MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dflim4 Structured version   Visualization version   GIF version

Theorem dflim4 7379
Description: An alternate definition of a limit ordinal. (Contributed by NM, 1-Feb-2005.)
Assertion
Ref Expression
dflim4 (Lim 𝐴 ↔ (Ord 𝐴 ∧ ∅ ∈ 𝐴 ∧ ∀𝑥𝐴 suc 𝑥𝐴))
Distinct variable group:   𝑥,𝐴

Proof of Theorem dflim4
StepHypRef Expression
1 dflim2 6085 . 2 (Lim 𝐴 ↔ (Ord 𝐴 ∧ ∅ ∈ 𝐴𝐴 = 𝐴))
2 ordunisuc2 7375 . . . . 5 (Ord 𝐴 → (𝐴 = 𝐴 ↔ ∀𝑥𝐴 suc 𝑥𝐴))
32anbi2d 619 . . . 4 (Ord 𝐴 → ((∅ ∈ 𝐴𝐴 = 𝐴) ↔ (∅ ∈ 𝐴 ∧ ∀𝑥𝐴 suc 𝑥𝐴)))
43pm5.32i 567 . . 3 ((Ord 𝐴 ∧ (∅ ∈ 𝐴𝐴 = 𝐴)) ↔ (Ord 𝐴 ∧ (∅ ∈ 𝐴 ∧ ∀𝑥𝐴 suc 𝑥𝐴)))
5 3anass 1076 . . 3 ((Ord 𝐴 ∧ ∅ ∈ 𝐴𝐴 = 𝐴) ↔ (Ord 𝐴 ∧ (∅ ∈ 𝐴𝐴 = 𝐴)))
6 3anass 1076 . . 3 ((Ord 𝐴 ∧ ∅ ∈ 𝐴 ∧ ∀𝑥𝐴 suc 𝑥𝐴) ↔ (Ord 𝐴 ∧ (∅ ∈ 𝐴 ∧ ∀𝑥𝐴 suc 𝑥𝐴)))
74, 5, 63bitr4i 295 . 2 ((Ord 𝐴 ∧ ∅ ∈ 𝐴𝐴 = 𝐴) ↔ (Ord 𝐴 ∧ ∅ ∈ 𝐴 ∧ ∀𝑥𝐴 suc 𝑥𝐴))
81, 7bitri 267 1 (Lim 𝐴 ↔ (Ord 𝐴 ∧ ∅ ∈ 𝐴 ∧ ∀𝑥𝐴 suc 𝑥𝐴))
Colors of variables: wff setvar class
Syntax hints:  wb 198  wa 387  w3a 1068   = wceq 1507  wcel 2050  wral 3088  c0 4178   cuni 4712  Ord word 6028  Lim wlim 6030  suc csuc 6031
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-sep 5060  ax-nul 5067  ax-pr 5186  ax-un 7279
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ne 2968  df-ral 3093  df-rex 3094  df-rab 3097  df-v 3417  df-sbc 3682  df-dif 3832  df-un 3834  df-in 3836  df-ss 3843  df-pss 3845  df-nul 4179  df-if 4351  df-pw 4424  df-sn 4442  df-pr 4444  df-tp 4446  df-op 4448  df-uni 4713  df-br 4930  df-opab 4992  df-tr 5031  df-eprel 5317  df-po 5326  df-so 5327  df-fr 5366  df-we 5368  df-ord 6032  df-on 6033  df-lim 6034  df-suc 6035
This theorem is referenced by:  limsuc  7380  limuni3  7383  oelimcl  8027
  Copyright terms: Public domain W3C validator