Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem50 Structured version   Visualization version   GIF version

Theorem stoweidlem50 41187
Description: This lemma proves that sets U(t) as defined in Lemma 1 of [BrosowskiDeutsh] p. 90, contain a finite subcover of T \ U. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem50.1 𝑡𝑈
stoweidlem50.2 𝑡𝜑
stoweidlem50.3 𝐾 = (topGen‘ran (,))
stoweidlem50.4 𝑄 = {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))}
stoweidlem50.5 𝑊 = {𝑤𝐽 ∣ ∃𝑄 𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}}
stoweidlem50.6 𝑇 = 𝐽
stoweidlem50.7 𝐶 = (𝐽 Cn 𝐾)
stoweidlem50.8 (𝜑𝐽 ∈ Comp)
stoweidlem50.9 (𝜑𝐴𝐶)
stoweidlem50.10 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
stoweidlem50.11 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
stoweidlem50.12 ((𝜑𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
stoweidlem50.13 ((𝜑 ∧ (𝑟𝑇𝑡𝑇𝑟𝑡)) → ∃𝑞𝐴 (𝑞𝑟) ≠ (𝑞𝑡))
stoweidlem50.14 (𝜑𝑈𝐽)
stoweidlem50.15 (𝜑𝑍𝑈)
Assertion
Ref Expression
stoweidlem50 (𝜑 → ∃𝑢(𝑢 ∈ Fin ∧ 𝑢𝑊 ∧ (𝑇𝑈) ⊆ 𝑢))
Distinct variable groups:   𝑢,𝐽   𝑢,𝑇   𝑢,𝑈   𝑢,𝑊   𝑓,𝑔,,𝑡,𝑇   𝑓,𝑞,𝑔,𝑡,𝑇   𝑓,𝑟,𝐴,𝑞,𝑡   𝑥,𝑓,𝑞,𝑡,𝑇   𝑄,𝑓,𝑔   𝑈,𝑓,𝑔,𝑞   𝑓,𝑍,𝑔,,𝑡   𝜑,𝑓,𝑔,𝑞   𝑤,𝑔,,𝑡,𝑇   𝐴,𝑔,   𝑔,𝑊   𝑍,𝑞,𝑥   𝑇,𝑟   𝑈,𝑟   𝜑,𝑟   𝑡,𝐽,𝑤   𝑡,𝐾   𝜑,𝑢   𝑤,𝑄   𝑥,𝐴   𝑥,𝑈   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑤,𝑡,)   𝐴(𝑤,𝑢)   𝐶(𝑥,𝑤,𝑢,𝑡,𝑓,𝑔,,𝑟,𝑞)   𝑄(𝑥,𝑢,𝑡,,𝑟,𝑞)   𝑈(𝑤,𝑡,)   𝐽(𝑥,𝑓,𝑔,,𝑟,𝑞)   𝐾(𝑥,𝑤,𝑢,𝑓,𝑔,,𝑟,𝑞)   𝑊(𝑥,𝑤,𝑡,𝑓,,𝑟,𝑞)   𝑍(𝑤,𝑢,𝑟)

Proof of Theorem stoweidlem50
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 stoweidlem50.1 . . 3 𝑡𝑈
2 stoweidlem50.4 . . . 4 𝑄 = {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))}
3 nfrab1 3308 . . . 4 {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))}
42, 3nfcxfr 2931 . . 3 𝑄
5 nfv 1957 . . 3 𝑞𝜑
6 stoweidlem50.2 . . 3 𝑡𝜑
7 stoweidlem50.3 . . 3 𝐾 = (topGen‘ran (,))
