| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > on0eln0 | Structured version Visualization version GIF version | ||
| Description: An ordinal number contains zero iff it is nonzero. (Contributed by NM, 6-Dec-2004.) |
| Ref | Expression |
|---|---|
| on0eln0 | ⊢ (𝐴 ∈ On → (∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eloni 6345 | . 2 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
| 2 | ord0eln0 6391 | . 2 ⊢ (Ord 𝐴 → (∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐴 ∈ On → (∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2109 ≠ wne 2926 ∅c0 4299 Ord word 6334 Oncon0 6335 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-tr 5218 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-ord 6338 df-on 6339 |
| This theorem is referenced by: ondif1 8468 oe0lem 8480 oevn0 8482 oa00 8526 omord 8535 om00 8542 om00el 8543 omeulem1 8549 omeulem2 8550 oewordri 8559 oeordsuc 8561 oelim2 8562 oeoa 8564 oeoe 8566 oeeui 8569 omabs 8618 omxpenlem 9047 cantnff 9634 cantnfp1 9641 cantnflem1d 9648 cantnflem1 9649 cantnflem3 9651 cantnflem4 9652 cantnf 9653 cnfcomlem 9659 cnfcom3 9664 r1tskina 10742 onsucconni 36432 onint1 36444 frlmpwfi 43094 omge1 43293 omge2 43294 omlim2 43295 omord2lim 43296 omord2i 43297 dflim5 43325 tfsconcatb0 43340 tfsconcat0b 43342 oaun3lem1 43370 naddwordnexlem4 43397 omltoe 43403 |
| Copyright terms: Public domain | W3C validator |