Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onsucelab Structured version   Visualization version   GIF version

Theorem onsucelab 43253
Description: The successor of every ordinal is an element of the class of successor ordinals. Definition 1.11 of [Schloeder] p. 2. (Contributed by RP, 16-Jan-2025.)
Assertion
Ref Expression
onsucelab (𝐴 ∈ On → suc 𝐴 ∈ {𝑎 ∈ On ∣ ∃𝑏 ∈ On 𝑎 = suc 𝑏})
Distinct variable group:   𝐴,𝑎,𝑏

Proof of Theorem onsucelab
StepHypRef Expression
1 onsuc 7831 . 2 (𝐴 ∈ On → suc 𝐴 ∈ On)
2 eqid 2735 . . 3 suc 𝐴 = suc 𝐴
3 id 22 . . . 4 (𝐴 ∈ On → 𝐴 ∈ On)
4 suceq 6452 . . . . . 6 (𝑏 = 𝐴 → suc 𝑏 = suc 𝐴)
54eqeq2d 2746 . . . . 5 (𝑏 = 𝐴 → (suc 𝐴 = suc 𝑏 ↔ suc 𝐴 = suc 𝐴))
65adantl 481 . . . 4 ((𝐴 ∈ On ∧ 𝑏 = 𝐴) → (suc 𝐴 = suc 𝑏 ↔ suc 𝐴 = suc 𝐴))
73, 6rspcedv 3615 . . 3 (𝐴 ∈ On → (suc 𝐴 = suc 𝐴 → ∃𝑏 ∈ On suc 𝐴 = suc 𝑏))
82, 7mpi 20 . 2 (𝐴 ∈ On → ∃𝑏 ∈ On suc 𝐴 = suc 𝑏)
9 eqeq1 2739 . . . 4 (𝑎 = suc 𝐴 → (𝑎 = suc 𝑏 ↔ suc 𝐴 = suc 𝑏))
109rexbidv 3177 . . 3 (𝑎 = suc 𝐴 → (∃𝑏 ∈ On 𝑎 = suc 𝑏 ↔ ∃𝑏 ∈ On suc 𝐴 = suc 𝑏))
1110elrab 3695 . 2 (suc 𝐴 ∈ {𝑎 ∈ On ∣ ∃𝑏 ∈ On 𝑎 = suc 𝑏} ↔ (suc 𝐴 ∈ On ∧ ∃𝑏 ∈ On suc 𝐴 = suc 𝑏))
121, 8, 11sylanbrc 583 1 (𝐴 ∈ On → suc 𝐴 ∈ {𝑎 ∈ On ∣ ∃𝑏 ∈ On 𝑎 = suc 𝑏})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537  wcel 2106  wrex 3068  {crab 3433  Oncon0 6386  suc csuc 6388
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-tr 5266  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-ord 6389  df-on 6390  df-suc 6392
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator