| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > on0eln0 | Structured version Visualization version GIF version | ||
| Description: An ordinal number contains zero iff it is nonzero. (Contributed by NM, 6-Dec-2004.) |
| Ref | Expression |
|---|---|
| on0eln0 | ⊢ (𝐴 ∈ On → (∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eloni 6321 | . 2 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
| 2 | ord0eln0 6367 | . 2 ⊢ (Ord 𝐴 → (∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐴 ∈ On → (∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2113 ≠ wne 2929 ∅c0 4282 Ord word 6310 Oncon0 6311 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-tr 5201 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-ord 6314 df-on 6315 |
| This theorem is referenced by: ondif1 8422 oe0lem 8434 oevn0 8436 oa00 8480 omord 8489 om00 8496 om00el 8497 omeulem1 8503 omeulem2 8504 oewordri 8513 oeordsuc 8515 oelim2 8516 oeoa 8518 oeoe 8520 oeeui 8523 omabs 8572 omxpenlem 8998 cantnff 9571 cantnfp1 9578 cantnflem1d 9585 cantnflem1 9586 cantnflem3 9588 cantnflem4 9589 cantnf 9590 cnfcomlem 9596 cnfcom3 9601 r1tskina 10680 onsucconni 36502 onint1 36514 frlmpwfi 43216 omge1 43415 omge2 43416 omlim2 43417 omord2lim 43418 omord2i 43419 dflim5 43447 tfsconcatb0 43462 tfsconcat0b 43464 oaun3lem1 43492 naddwordnexlem4 43519 omltoe 43525 |
| Copyright terms: Public domain | W3C validator |