![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dflim6 | Structured version Visualization version GIF version |
Description: A limit ordinal is a non-zero ordinal which is not a succesor ordinal. Definition 1.11 of [Schloeder] p. 2. (Contributed by RP, 16-Jan-2025.) |
Ref | Expression |
---|---|
dflim6 | ⊢ (Lim 𝐴 ↔ (Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ ¬ ∃𝑏 ∈ On 𝐴 = suc 𝑏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ioran 981 | . . . 4 ⊢ (¬ (𝐴 = ∅ ∨ ∃𝑏 ∈ On 𝐴 = suc 𝑏) ↔ (¬ 𝐴 = ∅ ∧ ¬ ∃𝑏 ∈ On 𝐴 = suc 𝑏)) | |
2 | df-ne 2940 | . . . . 5 ⊢ (𝐴 ≠ ∅ ↔ ¬ 𝐴 = ∅) | |
3 | 2 | anbi1i 623 | . . . 4 ⊢ ((𝐴 ≠ ∅ ∧ ¬ ∃𝑏 ∈ On 𝐴 = suc 𝑏) ↔ (¬ 𝐴 = ∅ ∧ ¬ ∃𝑏 ∈ On 𝐴 = suc 𝑏)) |
4 | 1, 3 | bitr4i 278 | . . 3 ⊢ (¬ (𝐴 = ∅ ∨ ∃𝑏 ∈ On 𝐴 = suc 𝑏) ↔ (𝐴 ≠ ∅ ∧ ¬ ∃𝑏 ∈ On 𝐴 = suc 𝑏)) |
5 | 4 | anbi2i 622 | . 2 ⊢ ((Ord 𝐴 ∧ ¬ (𝐴 = ∅ ∨ ∃𝑏 ∈ On 𝐴 = suc 𝑏)) ↔ (Ord 𝐴 ∧ (𝐴 ≠ ∅ ∧ ¬ ∃𝑏 ∈ On 𝐴 = suc 𝑏))) |
6 | dflim3 7840 | . 2 ⊢ (Lim 𝐴 ↔ (Ord 𝐴 ∧ ¬ (𝐴 = ∅ ∨ ∃𝑏 ∈ On 𝐴 = suc 𝑏))) | |
7 | 3anass 1094 | . 2 ⊢ ((Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ ¬ ∃𝑏 ∈ On 𝐴 = suc 𝑏) ↔ (Ord 𝐴 ∧ (𝐴 ≠ ∅ ∧ ¬ ∃𝑏 ∈ On 𝐴 = suc 𝑏))) | |
8 | 5, 6, 7 | 3bitr4i 303 | 1 ⊢ (Lim 𝐴 ↔ (Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ ¬ ∃𝑏 ∈ On 𝐴 = suc 𝑏)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∧ wa 395 ∨ wo 844 ∧ w3a 1086 = wceq 1540 ≠ wne 2939 ∃wrex 3069 ∅c0 4322 Ord word 6363 Oncon0 6364 Lim wlim 6365 suc csuc 6366 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-tr 5266 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 |
This theorem is referenced by: limnsuc 42480 |
Copyright terms: Public domain | W3C validator |