8 stoweidlem50.5 . . 3 𝑊 = {𝑤𝐽 ∣ ∃𝑄 𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}}
9 stoweidlem50.6 . . 3 𝑇 = 𝐽
10 stoweidlem50.8 . . 3 (𝜑𝐽 ∈ Comp)
11 stoweidlem50.9 . . . 4 (𝜑𝐴𝐶)
12 stoweidlem50.7 . . . 4 𝐶 = (𝐽 Cn 𝐾)
1311, 12syl6sseq 3869 . . 3 (𝜑𝐴 ⊆ (𝐽 Cn 𝐾))
14 stoweidlem50.10 . . 3 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
15 stoweidlem50.11 . . 3 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
16 stoweidlem50.12 . . 3 ((𝜑𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
17 stoweidlem50.13 . . 3 ((𝜑 ∧ (𝑟𝑇𝑡𝑇𝑟𝑡)) → ∃𝑞𝐴 (𝑞𝑟) ≠ (𝑞𝑡))
18 stoweidlem50.14 . . 3 (𝜑𝑈𝐽)
19 stoweidlem50.15 . . 3 (𝜑𝑍𝑈)
20 uniexg 7232 . . . . 5 (𝐽 ∈ Comp → 𝐽 ∈ V)
2110, 20syl 17 . . . 4 (𝜑 𝐽 ∈ V)
229, 21syl5eqel 2862 . . 3 (𝜑𝑇 ∈ V)
231, 4, 5, 6, 7, 2, 8, 9, 10, 13, 14, 15, 16, 17, 18, 19, 22stoweidlem46 41183 . 2 (𝜑 → (𝑇𝑈) ⊆ 𝑊)
24 dfin4 4093 . . . . . . . . . . 11 (𝑇𝑈) = (𝑇 ∖ (𝑇𝑈))
25 elssuni 4702 . . . . . . . . . . . . . 14 (𝑈𝐽𝑈 𝐽)
2618, 25syl 17 . . . . . . . . . . . . 13 (𝜑𝑈 𝐽)
2726, 9syl6sseqr 3870 . . . . . . . . . . . 12 (𝜑𝑈𝑇)
28 sseqin2 4039 . . . . . . . . . . . 12 (𝑈𝑇 ↔ (𝑇𝑈) = 𝑈)
2927, 28sylib 210 . . . . . . . . . . 11 (𝜑 → (𝑇𝑈) = 𝑈)
3024, 29syl5eqr 2827 . . . . . . . . . 10 (𝜑 → (𝑇 ∖ (𝑇𝑈)) = 𝑈)
3130, 18eqeltrd 2858 . . . . . . . . 9 (𝜑 → (𝑇 ∖ (𝑇𝑈)) ∈ 𝐽)
32 cmptop 21607 . . . . . . . . . . 11 (𝐽 ∈ Comp → 𝐽 ∈ Top)
3310, 32syl 17 . . . . . . . . . 10 (𝜑𝐽 ∈ Top)
34 difssd 3960 . . . . . . . . . 10 (𝜑 → (𝑇𝑈) ⊆ 𝑇)
359iscld2 21240 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ (𝑇𝑈) ⊆ 𝑇) → ((𝑇𝑈) ∈ (Clsd‘𝐽) ↔ (𝑇 ∖ (𝑇𝑈)) ∈ 𝐽))
3633, 34, 35syl2anc 579 . . . . . . . . 9 (𝜑 → ((𝑇𝑈) ∈ (Clsd‘𝐽) ↔ (𝑇 ∖ (𝑇𝑈)) ∈ 𝐽))
3731, 36mpbird 249 . . . . . . . 8 (𝜑 → (𝑇𝑈) ∈ (Clsd‘𝐽))
38 cmpcld 21614 . . . . . . . 8 ((𝐽 ∈ Comp ∧ (𝑇𝑈) ∈ (Clsd‘𝐽)) → (𝐽t (𝑇𝑈)) ∈ Comp)
3910, 37, 38syl2anc 579 . . . . . . 7 (𝜑 → (𝐽t (𝑇𝑈)) ∈ Comp)
409cmpsub 21612 . . . . . . . 8 ((𝐽 ∈ Top ∧ (𝑇𝑈) ⊆ 𝑇) → ((𝐽t (𝑇𝑈)) ∈ Comp ↔ ∀𝑐 ∈ 𝒫 𝐽((𝑇𝑈) ⊆ 𝑐 → ∃𝑢 ∈ (𝒫 𝑐 ∩ Fin)(𝑇𝑈) ⊆ 𝑢)))
4133, 34, 40syl2anc 579 . . . . . . 7 (𝜑 → ((𝐽t (𝑇𝑈)) ∈ Comp ↔ ∀𝑐 ∈ 𝒫 𝐽((𝑇𝑈) ⊆ 𝑐 → ∃𝑢 ∈ (𝒫 𝑐 ∩ Fin)(𝑇𝑈) ⊆ 𝑢)))
4239, 41mpbid 224 . . . . . 6 (𝜑 → ∀𝑐 ∈ 𝒫 𝐽((𝑇𝑈) ⊆ 𝑐 → ∃𝑢 ∈ (𝒫 𝑐 ∩ Fin)(𝑇𝑈) ⊆ 𝑢))
43 ssrab2 3907 . . . . . . . 8 {𝑤𝐽 ∣ ∃𝑄 𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}} ⊆ 𝐽
448, 43eqsstri 3853 . . . . . . 7 𝑊𝐽
458, 10rabexd 5050 . . . . . . . 8 (𝜑𝑊 ∈ V)
46 elpwg 4386 . . . . . . . 8 (𝑊 ∈ V → (𝑊 ∈ 𝒫 𝐽𝑊𝐽))
4745, 46syl 17 . . . . . . 7 (𝜑 → (𝑊 ∈ 𝒫 𝐽𝑊𝐽))
4844, 47mpbiri 250 . . . . . 6 (𝜑𝑊 ∈ 𝒫 𝐽)
49 unieq 4679 . . . . . . . . 9 (𝑐 = 𝑊 𝑐 = 𝑊)
5049sseq2d 3851 . . . . . . . 8 (𝑐 = 𝑊 → ((𝑇𝑈) ⊆ 𝑐 ↔ (𝑇𝑈) ⊆ 𝑊))
51 pweq 4381 . . . . . . . . . 10 (𝑐 = 𝑊 → 𝒫 𝑐 = 𝒫 𝑊)
5251ineq1d 4035 . . . . . . . . 9 (𝑐 = 𝑊 → (𝒫 𝑐 ∩ Fin) = (𝒫 𝑊 ∩ Fin))
5352rexeqdv 3340 . . . . . . . 8 (𝑐 = 𝑊 → (∃𝑢 ∈ (𝒫 𝑐 ∩ Fin)(𝑇𝑈) ⊆ 𝑢 ↔ ∃𝑢 ∈ (𝒫 𝑊 ∩ Fin)(𝑇𝑈) ⊆ 𝑢))
5450, 53imbi12d 336 . . . . . . 7 (𝑐 = 𝑊 → (((𝑇𝑈) ⊆ 𝑐 → ∃𝑢 ∈ (𝒫 𝑐 ∩ Fin)(𝑇𝑈) ⊆ 𝑢) ↔ ((𝑇𝑈) ⊆ 𝑊 → ∃𝑢 ∈ (𝒫 𝑊 ∩ Fin)(𝑇𝑈) ⊆ 𝑢)))
5554rspccva 3509 . . . . . 6 ((∀𝑐 ∈ 𝒫 𝐽((𝑇𝑈) ⊆ 𝑐 → ∃𝑢 ∈ (𝒫 𝑐 ∩ Fin)(𝑇𝑈) ⊆ 𝑢) ∧ 𝑊 ∈ 𝒫 𝐽) → ((𝑇𝑈) ⊆ 𝑊 → ∃𝑢 ∈ (𝒫 𝑊 ∩ Fin)(𝑇𝑈) ⊆ 𝑢))
5642, 48, 55syl2anc 579 . . . . 5 (𝜑 → ((𝑇𝑈) ⊆ 𝑊 → ∃𝑢 ∈ (𝒫 𝑊 ∩ Fin)(𝑇𝑈) ⊆ 𝑢))
5756imp 397 . . . 4 ((𝜑 ∧ (𝑇𝑈) ⊆ 𝑊) → ∃𝑢 ∈ (𝒫 𝑊 ∩ Fin)(𝑇𝑈) ⊆ 𝑢)
58 df-rex 3095 . . . 4 (∃𝑢 ∈ (𝒫 𝑊 ∩ Fin)(𝑇𝑈) ⊆ 𝑢 ↔ ∃𝑢(𝑢 ∈ (𝒫 𝑊 ∩ Fin) ∧ (𝑇𝑈) ⊆ 𝑢))
5957, 58sylib 210 . . 3 ((𝜑 ∧ (𝑇𝑈) ⊆ 𝑊) → ∃𝑢(𝑢 ∈ (𝒫 𝑊 ∩ Fin) ∧ (𝑇𝑈) ⊆ 𝑢))
60 elinel2 4022 . . . . . . 7 (𝑢 ∈ (𝒫 𝑊 ∩ Fin) → 𝑢 ∈ Fin)
6160ad2antrl 718 . . . . . 6 (((𝜑 ∧ (𝑇𝑈) ⊆ 𝑊) ∧ (𝑢 ∈ (𝒫 𝑊 ∩ Fin) ∧ (𝑇𝑈) ⊆ 𝑢)) → 𝑢 ∈ Fin)
62 elinel1 4021 . . . . . . . 8 (𝑢 ∈ (𝒫 𝑊 ∩ Fin) → 𝑢 ∈ 𝒫 𝑊)
6362ad2antrl 718 . . . . . . 7 (((𝜑 ∧ (𝑇𝑈) ⊆ 𝑊) ∧ (𝑢 ∈ (𝒫 𝑊 ∩ Fin) ∧ (𝑇𝑈) ⊆ 𝑢)) → 𝑢 ∈ 𝒫 𝑊)
6463elpwid 4390 . . . . . 6 (((𝜑 ∧ (𝑇𝑈) ⊆ 𝑊) ∧ (𝑢 ∈ (𝒫 𝑊 ∩ Fin) ∧ (𝑇𝑈) ⊆ 𝑢)) → 𝑢𝑊)
65 simprr 763 . . . . . 6 (((𝜑 ∧ (𝑇𝑈) ⊆ 𝑊) ∧ (𝑢 ∈ (𝒫 𝑊 ∩ Fin) ∧ (𝑇𝑈) ⊆ 𝑢)) → (𝑇𝑈) ⊆ 𝑢)
6661, 64, 653jca 1119 . . . . 5 (((𝜑 ∧ (𝑇𝑈) ⊆ 𝑊) ∧ (𝑢 ∈ (𝒫 𝑊 ∩ Fin) ∧ (𝑇𝑈) ⊆ 𝑢)) → (𝑢 ∈ Fin ∧ 𝑢𝑊 ∧ (𝑇𝑈) ⊆ 𝑢))
6766ex 403 . . . 4 ((𝜑 ∧ (𝑇𝑈) ⊆ 𝑊) → ((𝑢 ∈ (𝒫 𝑊 ∩ Fin) ∧ (𝑇𝑈) ⊆ 𝑢) → (𝑢 ∈ Fin ∧ 𝑢𝑊 ∧ (𝑇𝑈) ⊆ 𝑢)))
6867eximdv 1960 . . 3 ((𝜑 ∧ (𝑇𝑈) ⊆ 𝑊) → (∃𝑢(𝑢 ∈ (𝒫 𝑊 ∩ Fin) ∧ (𝑇𝑈) ⊆ 𝑢) → ∃𝑢(𝑢 ∈ Fin ∧ 𝑢𝑊 ∧ (𝑇𝑈) ⊆ 𝑢)))
6959, 68mpd 15 . 2 ((𝜑 ∧ (𝑇𝑈) ⊆ 𝑊) → ∃𝑢(𝑢 ∈ Fin ∧ 𝑢𝑊 ∧ (𝑇𝑈) ⊆ 𝑢))
7023, 69mpdan 677 1 (𝜑 → ∃𝑢(𝑢 ∈ Fin ∧ 𝑢𝑊 ∧ (𝑇𝑈) ⊆ 𝑢))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  w3a 1071   = wceq 1601  wex 1823  wnf 1827  wcel 2106  wnfc 2918  wne 2968  wral 3089  wrex 3090  {crab 3093  Vcvv 3397  cdif 3788  cin 3790  wss 3791  𝒫 cpw 4378   cuni 4671   class class class wbr 4886  cmpt 4965  ran crn 5356  cfv 6135  (class class class)co 6922  Fincfn 8241  cr 10271  0cc0 10272  1c1 10273   + caddc 10275   · cmul 10277   < clt 10411  cle 10412  (,)cioo 12487  t crest 16467  topGenctg 16484  Topctop 21105  Clsdccld 21228   Cn ccn 21436  Compccmp 21598
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-8 2108  ax-9 2115  ax-10 2134  ax-11 2149  ax-12 2162  ax-13 2333  ax-ext 2753  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-inf2 8835  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349  ax-pre-sup 10350  ax-mulf 10352
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2550  df-eu 2586  df-clab 2763  df-cleq 2769  df-clel 2773  df-nfc 2920  df-ne 2969  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3399  df-sbc 3652  df-csb 3751  df-dif 3794  df-un 3796  df-in 3798  df-ss 3805  df-pss 3807  df-nul 4141  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4672  df-int 4711  df-iun 4755  df-iin 4756  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-se 5315  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-isom 6144  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-of 7174  df-om 7344  df-1st 7445  df-2nd 7446  df-supp 7577  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-1o 7843  df-2o 7844  df-oadd 7847  df-er 8026  df-map 8142  df-ixp 8195  df-en 8242  df-dom 8243  df-sdom 8244  df-fin 8245  df-fsupp 8564  df-fi 8605  df-sup 8636  df-inf 8637  df-oi 8704  df-card 9098  df-cda 9325  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-div 11033  df-nn 11375  df-2 11438  df-3 11439  df-4 11440  df-5 11441  df-6 11442  df-7 11443  df-8 11444  df-9 11445  df-n0 11643  df-z 11729  df-dec 11846  df-uz 11993  df-q 12096  df-rp 12138  df-xneg 12257  df-xadd 12258  df-xmul 12259  df-ioo 12491  df-icc 12494  df-fz 12644  df-fzo 12785  df-seq 13120  df-exp 13179  df-hash 13436  df-cj 14246  df-re 14247  df-im 14248  df-sqrt 14382  df-abs 14383  df-struct 16257  df-ndx 16258  df-slot 16259  df-base 16261  df-sets 16262  df-ress 16263  df-plusg 16351  df-mulr 16352  df-starv 16353  df-sca 16354  df-vsca 16355  df-ip 16356  df-tset 16357  df-ple 16358  df-ds 16360  df-unif 16361  df-hom 16362  df-cco 16363  df-rest 16469  df-topn 16470  df-0g 16488  df-gsum 16489  df-topgen 16490  df-pt 16491  df-prds 16494  df-xrs 16548  df-qtop 16553  df-imas 16554  df-xps 16556  df-mre 16632  df-mrc 16633  df-acs 16635  df-mgm 17628  df-sgrp 17670  df-mnd 17681  df-submnd 17722  df-mulg 17928  df-cntz 18133  df-cmn 18581  df-psmet 20134  df-xmet 20135  df-met 20136  df-bl 20137  df-mopn 20138  df-cnfld 20143  df-top 21106  df-topon 21123  df-topsp 21145  df-bases 21158  df-cld 21231  df-cn 21439  df-cnp 21440  df-cmp 21599  df-tx 21774  df-hmeo 21967  df-xms 22533  df-ms 22534  df-tms 22535
This theorem is referenced by:  stoweidlem53  41190
  Copyright terms: Public domain W3C validator