| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > on0eln0 | Structured version Visualization version GIF version | ||
| Description: An ordinal number contains zero iff it is nonzero. (Contributed by NM, 6-Dec-2004.) |
| Ref | Expression |
|---|---|
| on0eln0 | ⊢ (𝐴 ∈ On → (∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eloni 6342 | . 2 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
| 2 | ord0eln0 6388 | . 2 ⊢ (Ord 𝐴 → (∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐴 ∈ On → (∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2109 ≠ wne 2925 ∅c0 4296 Ord word 6331 Oncon0 6332 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-tr 5215 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-ord 6335 df-on 6336 |
| This theorem is referenced by: ondif1 8465 oe0lem 8477 oevn0 8479 oa00 8523 omord 8532 om00 8539 om00el 8540 omeulem1 8546 omeulem2 8547 oewordri 8556 oeordsuc 8558 oelim2 8559 oeoa 8561 oeoe 8563 oeeui 8566 omabs 8615 omxpenlem 9042 cantnff 9627 cantnfp1 9634 cantnflem1d 9641 cantnflem1 9642 cantnflem3 9644 cantnflem4 9645 cantnf 9646 cnfcomlem 9652 cnfcom3 9657 r1tskina 10735 onsucconni 36425 onint1 36437 frlmpwfi 43087 omge1 43286 omge2 43287 omlim2 43288 omord2lim 43289 omord2i 43290 dflim5 43318 tfsconcatb0 43333 tfsconcat0b 43335 oaun3lem1 43363 naddwordnexlem4 43390 omltoe 43396 |
| Copyright terms: Public domain | W3C validator |