MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  on0eln0 Structured version   Visualization version   GIF version

Theorem on0eln0 6124
Description: An ordinal number contains zero iff it is nonzero. (Contributed by NM, 6-Dec-2004.)
Assertion
Ref Expression
on0eln0 (𝐴 ∈ On → (∅ ∈ 𝐴𝐴 ≠ ∅))

Proof of Theorem on0eln0
StepHypRef Expression
1 eloni 6079 . 2 (𝐴 ∈ On → Ord 𝐴)
2 ord0eln0 6123 . 2 (Ord 𝐴 → (∅ ∈ 𝐴𝐴 ≠ ∅))
31, 2syl 17 1 (𝐴 ∈ On → (∅ ∈ 𝐴𝐴 ≠ ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wcel 2080  wne 2983  c0 4213  Ord word 6068  Oncon0 6069
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1778  ax-4 1792  ax-5 1889  ax-6 1948  ax-7 1993  ax-8 2082  ax-9 2090  ax-10 2111  ax-11 2125  ax-12 2140  ax-13 2343  ax-ext 2768  ax-sep 5097  ax-nul 5104  ax-pr 5224
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1763  df-nf 1767  df-sb 2042  df-mo 2575  df-eu 2611  df-clab 2775  df-cleq 2787  df-clel 2862  df-nfc 2934  df-ne 2984  df-ral 3109  df-rex 3110  df-rab 3113  df-v 3438  df-sbc 3708  df-dif 3864  df-un 3866  df-in 3868  df-ss 3876  df-pss 3878  df-nul 4214  df-if 4384  df-pw 4457  df-sn 4475  df-pr 4477  df-op 4481  df-uni 4748  df-br 4965  df-opab 5027  df-tr 5067  df-eprel 5356  df-po 5365  df-so 5366  df-fr 5405  df-we 5407  df-ord 6072  df-on 6073
This theorem is referenced by:  ondif1  7980  oe0lem  7992  oevn0  7994  oa00  8038  omord  8047  om00  8054  om00el  8055  omeulem1  8061  omeulem2  8062  oewordri  8071  oeordsuc  8073  oelim2  8074  oeoa  8076  oeoe  8078  oeeui  8081  omabs  8127  omxpenlem  8468  cantnff  8986  cantnfp1  8993  cantnflem1d  9000  cantnflem1  9001  cantnflem3  9003  cantnflem4  9004  cantnf  9005  cnfcomlem  9011  cnfcom3  9016  r1tskina  10053  onsucconni  33388  onint1  33400  frlmpwfi  39196
  Copyright terms: Public domain W3C validator