 ∩ Fin)(𝑇𝑈) ⊆ 𝑢)))
4032, 33, 39syl2anc 584 . . . . . . 7 (𝜑 → ((𝐽t (𝑇𝑈)) ∈ Comp ↔ ∀𝑐 ∈ 𝒫 𝐽((𝑇𝑈) ⊆ 𝑐 → ∃𝑢 ∈ (𝒫 𝑐 ∩ Fin)(𝑇𝑈) ⊆ 𝑢)))
4138, 40mpbid 232 . . . . . 6 (𝜑 → ∀𝑐 ∈ 𝒫 𝐽((𝑇𝑈) ⊆ 𝑐 → ∃𝑢 ∈ (𝒫 𝑐 ∩ Fin)(𝑇𝑈) ⊆ 𝑢))
42 ssrab2 4090 . . . . . . . 8 {𝑤𝐽 ∣ ∃𝑄 𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}} ⊆ 𝐽
438, 42eqsstri 4030 . . . . . . 7 𝑊𝐽
448, 10rabexd 5346 . . . . . . . 8 (𝜑𝑊 ∈ V)
45 elpwg 4608 . . . . . . . 8 (𝑊 ∈ V → (𝑊 ∈ 𝒫 𝐽𝑊𝐽))
4644, 45syl 17 . . . . . . 7 (𝜑 → (𝑊 ∈ 𝒫 𝐽𝑊𝐽))
4743, 46mpbiri 258 . . . . . 6 (𝜑𝑊 ∈ 𝒫 𝐽)
48 unieq 4923 . . . . . . . . 9 (𝑐 = 𝑊 𝑐 = 𝑊)
4948sseq2d 4028 . . . . . . . 8 (𝑐 = 𝑊 → ((𝑇𝑈) ⊆ 𝑐 ↔ (𝑇𝑈) ⊆ 𝑊))
50 pweq 4619 . . . . . . . . . 10 (𝑐 = 𝑊 → 𝒫 𝑐 = 𝒫 𝑊)
5150ineq1d 4227 . . . . . . . . 9 (𝑐 = 𝑊 → (𝒫 𝑐 ∩ Fin) = (𝒫 𝑊 ∩ Fin))
5251rexeqdv 3325 . . . . . . . 8 (𝑐 = 𝑊 → (∃𝑢 ∈ (𝒫 𝑐 ∩ Fin)(𝑇𝑈) ⊆ 𝑢 ↔ ∃𝑢 ∈ (𝒫 𝑊 ∩ Fin)(𝑇𝑈) ⊆ 𝑢))
5349, 52imbi12d 344 . . . . . . 7 (𝑐 = 𝑊 → (((𝑇𝑈) ⊆ 𝑐 → ∃𝑢 ∈ (𝒫 𝑐 ∩ Fin)(𝑇𝑈) ⊆ 𝑢) ↔ ((𝑇𝑈) ⊆ 𝑊 → ∃𝑢 ∈ (𝒫 𝑊 ∩ Fin)(𝑇𝑈) ⊆ 𝑢)))
5453rspccva 3621 . . . . . 6 ((∀𝑐 ∈ 𝒫 𝐽((𝑇𝑈) ⊆ 𝑐 → ∃𝑢 ∈ (𝒫 𝑐 ∩ Fin)(𝑇𝑈) ⊆ 𝑢) ∧ 𝑊 ∈ 𝒫 𝐽) → ((𝑇𝑈) ⊆ 𝑊 → ∃𝑢 ∈ (𝒫 𝑊 ∩ Fin)(𝑇𝑈) ⊆ 𝑢))
5541, 47, 54syl2anc 584 . . . . 5 (𝜑 → ((𝑇𝑈) ⊆ 𝑊 → ∃𝑢 ∈ (𝒫 𝑊 ∩ Fin)(𝑇𝑈) ⊆ 𝑢))
5655imp 406 . . . 4 ((𝜑 ∧ (𝑇𝑈) ⊆ 𝑊) → ∃𝑢 ∈ (𝒫 𝑊 ∩ Fin)(𝑇𝑈) ⊆ 𝑢)
57 df-rex 3069 . . . 4 (∃𝑢 ∈ (𝒫 𝑊 ∩ Fin)(𝑇𝑈) ⊆ 𝑢 ↔ ∃𝑢(𝑢 ∈ (𝒫 𝑊 ∩ Fin) ∧ (𝑇𝑈) ⊆ 𝑢))
5856, 57sylib 218 . . 3 ((𝜑 ∧ (𝑇𝑈) ⊆ 𝑊) → ∃𝑢(𝑢 ∈ (𝒫 𝑊 ∩ Fin) ∧ (𝑇𝑈) ⊆ 𝑢))
59 elinel2 4212 . . . . . . 7 (𝑢 ∈ (𝒫 𝑊 ∩ Fin) → 𝑢 ∈ Fin)
6059ad2antrl 728 . . . . . 6 (((𝜑 ∧ (𝑇𝑈) ⊆ 𝑊) ∧ (𝑢 ∈ (𝒫 𝑊 ∩ Fin) ∧ (𝑇𝑈) ⊆ 𝑢)) → 𝑢 ∈ Fin)
61 elinel1 4211 . . . . . . . 8 (𝑢 ∈ (𝒫 𝑊 ∩ Fin) → 𝑢 ∈ 𝒫 𝑊)
6261ad2antrl 728 . . . . . . 7 (((𝜑 ∧ (𝑇𝑈) ⊆ 𝑊) ∧ (𝑢 ∈ (𝒫 𝑊 ∩ Fin) ∧ (𝑇𝑈) ⊆ 𝑢)) → 𝑢 ∈ 𝒫 𝑊)
6362elpwid 4614 . . . . . 6 (((𝜑 ∧ (𝑇𝑈) ⊆ 𝑊) ∧ (𝑢 ∈ (𝒫 𝑊 ∩ Fin) ∧ (𝑇𝑈) ⊆ 𝑢)) → 𝑢𝑊)
64 simprr 773 . . . . . 6 (((𝜑 ∧ (𝑇𝑈) ⊆ 𝑊) ∧ (𝑢 ∈ (𝒫 𝑊 ∩ Fin) ∧ (𝑇𝑈) ⊆ 𝑢)) → (𝑇𝑈) ⊆ 𝑢)
6560, 63, 643jca 1127 . . . . 5 (((𝜑 ∧ (𝑇𝑈) ⊆ 𝑊) ∧ (𝑢 ∈ (𝒫 𝑊 ∩ Fin) ∧ (𝑇𝑈) ⊆ 𝑢)) → (𝑢 ∈ Fin ∧ 𝑢𝑊 ∧ (𝑇𝑈) ⊆ 𝑢))
