Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > on0eln0 | Structured version Visualization version GIF version |
Description: An ordinal number contains zero iff it is nonzero. (Contributed by NM, 6-Dec-2004.) |
Ref | Expression |
---|---|
on0eln0 | ⊢ (𝐴 ∈ On → (∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eloni 6261 | . 2 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
2 | ord0eln0 6305 | . 2 ⊢ (Ord 𝐴 → (∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝐴 ∈ On → (∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∈ wcel 2108 ≠ wne 2942 ∅c0 4253 Ord word 6250 Oncon0 6251 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-11 2156 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-tr 5188 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-ord 6254 df-on 6255 |
This theorem is referenced by: ondif1 8293 oe0lem 8305 oevn0 8307 oa00 8352 omord 8361 om00 8368 om00el 8369 omeulem1 8375 omeulem2 8376 oewordri 8385 oeordsuc 8387 oelim2 8388 oeoa 8390 oeoe 8392 oeeui 8395 omabs 8441 omxpenlem 8813 cantnff 9362 cantnfp1 9369 cantnflem1d 9376 cantnflem1 9377 cantnflem3 9379 cantnflem4 9380 cantnf 9381 cnfcomlem 9387 cnfcom3 9392 r1tskina 10469 onsucconni 34553 onint1 34565 frlmpwfi 40839 |
Copyright terms: Public domain | W3C validator |