![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > idref | Structured version Visualization version GIF version |
Description: Two ways to state that a relation is reflexive on a class. (Contributed by FL, 15-Jan-2012.) (Proof shortened by Mario Carneiro, 3-Nov-2015.) (Revised by NM, 30-Mar-2016.) |
Ref | Expression |
---|---|
idref | ⊢ (( I ↾ 𝐴) ⊆ 𝑅 ↔ ∀𝑥 ∈ 𝐴 𝑥𝑅𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2728 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↦ ⟨𝑥, 𝑥⟩) = (𝑥 ∈ 𝐴 ↦ ⟨𝑥, 𝑥⟩) | |
2 | 1 | fmpt 7120 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ⟨𝑥, 𝑥⟩ ∈ 𝑅 ↔ (𝑥 ∈ 𝐴 ↦ ⟨𝑥, 𝑥⟩):𝐴⟶𝑅) |
3 | opex 5466 | . . . . 5 ⊢ ⟨𝑥, 𝑥⟩ ∈ V | |
4 | 3, 1 | fnmpti 6698 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↦ ⟨𝑥, 𝑥⟩) Fn 𝐴 |
5 | df-f 6552 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ↦ ⟨𝑥, 𝑥⟩):𝐴⟶𝑅 ↔ ((𝑥 ∈ 𝐴 ↦ ⟨𝑥, 𝑥⟩) Fn 𝐴 ∧ ran (𝑥 ∈ 𝐴 ↦ ⟨𝑥, 𝑥⟩) ⊆ 𝑅)) | |
6 | 4, 5 | mpbiran 708 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ↦ ⟨𝑥, 𝑥⟩):𝐴⟶𝑅 ↔ ran (𝑥 ∈ 𝐴 ↦ ⟨𝑥, 𝑥⟩) ⊆ 𝑅) |
7 | 2, 6 | bitri 275 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ⟨𝑥, 𝑥⟩ ∈ 𝑅 ↔ ran (𝑥 ∈ 𝐴 ↦ ⟨𝑥, 𝑥⟩) ⊆ 𝑅) |
8 | df-br 5149 | . . 3 ⊢ (𝑥𝑅𝑥 ↔ ⟨𝑥, 𝑥⟩ ∈ 𝑅) | |
9 | 8 | ralbii 3090 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝑥𝑅𝑥 ↔ ∀𝑥 ∈ 𝐴 ⟨𝑥, 𝑥⟩ ∈ 𝑅) |
10 | mptresid 6054 | . . . 4 ⊢ ( I ↾ 𝐴) = (𝑥 ∈ 𝐴 ↦ 𝑥) | |
11 | vex 3475 | . . . . 5 ⊢ 𝑥 ∈ V | |
12 | 11 | fnasrn 7154 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↦ 𝑥) = ran (𝑥 ∈ 𝐴 ↦ ⟨𝑥, 𝑥⟩) |
13 | 10, 12 | eqtri 2756 | . . 3 ⊢ ( I ↾ 𝐴) = ran (𝑥 ∈ 𝐴 ↦ ⟨𝑥, 𝑥⟩) |
14 | 13 | sseq1i 4008 | . 2 ⊢ (( I ↾ 𝐴) ⊆ 𝑅 ↔ ran (𝑥 ∈ 𝐴 ↦ ⟨𝑥, 𝑥⟩) ⊆ 𝑅) |
15 | 7, 9, 14 | 3bitr4ri 304 | 1 ⊢ (( I ↾ 𝐴) ⊆ 𝑅 ↔ ∀𝑥 ∈ 𝐴 𝑥𝑅𝑥) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∈ wcel 2099 ∀wral 3058 ⊆ wss 3947 ⟨cop 4635 class class class wbr 5148 ↦ cmpt 5231 I cid 5575 ran crn 5679 ↾ cres 5680 Fn wfn 6543 ⟶wf 6544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 |
This theorem is referenced by: retos 21550 filnetlem2 35863 |
Copyright terms: Public domain | W3C validator |