Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onsucelab Structured version   Visualization version   GIF version

Theorem onsucelab 43380
Description: The successor of every ordinal is an element of the class of successor ordinals. Definition 1.11 of [Schloeder] p. 2. (Contributed by RP, 16-Jan-2025.)
Assertion
Ref Expression
onsucelab (𝐴 ∈ On → suc 𝐴 ∈ {𝑎 ∈ On ∣ ∃𝑏 ∈ On 𝑎 = suc 𝑏})
Distinct variable group:   𝐴,𝑎,𝑏

Proof of Theorem onsucelab
StepHypRef Expression
1 onsuc 7749 . 2 (𝐴 ∈ On → suc 𝐴 ∈ On)
2 eqid 2733 . . 3 suc 𝐴 = suc 𝐴
3 id 22 . . . 4 (𝐴 ∈ On → 𝐴 ∈ On)
4 suceq 6379 . . . . . 6 (𝑏 = 𝐴 → suc 𝑏 = suc 𝐴)
54eqeq2d 2744 . . . . 5 (𝑏 = 𝐴 → (suc 𝐴 = suc 𝑏 ↔ suc 𝐴 = suc 𝐴))
65adantl 481 . . . 4 ((𝐴 ∈ On ∧ 𝑏 = 𝐴) → (suc 𝐴 = suc 𝑏 ↔ suc 𝐴 = suc 𝐴))
73, 6rspcedv 3566 . . 3 (𝐴 ∈ On → (suc 𝐴 = suc 𝐴 → ∃𝑏 ∈ On suc 𝐴 = suc 𝑏))
82, 7mpi 20 . 2 (𝐴 ∈ On → ∃𝑏 ∈ On suc 𝐴 = suc 𝑏)
9 eqeq1 2737 . . . 4 (𝑎 = suc 𝐴 → (𝑎 = suc 𝑏 ↔ suc 𝐴 = suc 𝑏))
109rexbidv 3157 . . 3 (𝑎 = suc 𝐴 → (∃𝑏 ∈ On 𝑎 = suc 𝑏 ↔ ∃𝑏 ∈ On suc 𝐴 = suc 𝑏))
1110elrab 3643 . 2 (suc 𝐴 ∈ {𝑎 ∈ On ∣ ∃𝑏 ∈ On 𝑎 = suc 𝑏} ↔ (suc 𝐴 ∈ On ∧ ∃𝑏 ∈ On suc 𝐴 = suc 𝑏))
121, 8, 11sylanbrc 583 1 (𝐴 ∈ On → suc 𝐴 ∈ {𝑎 ∈ On ∣ ∃𝑏 ∈ On 𝑎 = suc 𝑏})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1541  wcel 2113  wrex 3057  {crab 3396  Oncon0 6311  suc csuc 6313
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-tr 5201  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-ord 6314  df-on 6315  df-suc 6317
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator