Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onsucelab Structured version   Visualization version   GIF version

Theorem onsucelab 43252
Description: The successor of every ordinal is an element of the class of successor ordinals. Definition 1.11 of [Schloeder] p. 2. (Contributed by RP, 16-Jan-2025.)
Assertion
Ref Expression
onsucelab (𝐴 ∈ On → suc 𝐴 ∈ {𝑎 ∈ On ∣ ∃𝑏 ∈ On 𝑎 = suc 𝑏})
Distinct variable group:   𝐴,𝑎,𝑏

Proof of Theorem onsucelab
StepHypRef Expression
1 onsuc 7787 . 2 (𝐴 ∈ On → suc 𝐴 ∈ On)
2 eqid 2729 . . 3 suc 𝐴 = suc 𝐴
3 id 22 . . . 4 (𝐴 ∈ On → 𝐴 ∈ On)
4 suceq 6400 . . . . . 6 (𝑏 = 𝐴 → suc 𝑏 = suc 𝐴)
54eqeq2d 2740 . . . . 5 (𝑏 = 𝐴 → (suc 𝐴 = suc 𝑏 ↔ suc 𝐴 = suc 𝐴))
65adantl 481 . . . 4 ((𝐴 ∈ On ∧ 𝑏 = 𝐴) → (suc 𝐴 = suc 𝑏 ↔ suc 𝐴 = suc 𝐴))
73, 6rspcedv 3581 . . 3 (𝐴 ∈ On → (suc 𝐴 = suc 𝐴 → ∃𝑏 ∈ On suc 𝐴 = suc 𝑏))
82, 7mpi 20 . 2 (𝐴 ∈ On → ∃𝑏 ∈ On suc 𝐴 = suc 𝑏)
9 eqeq1 2733 . . . 4 (𝑎 = suc 𝐴 → (𝑎 = suc 𝑏 ↔ suc 𝐴 = suc 𝑏))
109rexbidv 3157 . . 3 (𝑎 = suc 𝐴 → (∃𝑏 ∈ On 𝑎 = suc 𝑏 ↔ ∃𝑏 ∈ On suc 𝐴 = suc 𝑏))
1110elrab 3659 . 2 (suc 𝐴 ∈ {𝑎 ∈ On ∣ ∃𝑏 ∈ On 𝑎 = suc 𝑏} ↔ (suc 𝐴 ∈ On ∧ ∃𝑏 ∈ On suc 𝐴 = suc 𝑏))
121, 8, 11sylanbrc 583 1 (𝐴 ∈ On → suc 𝐴 ∈ {𝑎 ∈ On ∣ ∃𝑏 ∈ On 𝑎 = suc 𝑏})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  wrex 3053  {crab 3405  Oncon0 6332  suc csuc 6334
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-tr 5215  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-ord 6335  df-on 6336  df-suc 6338
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator