Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onsucelab Structured version   Visualization version   GIF version

Theorem onsucelab 43225
Description: The successor of every ordinal is an element of the class of successor ordinals. Definition 1.11 of [Schloeder] p. 2. (Contributed by RP, 16-Jan-2025.)
Assertion
Ref Expression
onsucelab (𝐴 ∈ On → suc 𝐴 ∈ {𝑎 ∈ On ∣ ∃𝑏 ∈ On 𝑎 = suc 𝑏})
Distinct variable group:   𝐴,𝑎,𝑏

Proof of Theorem onsucelab
StepHypRef Expression
1 onsuc 7847 . 2 (𝐴 ∈ On → suc 𝐴 ∈ On)
2 eqid 2740 . . 3 suc 𝐴 = suc 𝐴
3 id 22 . . . 4 (𝐴 ∈ On → 𝐴 ∈ On)
4 suceq 6461 . . . . . 6 (𝑏 = 𝐴 → suc 𝑏 = suc 𝐴)
54eqeq2d 2751 . . . . 5 (𝑏 = 𝐴 → (suc 𝐴 = suc 𝑏 ↔ suc 𝐴 = suc 𝐴))
65adantl 481 . . . 4 ((𝐴 ∈ On ∧ 𝑏 = 𝐴) → (suc 𝐴 = suc 𝑏 ↔ suc 𝐴 = suc 𝐴))
73, 6rspcedv 3628 . . 3 (𝐴 ∈ On → (suc 𝐴 = suc 𝐴 → ∃𝑏 ∈ On suc 𝐴 = suc 𝑏))
82, 7mpi 20 . 2 (𝐴 ∈ On → ∃𝑏 ∈ On suc 𝐴 = suc 𝑏)
9 eqeq1 2744 . . . 4 (𝑎 = suc 𝐴 → (𝑎 = suc 𝑏 ↔ suc 𝐴 = suc 𝑏))
109rexbidv 3185 . . 3 (𝑎 = suc 𝐴 → (∃𝑏 ∈ On 𝑎 = suc 𝑏 ↔ ∃𝑏 ∈ On suc 𝐴 = suc 𝑏))
1110elrab 3708 . 2 (suc 𝐴 ∈ {𝑎 ∈ On ∣ ∃𝑏 ∈ On 𝑎 = suc 𝑏} ↔ (suc 𝐴 ∈ On ∧ ∃𝑏 ∈ On suc 𝐴 = suc 𝑏))
121, 8, 11sylanbrc 582 1 (𝐴 ∈ On → suc 𝐴 ∈ {𝑎 ∈ On ∣ ∃𝑏 ∈ On 𝑎 = suc 𝑏})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537  wcel 2108  wrex 3076  {crab 3443  Oncon0 6395  suc csuc 6397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-tr 5284  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-ord 6398  df-on 6399  df-suc 6401
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator