![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > onsucelab | Structured version Visualization version GIF version |
Description: The successor of every ordinal is an element of the class of successor ordinals. Definition 1.11 of [Schloeder] p. 2. (Contributed by RP, 16-Jan-2025.) |
Ref | Expression |
---|---|
onsucelab | ⊢ (𝐴 ∈ On → suc 𝐴 ∈ {𝑎 ∈ On ∣ ∃𝑏 ∈ On 𝑎 = suc 𝑏}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | onsuc 7792 | . 2 ⊢ (𝐴 ∈ On → suc 𝐴 ∈ On) | |
2 | eqid 2724 | . . 3 ⊢ suc 𝐴 = suc 𝐴 | |
3 | id 22 | . . . 4 ⊢ (𝐴 ∈ On → 𝐴 ∈ On) | |
4 | suceq 6420 | . . . . . 6 ⊢ (𝑏 = 𝐴 → suc 𝑏 = suc 𝐴) | |
5 | 4 | eqeq2d 2735 | . . . . 5 ⊢ (𝑏 = 𝐴 → (suc 𝐴 = suc 𝑏 ↔ suc 𝐴 = suc 𝐴)) |
6 | 5 | adantl 481 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝑏 = 𝐴) → (suc 𝐴 = suc 𝑏 ↔ suc 𝐴 = suc 𝐴)) |
7 | 3, 6 | rspcedv 3597 | . . 3 ⊢ (𝐴 ∈ On → (suc 𝐴 = suc 𝐴 → ∃𝑏 ∈ On suc 𝐴 = suc 𝑏)) |
8 | 2, 7 | mpi 20 | . 2 ⊢ (𝐴 ∈ On → ∃𝑏 ∈ On suc 𝐴 = suc 𝑏) |
9 | eqeq1 2728 | . . . 4 ⊢ (𝑎 = suc 𝐴 → (𝑎 = suc 𝑏 ↔ suc 𝐴 = suc 𝑏)) | |
10 | 9 | rexbidv 3170 | . . 3 ⊢ (𝑎 = suc 𝐴 → (∃𝑏 ∈ On 𝑎 = suc 𝑏 ↔ ∃𝑏 ∈ On suc 𝐴 = suc 𝑏)) |
11 | 10 | elrab 3675 | . 2 ⊢ (suc 𝐴 ∈ {𝑎 ∈ On ∣ ∃𝑏 ∈ On 𝑎 = suc 𝑏} ↔ (suc 𝐴 ∈ On ∧ ∃𝑏 ∈ On suc 𝐴 = suc 𝑏)) |
12 | 1, 8, 11 | sylanbrc 582 | 1 ⊢ (𝐴 ∈ On → suc 𝐴 ∈ {𝑎 ∈ On ∣ ∃𝑏 ∈ On 𝑎 = suc 𝑏}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1533 ∈ wcel 2098 ∃wrex 3062 {crab 3424 Oncon0 6354 suc csuc 6356 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pr 5417 ax-un 7718 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-ne 2933 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-br 5139 df-opab 5201 df-tr 5256 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-we 5623 df-ord 6357 df-on 6358 df-suc 6360 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |