Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem50 Structured version   Visualization version   GIF version

Theorem stoweidlem50 45971
Description: This lemma proves that sets U(t) as defined in Lemma 1 of [BrosowskiDeutsh] p. 90, contain a finite subcover of T \ U. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem50.1 𝑡𝑈
stoweidlem50.2 𝑡𝜑
stoweidlem50.3 𝐾 = (topGen‘ran (,))
stoweidlem50.4 𝑄 = {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))}
stoweidlem50.5 𝑊 = {𝑤𝐽 ∣ ∃𝑄 𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}}
stoweidlem50.6 𝑇 = 𝐽
stoweidlem50.7 𝐶 = (𝐽 Cn 𝐾)
stoweidlem50.8 (𝜑𝐽 ∈ Comp)
stoweidlem50.9 (𝜑𝐴𝐶)
stoweidlem50.10 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
stoweidlem50.11 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
stoweidlem50.12 ((𝜑𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
stoweidlem50.13 ((𝜑 ∧ (𝑟𝑇𝑡𝑇𝑟𝑡)) → ∃𝑞𝐴 (𝑞𝑟) ≠ (𝑞𝑡))
stoweidlem50.14 (𝜑𝑈𝐽)
stoweidlem50.15 (𝜑𝑍𝑈)
Assertion
Ref Expression
stoweidlem50 (𝜑 → ∃𝑢(𝑢 ∈ Fin ∧ 𝑢𝑊 ∧ (𝑇𝑈) ⊆ 𝑢))
Distinct variable groups:   𝑢,𝐽   𝑢,𝑇   𝑢,𝑈   𝑢,𝑊   𝑓,𝑔,,𝑡,𝑇   𝑓,𝑞,𝑔,𝑡,𝑇   𝑓,𝑟,𝐴,𝑞,𝑡   𝑥,𝑓,𝑞,𝑡,𝑇   𝑄,𝑓,𝑔   𝑈,𝑓,𝑔,𝑞   𝑓,𝑍,𝑔,,𝑡   𝜑,𝑓,𝑔,𝑞   𝑤,𝑔,,𝑡,𝑇   𝐴,𝑔,   𝑔,𝑊   𝑍,𝑞,𝑥   𝑇,𝑟   𝑈,𝑟   𝜑,𝑟   𝑡,𝐽,𝑤   𝑡,𝐾   𝜑,𝑢   𝑤,𝑄   𝑥,𝐴   𝑥,𝑈   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑤,𝑡,)   𝐴(𝑤,𝑢)   𝐶(𝑥,𝑤,𝑢,𝑡,𝑓,𝑔,,𝑟,𝑞)   𝑄(𝑥,𝑢,𝑡,,𝑟,𝑞)   𝑈(𝑤,𝑡,)   𝐽(𝑥,𝑓,𝑔,,𝑟,𝑞)   𝐾(𝑥,𝑤,𝑢,𝑓,𝑔,,𝑟,𝑞)   𝑊(𝑥,𝑤,𝑡,𝑓,,𝑟,𝑞)   𝑍(𝑤,𝑢,𝑟)

Proof of Theorem stoweidlem50
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 stoweidlem50.1 . . 3 𝑡𝑈
2 stoweidlem50.4 . . . 4 𝑄 = {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))}
3 nfrab1 3464 . . . 4 {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))}
42, 3nfcxfr 2906 . . 3 𝑄
5 nfv 1913 . . 3 𝑞𝜑
6 stoweidlem50.2 . . 3 𝑡𝜑
7 stoweidlem50.3 . . 3 𝐾 = (topGen‘ran (,))
