Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dflim6 Structured version   Visualization version   GIF version

Theorem dflim6 43260
Description: A limit ordinal is a non-zero ordinal which is not a successor ordinal. Definition 1.11 of [Schloeder] p. 2. (Contributed by RP, 16-Jan-2025.)
Assertion
Ref Expression
dflim6 (Lim 𝐴 ↔ (Ord 𝐴𝐴 ≠ ∅ ∧ ¬ ∃𝑏 ∈ On 𝐴 = suc 𝑏))
Distinct variable group:   𝐴,𝑏

Proof of Theorem dflim6
StepHypRef Expression
1 ioran 985 . . . 4 (¬ (𝐴 = ∅ ∨ ∃𝑏 ∈ On 𝐴 = suc 𝑏) ↔ (¬ 𝐴 = ∅ ∧ ¬ ∃𝑏 ∈ On 𝐴 = suc 𝑏))
2 df-ne 2927 . . . . 5 (𝐴 ≠ ∅ ↔ ¬ 𝐴 = ∅)
32anbi1i 624 . . . 4 ((𝐴 ≠ ∅ ∧ ¬ ∃𝑏 ∈ On 𝐴 = suc 𝑏) ↔ (¬ 𝐴 = ∅ ∧ ¬ ∃𝑏 ∈ On 𝐴 = suc 𝑏))
41, 3bitr4i 278 . . 3 (¬ (𝐴 = ∅ ∨ ∃𝑏 ∈ On 𝐴 = suc 𝑏) ↔ (𝐴 ≠ ∅ ∧ ¬ ∃𝑏 ∈ On 𝐴 = suc 𝑏))
54anbi2i 623 . 2 ((Ord 𝐴 ∧ ¬ (𝐴 = ∅ ∨ ∃𝑏 ∈ On 𝐴 = suc 𝑏)) ↔ (Ord 𝐴 ∧ (𝐴 ≠ ∅ ∧ ¬ ∃𝑏 ∈ On 𝐴 = suc 𝑏)))
6 dflim3 7826 . 2 (Lim 𝐴 ↔ (Ord 𝐴 ∧ ¬ (𝐴 = ∅ ∨ ∃𝑏 ∈ On 𝐴 = suc 𝑏)))
7 3anass 1094 . 2 ((Ord 𝐴𝐴 ≠ ∅ ∧ ¬ ∃𝑏 ∈ On 𝐴 = suc 𝑏) ↔ (Ord 𝐴 ∧ (𝐴 ≠ ∅ ∧ ¬ ∃𝑏 ∈ On 𝐴 = suc 𝑏)))
85, 6, 73bitr4i 303 1 (Lim 𝐴 ↔ (Ord 𝐴𝐴 ≠ ∅ ∧ ¬ ∃𝑏 ∈ On 𝐴 = suc 𝑏))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wne 2926  wrex 3054  c0 4299  Ord word 6334  Oncon0 6335  Lim wlim 6336  suc csuc 6337
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-tr 5218  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341
This theorem is referenced by:  limnsuc  43261
  Copyright terms: Public domain W3C validator