![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > on0eln0 | Structured version Visualization version GIF version |
Description: An ordinal number contains zero iff it is nonzero. (Contributed by NM, 6-Dec-2004.) |
Ref | Expression |
---|---|
on0eln0 | ⊢ (𝐴 ∈ On → (∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eloni 6079 | . 2 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
2 | ord0eln0 6123 | . 2 ⊢ (Ord 𝐴 → (∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝐴 ∈ On → (∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 207 ∈ wcel 2080 ≠ wne 2983 ∅c0 4213 Ord word 6068 Oncon0 6069 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1778 ax-4 1792 ax-5 1889 ax-6 1948 ax-7 1993 ax-8 2082 ax-9 2090 ax-10 2111 ax-11 2125 ax-12 2140 ax-13 2343 ax-ext 2768 ax-sep 5097 ax-nul 5104 ax-pr 5224 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1525 df-ex 1763 df-nf 1767 df-sb 2042 df-mo 2575 df-eu 2611 df-clab 2775 df-cleq 2787 df-clel 2862 df-nfc 2934 df-ne 2984 df-ral 3109 df-rex 3110 df-rab 3113 df-v 3438 df-sbc 3708 df-dif 3864 df-un 3866 df-in 3868 df-ss 3876 df-pss 3878 df-nul 4214 df-if 4384 df-pw 4457 df-sn 4475 df-pr 4477 df-op 4481 df-uni 4748 df-br 4965 df-opab 5027 df-tr 5067 df-eprel 5356 df-po 5365 df-so 5366 df-fr 5405 df-we 5407 df-ord 6072 df-on 6073 |
This theorem is referenced by: ondif1 7980 oe0lem 7992 oevn0 7994 oa00 8038 omord 8047 om00 8054 om00el 8055 omeulem1 8061 omeulem2 8062 oewordri 8071 oeordsuc 8073 oelim2 8074 oeoa 8076 oeoe 8078 oeeui 8081 omabs 8127 omxpenlem 8468 cantnff 8986 cantnfp1 8993 cantnflem1d 9000 cantnflem1 9001 cantnflem3 9003 cantnflem4 9004 cantnf 9005 cnfcomlem 9011 cnfcom3 9016 r1tskina 10053 onsucconni 33388 onint1 33400 frlmpwfi 39196 |
Copyright terms: Public domain | W3C validator |