![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > limnsuc | Structured version Visualization version GIF version |
Description: A limit ordinal is not an element of the class of successor ordinals. Definition 1.11 of [Schloeder] p. 2. (Contributed by RP, 16-Jan-2025.) |
Ref | Expression |
---|---|
limnsuc | ⊢ (Lim 𝐴 → ¬ 𝐴 ∈ {𝑎 ∈ On ∣ ∃𝑏 ∈ On 𝑎 = suc 𝑏}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dflim6 42835 | . 2 ⊢ (Lim 𝐴 ↔ (Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ ¬ ∃𝑏 ∈ On 𝐴 = suc 𝑏)) | |
2 | simp3 1135 | . . 3 ⊢ ((Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ ¬ ∃𝑏 ∈ On 𝐴 = suc 𝑏) → ¬ ∃𝑏 ∈ On 𝐴 = suc 𝑏) | |
3 | eqeq1 2729 | . . . . . 6 ⊢ (𝑎 = 𝐴 → (𝑎 = suc 𝑏 ↔ 𝐴 = suc 𝑏)) | |
4 | 3 | rexbidv 3168 | . . . . 5 ⊢ (𝑎 = 𝐴 → (∃𝑏 ∈ On 𝑎 = suc 𝑏 ↔ ∃𝑏 ∈ On 𝐴 = suc 𝑏)) |
5 | 4 | elrab 3679 | . . . 4 ⊢ (𝐴 ∈ {𝑎 ∈ On ∣ ∃𝑏 ∈ On 𝑎 = suc 𝑏} ↔ (𝐴 ∈ On ∧ ∃𝑏 ∈ On 𝐴 = suc 𝑏)) |
6 | 5 | simprbi 495 | . . 3 ⊢ (𝐴 ∈ {𝑎 ∈ On ∣ ∃𝑏 ∈ On 𝑎 = suc 𝑏} → ∃𝑏 ∈ On 𝐴 = suc 𝑏) |
7 | 2, 6 | nsyl 140 | . 2 ⊢ ((Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ ¬ ∃𝑏 ∈ On 𝐴 = suc 𝑏) → ¬ 𝐴 ∈ {𝑎 ∈ On ∣ ∃𝑏 ∈ On 𝑎 = suc 𝑏}) |
8 | 1, 7 | sylbi 216 | 1 ⊢ (Lim 𝐴 → ¬ 𝐴 ∈ {𝑎 ∈ On ∣ ∃𝑏 ∈ On 𝑎 = suc 𝑏}) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ≠ wne 2929 ∃wrex 3059 {crab 3418 ∅c0 4322 Ord word 6370 Oncon0 6371 Lim wlim 6372 suc csuc 6373 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pr 5429 ax-un 7741 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-ne 2930 df-ral 3051 df-rex 3060 df-rab 3419 df-v 3463 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-br 5150 df-opab 5212 df-tr 5267 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |