MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  on0eln0 Structured version   Visualization version   GIF version

Theorem on0eln0 6268
Description: An ordinal number contains zero iff it is nonzero. (Contributed by NM, 6-Dec-2004.)
Assertion
Ref Expression
on0eln0 (𝐴 ∈ On → (∅ ∈ 𝐴𝐴 ≠ ∅))

Proof of Theorem on0eln0
StepHypRef Expression
1 eloni 6223 . 2 (𝐴 ∈ On → Ord 𝐴)
2 ord0eln0 6267 . 2 (Ord 𝐴 → (∅ ∈ 𝐴𝐴 ≠ ∅))
31, 2syl 17 1 (𝐴 ∈ On → (∅ ∈ 𝐴𝐴 ≠ ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wcel 2110  wne 2940  c0 4237  Ord word 6212  Oncon0 6213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-11 2158  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pr 5322
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-sb 2071  df-clab 2715  df-cleq 2729  df-clel 2816  df-ne 2941  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3410  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-br 5054  df-opab 5116  df-tr 5162  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-ord 6216  df-on 6217
This theorem is referenced by:  ondif1  8228  oe0lem  8240  oevn0  8242  oa00  8287  omord  8296  om00  8303  om00el  8304  omeulem1  8310  omeulem2  8311  oewordri  8320  oeordsuc  8322  oelim2  8323  oeoa  8325  oeoe  8327  oeeui  8330  omabs  8376  omxpenlem  8746  cantnff  9289  cantnfp1  9296  cantnflem1d  9303  cantnflem1  9304  cantnflem3  9306  cantnflem4  9307  cantnf  9308  cnfcomlem  9314  cnfcom3  9319  r1tskina  10396  onsucconni  34363  onint1  34375  frlmpwfi  40626
  Copyright terms: Public domain W3C validator