| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > onsucelab | Structured version Visualization version GIF version | ||
| Description: The successor of every ordinal is an element of the class of successor ordinals. Definition 1.11 of [Schloeder] p. 2. (Contributed by RP, 16-Jan-2025.) |
| Ref | Expression |
|---|---|
| onsucelab | ⊢ (𝐴 ∈ On → suc 𝐴 ∈ {𝑎 ∈ On ∣ ∃𝑏 ∈ On 𝑎 = suc 𝑏}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | onsuc 7743 | . 2 ⊢ (𝐴 ∈ On → suc 𝐴 ∈ On) | |
| 2 | eqid 2731 | . . 3 ⊢ suc 𝐴 = suc 𝐴 | |
| 3 | id 22 | . . . 4 ⊢ (𝐴 ∈ On → 𝐴 ∈ On) | |
| 4 | suceq 6374 | . . . . . 6 ⊢ (𝑏 = 𝐴 → suc 𝑏 = suc 𝐴) | |
| 5 | 4 | eqeq2d 2742 | . . . . 5 ⊢ (𝑏 = 𝐴 → (suc 𝐴 = suc 𝑏 ↔ suc 𝐴 = suc 𝐴)) |
| 6 | 5 | adantl 481 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝑏 = 𝐴) → (suc 𝐴 = suc 𝑏 ↔ suc 𝐴 = suc 𝐴)) |
| 7 | 3, 6 | rspcedv 3570 | . . 3 ⊢ (𝐴 ∈ On → (suc 𝐴 = suc 𝐴 → ∃𝑏 ∈ On suc 𝐴 = suc 𝑏)) |
| 8 | 2, 7 | mpi 20 | . 2 ⊢ (𝐴 ∈ On → ∃𝑏 ∈ On suc 𝐴 = suc 𝑏) |
| 9 | eqeq1 2735 | . . . 4 ⊢ (𝑎 = suc 𝐴 → (𝑎 = suc 𝑏 ↔ suc 𝐴 = suc 𝑏)) | |
| 10 | 9 | rexbidv 3156 | . . 3 ⊢ (𝑎 = suc 𝐴 → (∃𝑏 ∈ On 𝑎 = suc 𝑏 ↔ ∃𝑏 ∈ On suc 𝐴 = suc 𝑏)) |
| 11 | 10 | elrab 3647 | . 2 ⊢ (suc 𝐴 ∈ {𝑎 ∈ On ∣ ∃𝑏 ∈ On 𝑎 = suc 𝑏} ↔ (suc 𝐴 ∈ On ∧ ∃𝑏 ∈ On suc 𝐴 = suc 𝑏)) |
| 12 | 1, 8, 11 | sylanbrc 583 | 1 ⊢ (𝐴 ∈ On → suc 𝐴 ∈ {𝑎 ∈ On ∣ ∃𝑏 ∈ On 𝑎 = suc 𝑏}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2111 ∃wrex 3056 {crab 3395 Oncon0 6306 suc csuc 6308 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-tr 5199 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-ord 6309 df-on 6310 df-suc 6312 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |