![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > on0eln0 | Structured version Visualization version GIF version |
Description: An ordinal number contains zero iff it is nonzero. (Contributed by NM, 6-Dec-2004.) |
Ref | Expression |
---|---|
on0eln0 | ⊢ (𝐴 ∈ On → (∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eloni 6396 | . 2 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
2 | ord0eln0 6441 | . 2 ⊢ (Ord 𝐴 → (∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝐴 ∈ On → (∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2106 ≠ wne 2938 ∅c0 4339 Ord word 6385 Oncon0 6386 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-tr 5266 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-ord 6389 df-on 6390 |
This theorem is referenced by: ondif1 8538 oe0lem 8550 oevn0 8552 oa00 8596 omord 8605 om00 8612 om00el 8613 omeulem1 8619 omeulem2 8620 oewordri 8629 oeordsuc 8631 oelim2 8632 oeoa 8634 oeoe 8636 oeeui 8639 omabs 8688 omxpenlem 9112 cantnff 9712 cantnfp1 9719 cantnflem1d 9726 cantnflem1 9727 cantnflem3 9729 cantnflem4 9730 cantnf 9731 cnfcomlem 9737 cnfcom3 9742 r1tskina 10820 onsucconni 36420 onint1 36432 frlmpwfi 43087 omge1 43287 omge2 43288 omlim2 43289 omord2lim 43290 omord2i 43291 dflim5 43319 tfsconcatb0 43334 tfsconcat0b 43336 oaun3lem1 43364 naddwordnexlem4 43391 omltoe 43397 |
Copyright terms: Public domain | W3C validator |