Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem50 Structured version   Visualization version   GIF version

Theorem stoweidlem50 43295
Description: This lemma proves that sets U(t) as defined in Lemma 1 of [BrosowskiDeutsh] p. 90, contain a finite subcover of T \ U. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem50.1 𝑡𝑈
stoweidlem50.2 𝑡𝜑
stoweidlem50.3 𝐾 = (topGen‘ran (,))
stoweidlem50.4 𝑄 = {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))}
stoweidlem50.5 𝑊 = {𝑤𝐽 ∣ ∃𝑄 𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}}
stoweidlem50.6 𝑇 = 𝐽
stoweidlem50.7 𝐶 = (𝐽 Cn 𝐾)
stoweidlem50.8 (𝜑𝐽 ∈ Comp)
stoweidlem50.9 (𝜑𝐴𝐶)
stoweidlem50.10 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
stoweidlem50.11 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
stoweidlem50.12 ((𝜑𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
stoweidlem50.13 ((𝜑 ∧ (𝑟𝑇𝑡𝑇𝑟𝑡)) → ∃𝑞𝐴 (𝑞𝑟) ≠ (𝑞𝑡))
stoweidlem50.14 (𝜑𝑈𝐽)
stoweidlem50.15 (𝜑𝑍𝑈)
Assertion
Ref Expression
stoweidlem50 (𝜑 → ∃𝑢(𝑢 ∈ Fin ∧ 𝑢𝑊 ∧ (𝑇𝑈) ⊆ 𝑢))
Distinct variable groups:   𝑢,𝐽   𝑢,𝑇   𝑢,𝑈   𝑢,𝑊   𝑓,𝑔,,𝑡,𝑇   𝑓,𝑞,𝑔,𝑡,𝑇   𝑓,𝑟,𝐴,𝑞,𝑡   𝑥,𝑓,𝑞,𝑡,𝑇   𝑄,𝑓,𝑔   𝑈,𝑓,𝑔,𝑞   𝑓,𝑍,𝑔,,𝑡   𝜑,𝑓,𝑔,𝑞   𝑤,𝑔,,𝑡,𝑇   𝐴,𝑔,   𝑔,𝑊   𝑍,𝑞,𝑥   𝑇,𝑟   𝑈,𝑟   𝜑,𝑟   𝑡,𝐽,𝑤   𝑡,𝐾   𝜑,𝑢   𝑤,𝑄   𝑥,𝐴   𝑥,𝑈   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑤,𝑡,)   𝐴(𝑤,𝑢)   𝐶(𝑥,𝑤,𝑢,𝑡,𝑓,𝑔,,𝑟,𝑞)   𝑄(𝑥,𝑢,𝑡,,𝑟,𝑞)   𝑈(𝑤,𝑡,)   𝐽(𝑥,𝑓,𝑔,,𝑟,𝑞)   𝐾(𝑥,𝑤,𝑢,𝑓,𝑔,,𝑟,𝑞)   𝑊(𝑥,𝑤,𝑡,𝑓,,𝑟,𝑞)   𝑍(𝑤,𝑢,𝑟)

Proof of Theorem stoweidlem50
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 stoweidlem50.1 . . 3 𝑡𝑈
2 stoweidlem50.4 . . . 4 𝑄 = {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))}
3 nfrab1 3309 . . . 4 {𝐴 ∣ ((𝑍) = 0 ∧ ∀𝑡𝑇 (0 ≤ (𝑡) ∧ (𝑡) ≤ 1))}
42, 3nfcxfr 2903 . . 3 𝑄
5 nfv 1922 . . 3 𝑞𝜑
6 stoweidlem50.2 . . 3 𝑡𝜑
7 stoweidlem50.3 . . 3 𝐾 = (topGen‘ran (,))
8 stoweidlem50.5 . . 3 𝑊 = {𝑤𝐽 ∣ ∃𝑄 𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}}
9 stoweidlem50.6 . . 3 𝑇 = 𝐽
