| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > on0eln0 | Structured version Visualization version GIF version | ||
| Description: An ordinal number contains zero iff it is nonzero. (Contributed by NM, 6-Dec-2004.) |
| Ref | Expression |
|---|---|
| on0eln0 | ⊢ (𝐴 ∈ On → (∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eloni 6316 | . 2 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
| 2 | ord0eln0 6362 | . 2 ⊢ (Ord 𝐴 → (∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐴 ∈ On → (∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2111 ≠ wne 2928 ∅c0 4283 Ord word 6305 Oncon0 6306 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-tr 5199 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-ord 6309 df-on 6310 |
| This theorem is referenced by: ondif1 8416 oe0lem 8428 oevn0 8430 oa00 8474 omord 8483 om00 8490 om00el 8491 omeulem1 8497 omeulem2 8498 oewordri 8507 oeordsuc 8509 oelim2 8510 oeoa 8512 oeoe 8514 oeeui 8517 omabs 8566 omxpenlem 8991 cantnff 9564 cantnfp1 9571 cantnflem1d 9578 cantnflem1 9579 cantnflem3 9581 cantnflem4 9582 cantnf 9583 cnfcomlem 9589 cnfcom3 9594 r1tskina 10670 onsucconni 36470 onint1 36482 frlmpwfi 43130 omge1 43329 omge2 43330 omlim2 43331 omord2lim 43332 omord2i 43333 dflim5 43361 tfsconcatb0 43376 tfsconcat0b 43378 oaun3lem1 43406 naddwordnexlem4 43433 omltoe 43439 |
| Copyright terms: Public domain | W3C validator |