| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > idref | Structured version Visualization version GIF version | ||
| Description: Two ways to state that a relation is reflexive on a class. (Contributed by FL, 15-Jan-2012.) (Proof shortened by Mario Carneiro, 3-Nov-2015.) (Revised by NM, 30-Mar-2016.) |
| Ref | Expression |
|---|---|
| idref | ⊢ (( I ↾ 𝐴) ⊆ 𝑅 ↔ ∀𝑥 ∈ 𝐴 𝑥𝑅𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↦ 〈𝑥, 𝑥〉) = (𝑥 ∈ 𝐴 ↦ 〈𝑥, 𝑥〉) | |
| 2 | 1 | fmpt 7082 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 〈𝑥, 𝑥〉 ∈ 𝑅 ↔ (𝑥 ∈ 𝐴 ↦ 〈𝑥, 𝑥〉):𝐴⟶𝑅) |
| 3 | opex 5424 | . . . . 5 ⊢ 〈𝑥, 𝑥〉 ∈ V | |
| 4 | 3, 1 | fnmpti 6661 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↦ 〈𝑥, 𝑥〉) Fn 𝐴 |
| 5 | df-f 6515 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ↦ 〈𝑥, 𝑥〉):𝐴⟶𝑅 ↔ ((𝑥 ∈ 𝐴 ↦ 〈𝑥, 𝑥〉) Fn 𝐴 ∧ ran (𝑥 ∈ 𝐴 ↦ 〈𝑥, 𝑥〉) ⊆ 𝑅)) | |
| 6 | 4, 5 | mpbiran 709 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ↦ 〈𝑥, 𝑥〉):𝐴⟶𝑅 ↔ ran (𝑥 ∈ 𝐴 ↦ 〈𝑥, 𝑥〉) ⊆ 𝑅) |
| 7 | 2, 6 | bitri 275 | . 2 ⊢ (∀𝑥 ∈ 𝐴 〈𝑥, 𝑥〉 ∈ 𝑅 ↔ ran (𝑥 ∈ 𝐴 ↦ 〈𝑥, 𝑥〉) ⊆ 𝑅) |
| 8 | df-br 5108 | . . 3 ⊢ (𝑥𝑅𝑥 ↔ 〈𝑥, 𝑥〉 ∈ 𝑅) | |
| 9 | 8 | ralbii 3075 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝑥𝑅𝑥 ↔ ∀𝑥 ∈ 𝐴 〈𝑥, 𝑥〉 ∈ 𝑅) |
| 10 | mptresid 6022 | . . . 4 ⊢ ( I ↾ 𝐴) = (𝑥 ∈ 𝐴 ↦ 𝑥) | |
| 11 | vex 3451 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 12 | 11 | fnasrn 7117 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↦ 𝑥) = ran (𝑥 ∈ 𝐴 ↦ 〈𝑥, 𝑥〉) |
| 13 | 10, 12 | eqtri 2752 | . . 3 ⊢ ( I ↾ 𝐴) = ran (𝑥 ∈ 𝐴 ↦ 〈𝑥, 𝑥〉) |
| 14 | 13 | sseq1i 3975 | . 2 ⊢ (( I ↾ 𝐴) ⊆ 𝑅 ↔ ran (𝑥 ∈ 𝐴 ↦ 〈𝑥, 𝑥〉) ⊆ 𝑅) |
| 15 | 7, 9, 14 | 3bitr4ri 304 | 1 ⊢ (( I ↾ 𝐴) ⊆ 𝑅 ↔ ∀𝑥 ∈ 𝐴 𝑥𝑅𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2109 ∀wral 3044 ⊆ wss 3914 〈cop 4595 class class class wbr 5107 ↦ cmpt 5188 I cid 5532 ran crn 5639 ↾ cres 5640 Fn wfn 6506 ⟶wf 6507 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 |
| This theorem is referenced by: retos 21527 filnetlem2 36367 |
| Copyright terms: Public domain | W3C validator |