Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > on0eln0 | Structured version Visualization version GIF version |
Description: An ordinal number contains zero iff it is nonzero. (Contributed by NM, 6-Dec-2004.) |
Ref | Expression |
---|---|
on0eln0 | ⊢ (𝐴 ∈ On → (∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eloni 6223 | . 2 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
2 | ord0eln0 6267 | . 2 ⊢ (Ord 𝐴 → (∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝐴 ∈ On → (∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∈ wcel 2110 ≠ wne 2940 ∅c0 4237 Ord word 6212 Oncon0 6213 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-11 2158 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pr 5322 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-br 5054 df-opab 5116 df-tr 5162 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-ord 6216 df-on 6217 |
This theorem is referenced by: ondif1 8228 oe0lem 8240 oevn0 8242 oa00 8287 omord 8296 om00 8303 om00el 8304 omeulem1 8310 omeulem2 8311 oewordri 8320 oeordsuc 8322 oelim2 8323 oeoa 8325 oeoe 8327 oeeui 8330 omabs 8376 omxpenlem 8746 cantnff 9289 cantnfp1 9296 cantnflem1d 9303 cantnflem1 9304 cantnflem3 9306 cantnflem4 9307 cantnf 9308 cnfcomlem 9314 cnfcom3 9319 r1tskina 10396 onsucconni 34363 onint1 34375 frlmpwfi 40626 |
Copyright terms: Public domain | W3C validator |