6665ex 412 . . . 4 ((𝜑 ∧ (𝑇𝑈) ⊆ 𝑊) → ((𝑢 ∈ (𝒫 𝑊 ∩ Fin) ∧ (𝑇𝑈) ⊆ 𝑢) → (𝑢 ∈ Fin ∧ 𝑢𝑊 ∧ (𝑇𝑈) ⊆ 𝑢)))
6766eximdv 1915 . . 3 ((𝜑 ∧ (𝑇𝑈) ⊆ 𝑊) → (∃𝑢(𝑢 ∈ (𝒫 𝑊 ∩ Fin) ∧ (𝑇𝑈) ⊆ 𝑢) → ∃𝑢(𝑢 ∈ Fin ∧ 𝑢𝑊 ∧ (𝑇𝑈) ⊆ 𝑢)))
6858, 67mpd 15 . 2 ((𝜑 ∧ (𝑇𝑈) ⊆ 𝑊) → ∃𝑢(𝑢 ∈ Fin ∧ 𝑢𝑊 ∧ (𝑇𝑈) ⊆ 𝑢))
6922, 68mpdan 687 1 (𝜑 → ∃𝑢(𝑢 ∈ Fin ∧ 𝑢𝑊 ∧ (𝑇𝑈) ⊆ 𝑢))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wex 1776  wnf 1780  wcel 2106  wnfc 2888  wne 2938  wral 3059  wrex 3068  {crab 3433  Vcvv 3478  cdif 3960  cin 3962  wss 3963  𝒫 cpw 4605   cuni 4912   class class class wbr 5148  cmpt 5231  ran crn 5690  cfv 6563  (class class class)co 7431  Fincfn 8984  cr 11152  0cc0 11153  1c1 11154   + caddc 11156   · cmul 11158   < clt 11293  cle 11294  (,)cioo 13384  t crest 17467  topGenctg 17484  Topctop 22915  Clsdccld 23040   Cn ccn 23248  Compccmp 23410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-map 8867  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-fi 9449  df-sup 9480  df-inf 9481  df-oi 9548  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-q 12989  df-rp 13033  df-xneg 13152  df-xadd 13153  df-xmul 13154  df-ioo 13388  df-icc 13391  df-fz 13545  df-fzo 13692  df-seq 14040  df-exp 14100  df-hash 14367  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-hom 17322  df-cco 17323  df-rest 17469  df-topn 17470  df-0g 17488  df-gsum 17489  df-topgen 17490  df-pt 17491  df-prds 17494  df-xrs 17549  df-qtop 17554  df-imas 17555  df-xps 17557  df-mre 17631  df-mrc 17632  df-acs 17634  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-submnd 18810  df-mulg 19099  df-cntz 19348  df-cmn 19815  df-psmet 21374  df-xmet 21375  df-met 21376  df-bl 21377  df-mopn 21378  df-cnfld 21383  df-top 22916  df-topon 22933  df-topsp 22955  df-bases 22969  df-cld 23043  df-cn 23251  df-cnp 23252  df-cmp 23411  df-tx 23586  df-hmeo 23779  df-xms 24346  df-ms 24347  df-tms 24348
This theorem is referenced by:  stoweidlem53  46009
  Copyright terms: Public domain W3C validator