10 stoweidlem50.8 . . 3 (𝜑𝐽 ∈ Comp)
11 stoweidlem50.9 . . . 4 (𝜑𝐴𝐶)
12 stoweidlem50.7 . . . 4 𝐶 = (𝐽 Cn 𝐾)
1311, 12sseqtrdi 3966 . . 3 (𝜑𝐴 ⊆ (𝐽 Cn 𝐾))
14 stoweidlem50.10 . . 3 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) + (𝑔𝑡))) ∈ 𝐴)
15 stoweidlem50.11 . . 3 ((𝜑𝑓𝐴𝑔𝐴) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝐴)
16 stoweidlem50.12 . . 3 ((𝜑𝑥 ∈ ℝ) → (𝑡𝑇𝑥) ∈ 𝐴)
17 stoweidlem50.13 . . 3 ((𝜑 ∧ (𝑟𝑇𝑡𝑇𝑟𝑡)) → ∃𝑞𝐴 (𝑞𝑟) ≠ (𝑞𝑡))
18 stoweidlem50.14 . . 3 (𝜑𝑈𝐽)
19 stoweidlem50.15 . . 3 (𝜑𝑍𝑈)
2010uniexd 7549 . . . 4 (𝜑 𝐽 ∈ V)
219, 20eqeltrid 2843 . . 3 (𝜑𝑇 ∈ V)
221, 4, 5, 6, 7, 2, 8, 9, 10, 13, 14, 15, 16, 17, 18, 19, 21stoweidlem46 43291 . 2 (𝜑 → (𝑇𝑈) ⊆ 𝑊)
23 dfin4 4197 . . . . . . . . . . 11 (𝑇𝑈) = (𝑇 ∖ (𝑇𝑈))
24 elssuni 4866 . . . . . . . . . . . . . 14 (𝑈𝐽𝑈 𝐽)
2518, 24syl 17 . . . . . . . . . . . . 13 (𝜑𝑈 𝐽)
2625, 9sseqtrrdi 3967 . . . . . . . . . . . 12 (𝜑𝑈𝑇)
27 sseqin2 4145 . . . . . . . . . . . 12 (𝑈𝑇 ↔ (𝑇𝑈) = 𝑈)
2826, 27sylib 221 . . . . . . . . . . 11 (𝜑 → (𝑇𝑈) = 𝑈)
2923, 28eqtr3id 2793 . . . . . . . . . 10 (𝜑 → (𝑇 ∖ (𝑇𝑈)) = 𝑈)
3029, 18eqeltrd 2839 . . . . . . . . 9 (𝜑 → (𝑇 ∖ (𝑇𝑈)) ∈ 𝐽)
31 cmptop 22316 . . . . . . . . . . 11 (𝐽 ∈ Comp → 𝐽 ∈ Top)
3210, 31syl 17 . . . . . . . . . 10 (𝜑𝐽 ∈ Top)
33 difssd 4062 . . . . . . . . . 10 (𝜑 → (𝑇𝑈) ⊆ 𝑇)
349iscld2 21949 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ (𝑇𝑈) ⊆ 𝑇) → ((𝑇𝑈) ∈ (Clsd‘𝐽) ↔ (𝑇 ∖ (𝑇𝑈)) ∈ 𝐽))
3532, 33, 34syl2anc 587 . . . . . . . . 9 (𝜑 → ((𝑇𝑈) ∈ (Clsd‘𝐽) ↔ (𝑇 ∖ (𝑇𝑈)) ∈ 𝐽))
3630, 35mpbird 260 . . . . . . . 8 (𝜑 → (𝑇𝑈) ∈ (Clsd‘𝐽))
37 cmpcld 22323 . . . . . . . 8 ((𝐽 ∈ Comp ∧ (𝑇𝑈) ∈ (Clsd‘𝐽)) → (𝐽t (𝑇𝑈)) ∈ Comp)
3810, 36, 37syl2anc 587 . . . . . . 7 (𝜑 → (𝐽t (𝑇𝑈)) ∈ Comp)
399cmpsub 22321 . . . . . . . 8 ((𝐽 ∈ Top ∧ (𝑇𝑈) ⊆ 𝑇) → ((𝐽t (𝑇𝑈)) ∈ Comp ↔ ∀𝑐 ∈ 𝒫 𝐽((𝑇𝑈) ⊆ 𝑐 → ∃𝑢 ∈ (𝒫 𝑐 ∩ Fin)(𝑇𝑈) ⊆ 𝑢)))
4032, 33, 39syl2anc 587 . . . . . . 7 (𝜑 → ((𝐽t (𝑇𝑈)) ∈ Comp ↔ ∀𝑐 ∈ 𝒫 𝐽((𝑇𝑈) ⊆ 𝑐 → ∃𝑢 ∈ (𝒫 𝑐 ∩ Fin)(𝑇𝑈) ⊆ 𝑢)))
