Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > on0eln0 | Structured version Visualization version GIF version |
Description: An ordinal number contains zero iff it is nonzero. (Contributed by NM, 6-Dec-2004.) |
Ref | Expression |
---|---|
on0eln0 | ⊢ (𝐴 ∈ On → (∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eloni 6312 | . 2 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
2 | ord0eln0 6356 | . 2 ⊢ (Ord 𝐴 → (∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝐴 ∈ On → (∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∈ wcel 2105 ≠ wne 2940 ∅c0 4269 Ord word 6301 Oncon0 6302 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 ax-sep 5243 ax-nul 5250 ax-pr 5372 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-br 5093 df-opab 5155 df-tr 5210 df-eprel 5524 df-po 5532 df-so 5533 df-fr 5575 df-we 5577 df-ord 6305 df-on 6306 |
This theorem is referenced by: ondif1 8402 oe0lem 8414 oevn0 8416 oa00 8461 omord 8470 om00 8477 om00el 8478 omeulem1 8484 omeulem2 8485 oewordri 8494 oeordsuc 8496 oelim2 8497 oeoa 8499 oeoe 8501 oeeui 8504 omabs 8552 omxpenlem 8938 cantnff 9531 cantnfp1 9538 cantnflem1d 9545 cantnflem1 9546 cantnflem3 9548 cantnflem4 9549 cantnf 9550 cnfcomlem 9556 cnfcom3 9561 r1tskina 10639 onsucconni 34722 onint1 34734 frlmpwfi 41194 dflim5 41323 |
Copyright terms: Public domain | W3C validator |