![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > limnsuc | Structured version Visualization version GIF version |
Description: A limit ordinal is not an element of the class of successor ordinals. Definition 1.11 of [Schloeder] p. 2. (Contributed by RP, 16-Jan-2025.) |
Ref | Expression |
---|---|
limnsuc | ⊢ (Lim 𝐴 → ¬ 𝐴 ∈ {𝑎 ∈ On ∣ ∃𝑏 ∈ On 𝑎 = suc 𝑏}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dflim6 43254 | . 2 ⊢ (Lim 𝐴 ↔ (Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ ¬ ∃𝑏 ∈ On 𝐴 = suc 𝑏)) | |
2 | simp3 1137 | . . 3 ⊢ ((Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ ¬ ∃𝑏 ∈ On 𝐴 = suc 𝑏) → ¬ ∃𝑏 ∈ On 𝐴 = suc 𝑏) | |
3 | eqeq1 2739 | . . . . . 6 ⊢ (𝑎 = 𝐴 → (𝑎 = suc 𝑏 ↔ 𝐴 = suc 𝑏)) | |
4 | 3 | rexbidv 3177 | . . . . 5 ⊢ (𝑎 = 𝐴 → (∃𝑏 ∈ On 𝑎 = suc 𝑏 ↔ ∃𝑏 ∈ On 𝐴 = suc 𝑏)) |
5 | 4 | elrab 3695 | . . . 4 ⊢ (𝐴 ∈ {𝑎 ∈ On ∣ ∃𝑏 ∈ On 𝑎 = suc 𝑏} ↔ (𝐴 ∈ On ∧ ∃𝑏 ∈ On 𝐴 = suc 𝑏)) |
6 | 5 | simprbi 496 | . . 3 ⊢ (𝐴 ∈ {𝑎 ∈ On ∣ ∃𝑏 ∈ On 𝑎 = suc 𝑏} → ∃𝑏 ∈ On 𝐴 = suc 𝑏) |
7 | 2, 6 | nsyl 140 | . 2 ⊢ ((Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ ¬ ∃𝑏 ∈ On 𝐴 = suc 𝑏) → ¬ 𝐴 ∈ {𝑎 ∈ On ∣ ∃𝑏 ∈ On 𝑎 = suc 𝑏}) |
8 | 1, 7 | sylbi 217 | 1 ⊢ (Lim 𝐴 → ¬ 𝐴 ∈ {𝑎 ∈ On ∣ ∃𝑏 ∈ On 𝑎 = suc 𝑏}) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 ∃wrex 3068 {crab 3433 ∅c0 4339 Ord word 6385 Oncon0 6386 Lim wlim 6387 suc csuc 6388 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-tr 5266 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |