MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  idref Structured version   Visualization version   GIF version

Theorem idref 7088
Description: Two ways to state that a relation is reflexive on a class. (Contributed by FL, 15-Jan-2012.) (Proof shortened by Mario Carneiro, 3-Nov-2015.) (Revised by NM, 30-Mar-2016.)
Assertion
Ref Expression
idref (( I ↾ 𝐴) ⊆ 𝑅 ↔ ∀𝑥𝐴 𝑥𝑅𝑥)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑅

Proof of Theorem idref
StepHypRef Expression
1 eqid 2733 . . . 4 (𝑥𝐴 ↦ ⟨𝑥, 𝑥⟩) = (𝑥𝐴 ↦ ⟨𝑥, 𝑥⟩)
21fmpt 7052 . . 3 (∀𝑥𝐴𝑥, 𝑥⟩ ∈ 𝑅 ↔ (𝑥𝐴 ↦ ⟨𝑥, 𝑥⟩):𝐴𝑅)
3 opex 5409 . . . . 5 𝑥, 𝑥⟩ ∈ V
43, 1fnmpti 6632 . . . 4 (𝑥𝐴 ↦ ⟨𝑥, 𝑥⟩) Fn 𝐴
5 df-f 6493 . . . 4 ((𝑥𝐴 ↦ ⟨𝑥, 𝑥⟩):𝐴𝑅 ↔ ((𝑥𝐴 ↦ ⟨𝑥, 𝑥⟩) Fn 𝐴 ∧ ran (𝑥𝐴 ↦ ⟨𝑥, 𝑥⟩) ⊆ 𝑅))
64, 5mpbiran 709 . . 3 ((𝑥𝐴 ↦ ⟨𝑥, 𝑥⟩):𝐴𝑅 ↔ ran (𝑥𝐴 ↦ ⟨𝑥, 𝑥⟩) ⊆ 𝑅)
72, 6bitri 275 . 2 (∀𝑥𝐴𝑥, 𝑥⟩ ∈ 𝑅 ↔ ran (𝑥𝐴 ↦ ⟨𝑥, 𝑥⟩) ⊆ 𝑅)
8 df-br 5096 . . 3 (𝑥𝑅𝑥 ↔ ⟨𝑥, 𝑥⟩ ∈ 𝑅)
98ralbii 3080 . 2 (∀𝑥𝐴 𝑥𝑅𝑥 ↔ ∀𝑥𝐴𝑥, 𝑥⟩ ∈ 𝑅)
10 mptresid 6007 . . . 4 ( I ↾ 𝐴) = (𝑥𝐴𝑥)
11 vex 3442 . . . . 5 𝑥 ∈ V
1211fnasrn 7087 . . . 4 (𝑥𝐴𝑥) = ran (𝑥𝐴 ↦ ⟨𝑥, 𝑥⟩)
1310, 12eqtri 2756 . . 3 ( I ↾ 𝐴) = ran (𝑥𝐴 ↦ ⟨𝑥, 𝑥⟩)
1413sseq1i 3960 . 2 (( I ↾ 𝐴) ⊆ 𝑅 ↔ ran (𝑥𝐴 ↦ ⟨𝑥, 𝑥⟩) ⊆ 𝑅)
157, 9, 143bitr4ri 304 1 (( I ↾ 𝐴) ⊆ 𝑅 ↔ ∀𝑥𝐴 𝑥𝑅𝑥)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wcel 2113  wral 3049  wss 3899  cop 4583   class class class wbr 5095  cmpt 5176   I cid 5515  ran crn 5622  cres 5623   Fn wfn 6484  wf 6485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-ral 3050  df-rex 3059  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496
This theorem is referenced by:  retos  21565  filnetlem2  36434
  Copyright terms: Public domain W3C validator