4138, 40mpbid 235 . . . . . 6 (𝜑 → ∀𝑐 ∈ 𝒫 𝐽((𝑇𝑈) ⊆ 𝑐 → ∃𝑢 ∈ (𝒫 𝑐 ∩ Fin)(𝑇𝑈) ⊆ 𝑢))
42 ssrab2 4008 . . . . . . . 8 {𝑤𝐽 ∣ ∃𝑄 𝑤 = {𝑡𝑇 ∣ 0 < (𝑡)}} ⊆ 𝐽
438, 42eqsstri 3950 . . . . . . 7 𝑊𝐽
448, 10rabexd 5241 . . . . . . . 8 (𝜑𝑊 ∈ V)
45 elpwg 4531 . . . . . . . 8 (𝑊 ∈ V → (𝑊 ∈ 𝒫 𝐽𝑊𝐽))
4644, 45syl 17 . . . . . . 7 (𝜑 → (𝑊 ∈ 𝒫 𝐽𝑊𝐽))
4743, 46mpbiri 261 . . . . . 6 (𝜑𝑊 ∈ 𝒫 𝐽)
48 unieq 4845 . . . . . . . . 9 (𝑐 = 𝑊 𝑐 = 𝑊)
4948sseq2d 3948 . . . . . . . 8 (𝑐 = 𝑊 → ((𝑇𝑈) ⊆ 𝑐 ↔ (𝑇𝑈) ⊆ 𝑊))
50 pweq 4544 . . . . . . . . . 10 (𝑐 = 𝑊 → 𝒫 𝑐 = 𝒫 𝑊)
5150ineq1d 4141 . . . . . . . . 9 (𝑐 = 𝑊 → (𝒫 𝑐 ∩ Fin) = (𝒫 𝑊 ∩ Fin))
5251rexeqdv 3339 . . . . . . . 8 (𝑐 = 𝑊 → (∃𝑢 ∈ (𝒫 𝑐 ∩ Fin)(𝑇𝑈) ⊆ 𝑢 ↔ ∃𝑢 ∈ (𝒫 𝑊 ∩ Fin)(𝑇𝑈) ⊆ 𝑢))
5349, 52imbi12d 348 . . . . . . 7 (𝑐 = 𝑊 → (((𝑇𝑈) ⊆ 𝑐 → ∃𝑢 ∈ (𝒫 𝑐 ∩ Fin)(𝑇𝑈) ⊆ 𝑢) ↔ ((𝑇𝑈) ⊆ 𝑊 → ∃𝑢 ∈ (𝒫 𝑊 ∩ Fin)(𝑇𝑈) ⊆ 𝑢)))
5453rspccva 3549 . . . . . 6 ((∀𝑐 ∈ 𝒫 𝐽((𝑇𝑈) ⊆ 𝑐 → ∃𝑢 ∈ (𝒫 𝑐 ∩ Fin)(𝑇𝑈) ⊆ 𝑢) ∧ 𝑊 ∈ 𝒫 𝐽) → ((𝑇𝑈) ⊆ 𝑊 → ∃𝑢 ∈ (𝒫 𝑊 ∩ Fin)(𝑇𝑈) ⊆ 𝑢))
5541, 47, 54syl2anc 587 . . . . 5 (𝜑 → ((𝑇𝑈) ⊆ 𝑊 → ∃𝑢 ∈ (𝒫 𝑊 ∩ Fin)(𝑇𝑈) ⊆ 𝑢))
5655imp 410 . . . 4 ((𝜑 ∧ (𝑇𝑈) ⊆ 𝑊) → ∃𝑢 ∈ (𝒫 𝑊 ∩ Fin)(𝑇𝑈) ⊆ 𝑢)
57 df-rex 3068 . . . 4 (∃𝑢 ∈ (𝒫 𝑊 ∩ Fin)(𝑇𝑈) ⊆ 𝑢 ↔ ∃𝑢(𝑢 ∈ (𝒫 𝑊 ∩ Fin) ∧ (𝑇𝑈) ⊆ 𝑢))
5856, 57sylib 221 . . 3 ((𝜑 ∧ (𝑇𝑈) ⊆ 𝑊) → ∃𝑢(𝑢 ∈ (𝒫 𝑊 ∩ Fin) ∧ (𝑇𝑈) ⊆ 𝑢))
59 elinel2 4125 . . . . . . 7 (𝑢 ∈ (𝒫 𝑊 ∩ Fin) → 𝑢 ∈ Fin)
6059ad2antrl 728 . . . . . 6 (((𝜑 ∧ (𝑇𝑈) ⊆ 𝑊) ∧ (𝑢 ∈ (𝒫 𝑊 ∩ Fin) ∧ (𝑇𝑈) ⊆ 𝑢)) → 𝑢 ∈ Fin)
61 elinel1 4124 . . . . . . . 8 (𝑢 ∈ (𝒫 𝑊 ∩ Fin) → 𝑢 ∈ 𝒫 𝑊)
6261ad2antrl 728 . . . . . . 7 (((𝜑 ∧ (𝑇𝑈) ⊆ 𝑊) ∧ (𝑢 ∈ (𝒫 𝑊 ∩ Fin) ∧ (𝑇𝑈) ⊆ 𝑢)) → 𝑢 ∈ 𝒫 𝑊)
6362elpwid 4539 . . . . . 6 (((𝜑 ∧ (𝑇𝑈) ⊆ 𝑊) ∧ (𝑢 ∈ (𝒫 𝑊 ∩ Fin) ∧ (𝑇𝑈) ⊆ 𝑢)) → 𝑢𝑊)
64 simprr 773 . . . . . 6 (((𝜑 ∧ (𝑇𝑈) ⊆ 𝑊) ∧ (𝑢 ∈ (𝒫 𝑊 ∩ Fin) ∧ (𝑇𝑈) ⊆ 𝑢)) → (𝑇𝑈) ⊆ 𝑢)
6560, 63, 643jca 1130 . . . . 5 (((𝜑 ∧ (𝑇𝑈) ⊆ 𝑊) ∧ (𝑢 ∈ (𝒫 𝑊 ∩ Fin) ∧ (𝑇𝑈) ⊆ 𝑢)) → (𝑢 ∈ Fin ∧ 𝑢𝑊 ∧ (𝑇𝑈) ⊆ 𝑢))
6665ex 416 . . . 4 ((𝜑 ∧ (𝑇𝑈) ⊆ 𝑊) → ((𝑢 ∈ (𝒫 𝑊 ∩ Fin) ∧ (𝑇𝑈) ⊆ 𝑢) → (𝑢 ∈ Fin ∧ 𝑢𝑊 ∧ (𝑇𝑈) ⊆ 𝑢)))
6766eximdv 1925 . . 3 ((𝜑 ∧ (𝑇𝑈) ⊆ 𝑊) → (∃𝑢(𝑢 ∈ (𝒫 𝑊 ∩ Fin) ∧ (𝑇𝑈) ⊆ 𝑢) → ∃𝑢(𝑢 ∈ Fin ∧ 𝑢𝑊 ∧ (𝑇𝑈) ⊆ 𝑢)))
6858, 67mpd 15 . 2 ((𝜑 ∧ (𝑇𝑈) ⊆ 𝑊) → ∃𝑢(𝑢 ∈ Fin ∧ 𝑢𝑊 ∧ (𝑇𝑈) ⊆ 𝑢))
6922, 68mpdan 687 1 (𝜑 → ∃𝑢(𝑢 ∈ Fin ∧ 𝑢𝑊 ∧ (𝑇𝑈) ⊆ 𝑢))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wex 1787  wnf 1791  wcel 2111  wnfc 2885  wne 2941  wral 3062  wrex 3063  {crab 3066  Vcvv 3421  cdif 3878  cin 3880  wss 3881  𝒫 cpw 4528   cuni 4834   class class class wbr 5068  cmpt 5150  ran crn 5567  cfv 6398  (class class class)co 7232  Fincfn 8647  cr 10753  0cc0 10754  1c1 10755   + caddc 10757   · cmul 10759   < clt 10892  cle 10893  (,)cioo 12960  t crest 16950  topGenctg 16967  Topctop 21814  Clsdccld 21937   Cn ccn 22145  Compccmp 22307
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2159  ax-12 2176  ax-ext 2709  ax-rep 5194  ax-sep 5207  ax-nul 5214  ax-pow 5273  ax-pr 5337  ax-un 7542  ax-cnex 10810  ax-resscn 10811  ax-1cn 10812  ax-icn 10813  ax-addcl 10814  ax-addrcl 10815  ax-mulcl 10816  ax-mulrcl 10817  ax-mulcom 10818  ax-addass 10819  ax-mulass 10820  ax-distr 10821  ax-i2m1 10822  ax-1ne0 10823  ax-1rid 10824  ax-rnegex 10825  ax-rrecex 10826  ax-cnre 10827  ax-pre-lttri 10828  ax-pre-lttrn 10829  ax-pre-ltadd 10830  ax-pre-mulgt0 10831  ax-pre-sup 10832  ax-mulf 10834
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2072  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3067  df-rex 3068  df-reu 3069  df-rmo 3070  df-rab 3071  df-v 3423  df-sbc 3710  df-csb 3827  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4253  df-if 4455  df-pw 4530  df-sn 4557  df-pr 4559  df-tp 4561  df-op 4563  df-uni 4835  df-int 4875  df-iun 4921  df-iin 4922  df-br 5069  df-opab 5131  df-mpt 5151  df-tr 5177  df-id 5470  df-eprel 5475  df-po 5483  df-so 5484  df-fr 5524  df-se 5525  df-we 5526  df-xp 5572  df-rel 5573  df-cnv 5574  df-co 5575  df-dm 5576  df-rn 5577  df-res 5578  df-ima 5579  df-pred 6176  df-ord 6234  df-on 6235  df-lim 6236  df-suc 6237  df-iota 6356  df-fun 6400  df-fn 6401  df-f 6402  df-f1 6403  df-fo 6404  df-f1o 6405  df-fv 6406  df-isom 6407  df-riota 7189  df-ov 7235  df-oprab 7236  df-mpo 7237  df-of 7488  df-om 7664  df-1st 7780  df-2nd 7781  df-supp 7925  df-wrecs 8068  df-recs 8129  df-rdg 8167  df-1o 8223  df-2o 8224  df-er 8412  df-map 8531  df-ixp 8600  df-en 8648  df-dom 8649  df-sdom 8650  df-fin 8651  df-fsupp 9011  df-fi 9052  df-sup 9083  df-inf 9084  df-oi 9151  df-card 9580  df-pnf 10894  df-mnf 10895  df-xr 10896  df-ltxr 10897  df-le 10898  df-sub 11089  df-neg 11090  df-div 11515  df-nn 11856  df-2 11918  df-3 11919  df-4 11920  df-5 11921  df-6 11922  df-7 11923  df-8 11924  df-9 11925  df-n0 12116  df-z 12202  df-dec 12319  df-uz 12464  df-q 12570  df-rp 12612  df-xneg 12729  df-xadd 12730  df-xmul 12731  df-ioo 12964  df-icc 12967  df-fz 13121  df-fzo 13264  df-seq 13600  df-exp 13661  df-hash 13922  df-cj 14687  df-re 14688  df-im 14689  df-sqrt 14823  df-abs 14824  df-struct 16725  df-sets 16742  df-slot 16760  df-ndx 16770  df-base 16786  df-ress 16810  df-plusg 16840  df-mulr 16841  df-starv 16842  df-sca 16843  df-vsca 16844  df-ip 16845  df-tset 16846  df-ple 16847  df-ds 16849  df-unif 16850  df-hom 16851  df-cco 16852  df-rest 16952  df-topn 16953  df-0g 16971  df-gsum 16972  df-topgen 16973  df-pt 16974  df-prds 16977  df-xrs 17032  df-qtop 17037  df-imas 17038  df-xps 17040  df-mre 17114  df-mrc 17115  df-acs 17117  df-mgm 18139  df-sgrp 18188  df-mnd 18199  df-submnd 18244  df-mulg 18514  df-cntz 18736  df-cmn 19197  df-psmet 20380  df-xmet 20381  df-met 20382  df-bl 20383  df-mopn 20384  df-cnfld 20389  df-top 21815  df-topon 21832  df-topsp 21854  df-bases 21867  df-cld 21940  df-cn 22148  df-cnp 22149  df-cmp 22308  df-tx 22483  df-hmeo 22676  df-xms 23242  df-ms 23243  df-tms 23244
This theorem is referenced by:  stoweidlem53  43298
  Copyright terms: Public domain W3C validator