| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dflim6 | Structured version Visualization version GIF version | ||
| Description: A limit ordinal is a non-zero ordinal which is not a successor ordinal. Definition 1.11 of [Schloeder] p. 2. (Contributed by RP, 16-Jan-2025.) |
| Ref | Expression |
|---|---|
| dflim6 | ⊢ (Lim 𝐴 ↔ (Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ ¬ ∃𝑏 ∈ On 𝐴 = suc 𝑏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ioran 986 | . . . 4 ⊢ (¬ (𝐴 = ∅ ∨ ∃𝑏 ∈ On 𝐴 = suc 𝑏) ↔ (¬ 𝐴 = ∅ ∧ ¬ ∃𝑏 ∈ On 𝐴 = suc 𝑏)) | |
| 2 | df-ne 2941 | . . . . 5 ⊢ (𝐴 ≠ ∅ ↔ ¬ 𝐴 = ∅) | |
| 3 | 2 | anbi1i 624 | . . . 4 ⊢ ((𝐴 ≠ ∅ ∧ ¬ ∃𝑏 ∈ On 𝐴 = suc 𝑏) ↔ (¬ 𝐴 = ∅ ∧ ¬ ∃𝑏 ∈ On 𝐴 = suc 𝑏)) |
| 4 | 1, 3 | bitr4i 278 | . . 3 ⊢ (¬ (𝐴 = ∅ ∨ ∃𝑏 ∈ On 𝐴 = suc 𝑏) ↔ (𝐴 ≠ ∅ ∧ ¬ ∃𝑏 ∈ On 𝐴 = suc 𝑏)) |
| 5 | 4 | anbi2i 623 | . 2 ⊢ ((Ord 𝐴 ∧ ¬ (𝐴 = ∅ ∨ ∃𝑏 ∈ On 𝐴 = suc 𝑏)) ↔ (Ord 𝐴 ∧ (𝐴 ≠ ∅ ∧ ¬ ∃𝑏 ∈ On 𝐴 = suc 𝑏))) |
| 6 | dflim3 7868 | . 2 ⊢ (Lim 𝐴 ↔ (Ord 𝐴 ∧ ¬ (𝐴 = ∅ ∨ ∃𝑏 ∈ On 𝐴 = suc 𝑏))) | |
| 7 | 3anass 1095 | . 2 ⊢ ((Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ ¬ ∃𝑏 ∈ On 𝐴 = suc 𝑏) ↔ (Ord 𝐴 ∧ (𝐴 ≠ ∅ ∧ ¬ ∃𝑏 ∈ On 𝐴 = suc 𝑏))) | |
| 8 | 5, 6, 7 | 3bitr4i 303 | 1 ⊢ (Lim 𝐴 ↔ (Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ ¬ ∃𝑏 ∈ On 𝐴 = suc 𝑏)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 ∨ wo 848 ∧ w3a 1087 = wceq 1540 ≠ wne 2940 ∃wrex 3070 ∅c0 4333 Ord word 6383 Oncon0 6384 Lim wlim 6385 suc csuc 6386 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 ax-un 7755 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-tr 5260 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 |
| This theorem is referenced by: limnsuc 43278 |
| Copyright terms: Public domain | W3C validator |