![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > on0eln0 | Structured version Visualization version GIF version |
Description: An ordinal number contains zero iff it is nonzero. (Contributed by NM, 6-Dec-2004.) |
Ref | Expression |
---|---|
on0eln0 | ⊢ (𝐴 ∈ On → (∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eloni 6405 | . 2 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
2 | ord0eln0 6450 | . 2 ⊢ (Ord 𝐴 → (∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝐴 ∈ On → (∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2108 ≠ wne 2946 ∅c0 4352 Ord word 6394 Oncon0 6395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-tr 5284 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-ord 6398 df-on 6399 |
This theorem is referenced by: ondif1 8557 oe0lem 8569 oevn0 8571 oa00 8615 omord 8624 om00 8631 om00el 8632 omeulem1 8638 omeulem2 8639 oewordri 8648 oeordsuc 8650 oelim2 8651 oeoa 8653 oeoe 8655 oeeui 8658 omabs 8707 omxpenlem 9139 cantnff 9743 cantnfp1 9750 cantnflem1d 9757 cantnflem1 9758 cantnflem3 9760 cantnflem4 9761 cantnf 9762 cnfcomlem 9768 cnfcom3 9773 r1tskina 10851 onsucconni 36403 onint1 36415 frlmpwfi 43055 omge1 43259 omge2 43260 omlim2 43261 omord2lim 43262 omord2i 43263 dflim5 43291 tfsconcatb0 43306 tfsconcat0b 43308 oaun3lem1 43336 naddwordnexlem4 43363 omltoe 43369 |
Copyright terms: Public domain | W3C validator |