![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > idref | Structured version Visualization version GIF version |
Description: Two ways to state that a relation is reflexive on a class. (Contributed by FL, 15-Jan-2012.) (Proof shortened by Mario Carneiro, 3-Nov-2015.) (Revised by NM, 30-Mar-2016.) |
Ref | Expression |
---|---|
idref | ⊢ (( I ↾ 𝐴) ⊆ 𝑅 ↔ ∀𝑥 ∈ 𝐴 𝑥𝑅𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2724 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↦ ⟨𝑥, 𝑥⟩) = (𝑥 ∈ 𝐴 ↦ ⟨𝑥, 𝑥⟩) | |
2 | 1 | fmpt 7102 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ⟨𝑥, 𝑥⟩ ∈ 𝑅 ↔ (𝑥 ∈ 𝐴 ↦ ⟨𝑥, 𝑥⟩):𝐴⟶𝑅) |
3 | opex 5455 | . . . . 5 ⊢ ⟨𝑥, 𝑥⟩ ∈ V | |
4 | 3, 1 | fnmpti 6684 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↦ ⟨𝑥, 𝑥⟩) Fn 𝐴 |
5 | df-f 6538 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ↦ ⟨𝑥, 𝑥⟩):𝐴⟶𝑅 ↔ ((𝑥 ∈ 𝐴 ↦ ⟨𝑥, 𝑥⟩) Fn 𝐴 ∧ ran (𝑥 ∈ 𝐴 ↦ ⟨𝑥, 𝑥⟩) ⊆ 𝑅)) | |
6 | 4, 5 | mpbiran 706 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ↦ ⟨𝑥, 𝑥⟩):𝐴⟶𝑅 ↔ ran (𝑥 ∈ 𝐴 ↦ ⟨𝑥, 𝑥⟩) ⊆ 𝑅) |
7 | 2, 6 | bitri 275 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ⟨𝑥, 𝑥⟩ ∈ 𝑅 ↔ ran (𝑥 ∈ 𝐴 ↦ ⟨𝑥, 𝑥⟩) ⊆ 𝑅) |
8 | df-br 5140 | . . 3 ⊢ (𝑥𝑅𝑥 ↔ ⟨𝑥, 𝑥⟩ ∈ 𝑅) | |
9 | 8 | ralbii 3085 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝑥𝑅𝑥 ↔ ∀𝑥 ∈ 𝐴 ⟨𝑥, 𝑥⟩ ∈ 𝑅) |
10 | mptresid 6041 | . . . 4 ⊢ ( I ↾ 𝐴) = (𝑥 ∈ 𝐴 ↦ 𝑥) | |
11 | vex 3470 | . . . . 5 ⊢ 𝑥 ∈ V | |
12 | 11 | fnasrn 7136 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↦ 𝑥) = ran (𝑥 ∈ 𝐴 ↦ ⟨𝑥, 𝑥⟩) |
13 | 10, 12 | eqtri 2752 | . . 3 ⊢ ( I ↾ 𝐴) = ran (𝑥 ∈ 𝐴 ↦ ⟨𝑥, 𝑥⟩) |
14 | 13 | sseq1i 4003 | . 2 ⊢ (( I ↾ 𝐴) ⊆ 𝑅 ↔ ran (𝑥 ∈ 𝐴 ↦ ⟨𝑥, 𝑥⟩) ⊆ 𝑅) |
15 | 7, 9, 14 | 3bitr4ri 304 | 1 ⊢ (( I ↾ 𝐴) ⊆ 𝑅 ↔ ∀𝑥 ∈ 𝐴 𝑥𝑅𝑥) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∈ wcel 2098 ∀wral 3053 ⊆ wss 3941 ⟨cop 4627 class class class wbr 5139 ↦ cmpt 5222 I cid 5564 ran crn 5668 ↾ cres 5669 Fn wfn 6529 ⟶wf 6530 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5290 ax-nul 5297 ax-pr 5418 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-sn 4622 df-pr 4624 df-op 4628 df-iun 4990 df-br 5140 df-opab 5202 df-mpt 5223 df-id 5565 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 |
This theorem is referenced by: retos 21500 filnetlem2 35765 |
Copyright terms: Public domain | W3C validator |