| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > on0eln0 | Structured version Visualization version GIF version | ||
| Description: An ordinal number contains zero iff it is nonzero. (Contributed by NM, 6-Dec-2004.) |
| Ref | Expression |
|---|---|
| on0eln0 | ⊢ (𝐴 ∈ On → (∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eloni 6362 | . 2 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
| 2 | ord0eln0 6408 | . 2 ⊢ (Ord 𝐴 → (∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐴 ∈ On → (∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2108 ≠ wne 2932 ∅c0 4308 Ord word 6351 Oncon0 6352 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-tr 5230 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-ord 6355 df-on 6356 |
| This theorem is referenced by: ondif1 8513 oe0lem 8525 oevn0 8527 oa00 8571 omord 8580 om00 8587 om00el 8588 omeulem1 8594 omeulem2 8595 oewordri 8604 oeordsuc 8606 oelim2 8607 oeoa 8609 oeoe 8611 oeeui 8614 omabs 8663 omxpenlem 9087 cantnff 9688 cantnfp1 9695 cantnflem1d 9702 cantnflem1 9703 cantnflem3 9705 cantnflem4 9706 cantnf 9707 cnfcomlem 9713 cnfcom3 9718 r1tskina 10796 onsucconni 36455 onint1 36467 frlmpwfi 43122 omge1 43321 omge2 43322 omlim2 43323 omord2lim 43324 omord2i 43325 dflim5 43353 tfsconcatb0 43368 tfsconcat0b 43370 oaun3lem1 43398 naddwordnexlem4 43425 omltoe 43431 |
| Copyright terms: Public domain | W3C validator |