Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dflim6 Structured version   Visualization version   GIF version

Theorem dflim6 42606
Description: A limit ordinal is a non-zero ordinal which is not a succesor ordinal. Definition 1.11 of [Schloeder] p. 2. (Contributed by RP, 16-Jan-2025.)
Assertion
Ref Expression
dflim6 (Lim 𝐴 ↔ (Ord 𝐴𝐴 ≠ ∅ ∧ ¬ ∃𝑏 ∈ On 𝐴 = suc 𝑏))
Distinct variable group:   𝐴,𝑏

Proof of Theorem dflim6
StepHypRef Expression
1 ioran 982 . . . 4 (¬ (𝐴 = ∅ ∨ ∃𝑏 ∈ On 𝐴 = suc 𝑏) ↔ (¬ 𝐴 = ∅ ∧ ¬ ∃𝑏 ∈ On 𝐴 = suc 𝑏))
2 df-ne 2936 . . . . 5 (𝐴 ≠ ∅ ↔ ¬ 𝐴 = ∅)
32anbi1i 623 . . . 4 ((𝐴 ≠ ∅ ∧ ¬ ∃𝑏 ∈ On 𝐴 = suc 𝑏) ↔ (¬ 𝐴 = ∅ ∧ ¬ ∃𝑏 ∈ On 𝐴 = suc 𝑏))
41, 3bitr4i 278 . . 3 (¬ (𝐴 = ∅ ∨ ∃𝑏 ∈ On 𝐴 = suc 𝑏) ↔ (𝐴 ≠ ∅ ∧ ¬ ∃𝑏 ∈ On 𝐴 = suc 𝑏))
54anbi2i 622 . 2 ((Ord 𝐴 ∧ ¬ (𝐴 = ∅ ∨ ∃𝑏 ∈ On 𝐴 = suc 𝑏)) ↔ (Ord 𝐴 ∧ (𝐴 ≠ ∅ ∧ ¬ ∃𝑏 ∈ On 𝐴 = suc 𝑏)))
6 dflim3 7843 . 2 (Lim 𝐴 ↔ (Ord 𝐴 ∧ ¬ (𝐴 = ∅ ∨ ∃𝑏 ∈ On 𝐴 = suc 𝑏)))
7 3anass 1093 . 2 ((Ord 𝐴𝐴 ≠ ∅ ∧ ¬ ∃𝑏 ∈ On 𝐴 = suc 𝑏) ↔ (Ord 𝐴 ∧ (𝐴 ≠ ∅ ∧ ¬ ∃𝑏 ∈ On 𝐴 = suc 𝑏)))
85, 6, 73bitr4i 303 1 (Lim 𝐴 ↔ (Ord 𝐴𝐴 ≠ ∅ ∧ ¬ ∃𝑏 ∈ On 𝐴 = suc 𝑏))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wa 395  wo 846  w3a 1085   = wceq 1534  wne 2935  wrex 3065  c0 4318  Ord word 6362  Oncon0 6363  Lim wlim 6364  suc csuc 6365
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pr 5423  ax-un 7732
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-clab 2705  df-cleq 2719  df-clel 2805  df-ne 2936  df-ral 3057  df-rex 3066  df-rab 3428  df-v 3471  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5143  df-opab 5205  df-tr 5260  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369
This theorem is referenced by:  limnsuc  42607
  Copyright terms: Public domain W3C validator