MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  idref Structured version   Visualization version   GIF version

Theorem idref 7140
Description: Two ways to state that a relation is reflexive on a class. (Contributed by FL, 15-Jan-2012.) (Proof shortened by Mario Carneiro, 3-Nov-2015.) (Revised by NM, 30-Mar-2016.)
Assertion
Ref Expression
idref (( I ↾ 𝐴) ⊆ 𝑅 ↔ ∀𝑥𝐴 𝑥𝑅𝑥)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑅

Proof of Theorem idref
StepHypRef Expression
1 eqid 2732 . . . 4 (𝑥𝐴 ↦ ⟨𝑥, 𝑥⟩) = (𝑥𝐴 ↦ ⟨𝑥, 𝑥⟩)
21fmpt 7106 . . 3 (∀𝑥𝐴𝑥, 𝑥⟩ ∈ 𝑅 ↔ (𝑥𝐴 ↦ ⟨𝑥, 𝑥⟩):𝐴𝑅)
3 opex 5463 . . . . 5 𝑥, 𝑥⟩ ∈ V
43, 1fnmpti 6690 . . . 4 (𝑥𝐴 ↦ ⟨𝑥, 𝑥⟩) Fn 𝐴
5 df-f 6544 . . . 4 ((𝑥𝐴 ↦ ⟨𝑥, 𝑥⟩):𝐴𝑅 ↔ ((𝑥𝐴 ↦ ⟨𝑥, 𝑥⟩) Fn 𝐴 ∧ ran (𝑥𝐴 ↦ ⟨𝑥, 𝑥⟩) ⊆ 𝑅))
64, 5mpbiran 707 . . 3 ((𝑥𝐴 ↦ ⟨𝑥, 𝑥⟩):𝐴𝑅 ↔ ran (𝑥𝐴 ↦ ⟨𝑥, 𝑥⟩) ⊆ 𝑅)
72, 6bitri 274 . 2 (∀𝑥𝐴𝑥, 𝑥⟩ ∈ 𝑅 ↔ ran (𝑥𝐴 ↦ ⟨𝑥, 𝑥⟩) ⊆ 𝑅)
8 df-br 5148 . . 3 (𝑥𝑅𝑥 ↔ ⟨𝑥, 𝑥⟩ ∈ 𝑅)
98ralbii 3093 . 2 (∀𝑥𝐴 𝑥𝑅𝑥 ↔ ∀𝑥𝐴𝑥, 𝑥⟩ ∈ 𝑅)
10 mptresid 6048 . . . 4 ( I ↾ 𝐴) = (𝑥𝐴𝑥)
11 vex 3478 . . . . 5 𝑥 ∈ V
1211fnasrn 7139 . . . 4 (𝑥𝐴𝑥) = ran (𝑥𝐴 ↦ ⟨𝑥, 𝑥⟩)
1310, 12eqtri 2760 . . 3 ( I ↾ 𝐴) = ran (𝑥𝐴 ↦ ⟨𝑥, 𝑥⟩)
1413sseq1i 4009 . 2 (( I ↾ 𝐴) ⊆ 𝑅 ↔ ran (𝑥𝐴 ↦ ⟨𝑥, 𝑥⟩) ⊆ 𝑅)
157, 9, 143bitr4ri 303 1 (( I ↾ 𝐴) ⊆ 𝑅 ↔ ∀𝑥𝐴 𝑥𝑅𝑥)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wcel 2106  wral 3061  wss 3947  cop 4633   class class class wbr 5147  cmpt 5230   I cid 5572  ran crn 5676  cres 5677   Fn wfn 6535  wf 6536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547
This theorem is referenced by:  retos  21162  filnetlem2  35252
  Copyright terms: Public domain W3C validator