8 stoweidlem50.5 . . 3 𝑊 = {𝑤𝐽 ∣ ∃𝑄 𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}}
9 stoweidlem50.6 . . 3 𝑇 = 𝐽
10 stoweidlem50.8 . . 3 (𝜑𝐽 ∈ Comp)
11 stoweidlem50.9 . . . 4 (𝜑𝐴𝐶)
12 stoweidlem50.7 . . . 4 𝐶 = (𝐽 Cn 𝐾)
1311, 12sseqtrdi 4059 . . 3 (𝜑𝐴 ⊆ (𝐽 Cn 𝐾))
14 stoweidlem50.10 . . 3 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
15 stoweidlem50.11 . . 3 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
16 stoweidlem50.12 . . 3 ((𝜑𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
17 stoweidlem50.13 . . 3 ((𝜑 ∧ (𝑟𝑇𝑡𝑇𝑟𝑡)) → ∃𝑞𝐴 (𝑞𝑟) ≠ (𝑞𝑡))
18 stoweidlem50.14 . . 3 (𝜑𝑈𝐽)
19 stoweidlem50.15 . . 3 (𝜑𝑍𝑈)
2010uniexd 7777 . . . 4 (𝜑 𝐽 ∈ V)
219, 20eqeltrid 2848 . . 3 (𝜑𝑇 ∈ V)
221, 4, 5, 6, 7, 2, 8, 9, 10, 13, 14, 15, 16, 17, 18, 19, 21stoweidlem46 45967 . 2 (𝜑 → (𝑇𝑈) ⊆ 𝑊)
23 dfin4 4297 . . . . . . . . . . 11 (𝑇𝑈) = (𝑇 ∖ (𝑇𝑈))
24 elssuni 4961 . . . . . . . . . . . . . 14 (𝑈𝐽𝑈 𝐽)
2518, 24syl 17 . . . . . . . . . . . . 13 (𝜑𝑈 𝐽)
2625, 9sseqtrrdi 4060 . . . . . . . . . . . 12 (𝜑𝑈𝑇)
27 sseqin2 4244 . . . . . . . . . . . 12 (𝑈𝑇 ↔ (𝑇𝑈) = 𝑈)
2826, 27sylib 218 . . . . . . . . . . 11 (𝜑 → (𝑇𝑈) = 𝑈)
2923, 28eqtr3id 2794 . . . . . . . . . 10 (𝜑 → (𝑇 ∖ (𝑇𝑈)) = 𝑈)
3029, 18eqeltrd 2844 . . . . . . . . 9 (𝜑 → (𝑇 ∖ (𝑇𝑈)) ∈ 𝐽)
31 cmptop 23424 . . . . . . . . . . 11 (𝐽 ∈ Comp → 𝐽 ∈ Top)
3210, 31syl 17 . . . . . . . . . 10 (𝜑𝐽 ∈ Top)
33 difssd 4160 . . . . . . . . . 10 (𝜑 → (𝑇𝑈) ⊆ 𝑇)
349iscld2 23057 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ (𝑇𝑈) ⊆ 𝑇) → ((𝑇𝑈) ∈ (Clsd‘𝐽) ↔ (𝑇 ∖ (𝑇𝑈)) ∈ 𝐽))
3532, 33, 34syl2anc 583 . . . . . . . . 9 (𝜑 → ((𝑇𝑈) ∈ (Clsd‘𝐽) ↔ (𝑇 ∖ (𝑇𝑈)) ∈ 𝐽))
3630, 35mpbird 257 . . . . . . . 8 (𝜑 → (𝑇𝑈) ∈ (Clsd‘𝐽))
37 cmpcld 23431 . . . . . . . 8 ((𝐽 ∈ Comp ∧ (𝑇𝑈) ∈ (Clsd‘𝐽)) → (𝐽t (𝑇𝑈)) ∈ Comp)
3810, 36, 37syl2anc 583 . . . . . . 7 (𝜑 → (𝐽t (𝑇𝑈)) ∈ Comp)
399cmpsub 23429 . . . . . . . 8 ((𝐽 ∈ Top ∧ (𝑇𝑈) ⊆ 𝑇) → ((𝐽t (𝑇𝑈)) ∈ Comp ↔ ∀𝑐 ∈ 𝒫 𝐽((𝑇𝑈) ⊆ 𝑐 → ∃𝑢 ∈ (𝒫 𝑐 ∩ Fin)(𝑇𝑈) ⊆ 𝑢)))
4032, 33, 39syl2anc 583 . . . . . . 7 (𝜑 → ((𝐽t (𝑇𝑈)) ∈ Comp ↔ ∀𝑐 ∈ 𝒫 𝐽((𝑇𝑈) ⊆ 𝑐 → ∃𝑢 ∈ (𝒫 𝑐 ∩ Fin)(𝑇𝑈) ⊆ 𝑢)))
4138, 40mpbid 232 . . . . . 6 (𝜑 → ∀𝑐 ∈ 𝒫 𝐽((𝑇𝑈) ⊆ 𝑐 → ∃𝑢 ∈ (𝒫 𝑐 ∩ Fin)(𝑇𝑈) ⊆ 𝑢))
42 ssrab2 4103 . . . . . . . 8 {𝑤𝐽 ∣ ∃𝑄 𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}} ⊆ 𝐽
438, 42eqsstri 4043 . . . . . . 7 𝑊𝐽
448, 10rabexd 5358 . . . . . . . 8 (𝜑𝑊 ∈ V)
45 elpwg 4625 . . . . . . . 8 (𝑊 ∈ V → (𝑊 ∈ 𝒫 𝐽𝑊𝐽))
4644, 45syl 17 . . . . . . 7 (𝜑 → (𝑊 ∈ 𝒫 𝐽𝑊𝐽))
4743, 46mpbiri 258 . . . . . 6 (𝜑𝑊 ∈ 𝒫 𝐽)
48 unieq 4942 . . . . . . . . 9 (𝑐 = 𝑊 𝑐 = 𝑊)
4948sseq2d 4041 . . . . . . . 8 (𝑐 = 𝑊 → ((𝑇𝑈) ⊆ 𝑐 ↔ (𝑇𝑈) ⊆ 𝑊))
50 pweq 4636 . . . . . . . . . 10 (𝑐 = 𝑊 → 𝒫 𝑐 = 𝒫 𝑊)
5150ineq1d 4240 . . . . . . . . 9 (𝑐 = 𝑊 → (𝒫 𝑐 ∩ Fin) = (𝒫 𝑊 ∩ Fin))
5251rexeqdv 3335 . . . . . . . 8 (𝑐 = 𝑊 → (∃𝑢 ∈ (𝒫 𝑐 ∩ Fin)(𝑇𝑈) ⊆ 𝑢 ↔ ∃𝑢 ∈ (𝒫 𝑊 ∩ Fin)(𝑇𝑈) ⊆ 𝑢))
5349, 52imbi12d 344 . . . . . . 7 (𝑐 = 𝑊 → (((𝑇𝑈) ⊆ 𝑐 → ∃𝑢 ∈ (𝒫 𝑐 ∩ Fin)(𝑇𝑈) ⊆ 𝑢) ↔ ((𝑇𝑈) ⊆ 𝑊 → ∃𝑢 ∈ (𝒫 𝑊 ∩ Fin)(𝑇𝑈) ⊆ 𝑢)))
5453rspccva 3634 . . . . . 6 ((∀𝑐 ∈ 𝒫 𝐽((𝑇𝑈) ⊆ 𝑐 → ∃𝑢 ∈ (𝒫 𝑐 ∩ Fin)(𝑇𝑈) ⊆ 𝑢) ∧ 𝑊 ∈ 𝒫 𝐽) → ((𝑇𝑈) ⊆ 𝑊 → ∃𝑢 ∈ (𝒫 𝑊 ∩ Fin)(𝑇𝑈) ⊆ 𝑢))
5541, 47, 54syl2anc 583 . . . . 5 (𝜑 → ((𝑇𝑈) ⊆ 𝑊 → ∃𝑢 ∈ (𝒫 𝑊 ∩ Fin)(𝑇𝑈) ⊆ 𝑢))
5655imp 406 . . . 4 ((𝜑 ∧ (𝑇𝑈) ⊆ 𝑊) → ∃𝑢 ∈ (𝒫 𝑊 ∩ Fin)(𝑇𝑈) ⊆ 𝑢)
57 df-rex 3077 . . . 4 (∃𝑢 ∈ (𝒫 𝑊 ∩ Fin)(𝑇𝑈) ⊆ 𝑢 ↔ ∃𝑢(𝑢 ∈ (𝒫 𝑊 ∩ Fin) ∧ (𝑇𝑈) ⊆ 𝑢))
5856, 57sylib 218 . . 3 ((𝜑 ∧ (𝑇𝑈) ⊆ 𝑊) → ∃𝑢(𝑢 ∈ (𝒫 𝑊 ∩ Fin) ∧ (𝑇𝑈) ⊆ 𝑢))
59 elinel2 4225 . . . . . . 7 (𝑢 ∈ (𝒫 𝑊 ∩ Fin) → 𝑢 ∈ Fin)
6059ad2antrl 727 . . . . . 6 (((𝜑 ∧ (𝑇𝑈) ⊆ 𝑊) ∧ (𝑢 ∈ (𝒫 𝑊 ∩ Fin) ∧ (𝑇𝑈) ⊆ 𝑢)) → 𝑢 ∈ Fin)
61 elinel1 4224 . . . . . . . 8 (𝑢 ∈ (𝒫 𝑊 ∩ Fin) → 𝑢 ∈ 𝒫 𝑊)
6261ad2antrl 727 . . . . . . 7 (((𝜑 ∧ (𝑇𝑈) ⊆ 𝑊) ∧ (𝑢 ∈ (𝒫 𝑊 ∩ Fin) ∧ (𝑇𝑈) ⊆ 𝑢)) → 𝑢 ∈ 𝒫 𝑊)
6362elpwid 4631 . . . . . 6 (((𝜑 ∧ (𝑇𝑈) ⊆ 𝑊) ∧ (𝑢 ∈ (𝒫 𝑊 ∩ Fin) ∧ (𝑇𝑈) ⊆ 𝑢)) → 𝑢𝑊)
64 simprr 772 . . . . . 6 (((𝜑 ∧ (𝑇𝑈) ⊆ 𝑊) ∧ (𝑢 ∈ (𝒫 𝑊 ∩ Fin) ∧ (𝑇𝑈) ⊆ 𝑢)) → (𝑇𝑈) ⊆ 𝑢)
6560, 63, 643jca 1128 . . . . 5 (((𝜑 ∧ (𝑇𝑈) ⊆ 𝑊) ∧ (𝑢 ∈ (𝒫 𝑊 ∩ Fin) ∧ (𝑇𝑈) ⊆ 𝑢)) → (𝑢 ∈ Fin ∧ 𝑢𝑊 ∧ (𝑇𝑈) ⊆ 𝑢))
6665ex 412 . . . 4 ((𝜑 ∧ (𝑇𝑈) ⊆ 𝑊) → ((𝑢 ∈ (𝒫 𝑊 ∩ Fin) ∧ (𝑇𝑈) ⊆ 𝑢) → (𝑢 ∈ Fin ∧ 𝑢𝑊 ∧ (𝑇𝑈) ⊆ 𝑢)))
6766eximdv 1916 . . 3 ((𝜑 ∧ (𝑇𝑈) ⊆ 𝑊) → (∃𝑢(𝑢 ∈ (𝒫 𝑊 ∩ Fin) ∧ (𝑇𝑈) ⊆ 𝑢) → ∃𝑢(𝑢 ∈ Fin ∧ 𝑢𝑊 ∧ (𝑇𝑈) ⊆ 𝑢)))
6858, 67mpd 15 . 2 ((𝜑 ∧ (𝑇𝑈) ⊆ 𝑊) → ∃𝑢(𝑢 ∈ Fin ∧ 𝑢𝑊 ∧ (𝑇𝑈) ⊆ 𝑢))
6922, 68mpdan 686 1 (𝜑 → ∃𝑢(𝑢 ∈ Fin ∧ 𝑢𝑊 ∧ (𝑇𝑈) ⊆ 𝑢))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wex 1777  wnf 1781  wcel 2108  wnfc 2893  wne 2946  wral 3067  wrex 3076  {crab 3443  Vcvv 3488  cdif 3973  cin 3975  wss 3976  𝒫 cpw 4622   cuni 4931   class class class wbr 5166  cmpt 5249  ran crn 5701  cfv 6573  (class class class)co 7448  Fincfn 9003  cr 11183  0cc0 11184  1c1 11185   + caddc 11187   · cmul 11189   < clt 11324  cle 11325  (,)cioo 13407  t crest 17480  topGenctg 17497  Topctop 22920  Clsdccld 23045   Cn ccn 23253  Compccmp 23415
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-icc 13414  df-fz 13568  df-fzo 13712  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-rest 17482  df-topn 17483  df-0g 17501  df-gsum 17502  df-topgen 17503  df-pt 17504  df-prds 17507  df-xrs 17562  df-qtop 17567  df-imas 17568  df-xps 17570  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-mulg 19108  df-cntz 19357  df-cmn 19824  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-cnfld 21388  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cld 23048  df-cn 23256  df-cnp 23257  df-cmp 23416  df-tx 23591  df-hmeo 23784  df-xms 24351  df-ms 24352  df-tms 24353
This theorem is referenced by:  stoweidlem53  45974
  Copyright terms: Public domain W3C validator