| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > idref | Structured version Visualization version GIF version | ||
| Description: Two ways to state that a relation is reflexive on a class. (Contributed by FL, 15-Jan-2012.) (Proof shortened by Mario Carneiro, 3-Nov-2015.) (Revised by NM, 30-Mar-2016.) |
| Ref | Expression |
|---|---|
| idref | ⊢ (( I ↾ 𝐴) ⊆ 𝑅 ↔ ∀𝑥 ∈ 𝐴 𝑥𝑅𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2734 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↦ 〈𝑥, 𝑥〉) = (𝑥 ∈ 𝐴 ↦ 〈𝑥, 𝑥〉) | |
| 2 | 1 | fmpt 7111 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 〈𝑥, 𝑥〉 ∈ 𝑅 ↔ (𝑥 ∈ 𝐴 ↦ 〈𝑥, 𝑥〉):𝐴⟶𝑅) |
| 3 | opex 5451 | . . . . 5 ⊢ 〈𝑥, 𝑥〉 ∈ V | |
| 4 | 3, 1 | fnmpti 6692 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↦ 〈𝑥, 𝑥〉) Fn 𝐴 |
| 5 | df-f 6546 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ↦ 〈𝑥, 𝑥〉):𝐴⟶𝑅 ↔ ((𝑥 ∈ 𝐴 ↦ 〈𝑥, 𝑥〉) Fn 𝐴 ∧ ran (𝑥 ∈ 𝐴 ↦ 〈𝑥, 𝑥〉) ⊆ 𝑅)) | |
| 6 | 4, 5 | mpbiran 709 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ↦ 〈𝑥, 𝑥〉):𝐴⟶𝑅 ↔ ran (𝑥 ∈ 𝐴 ↦ 〈𝑥, 𝑥〉) ⊆ 𝑅) |
| 7 | 2, 6 | bitri 275 | . 2 ⊢ (∀𝑥 ∈ 𝐴 〈𝑥, 𝑥〉 ∈ 𝑅 ↔ ran (𝑥 ∈ 𝐴 ↦ 〈𝑥, 𝑥〉) ⊆ 𝑅) |
| 8 | df-br 5126 | . . 3 ⊢ (𝑥𝑅𝑥 ↔ 〈𝑥, 𝑥〉 ∈ 𝑅) | |
| 9 | 8 | ralbii 3081 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝑥𝑅𝑥 ↔ ∀𝑥 ∈ 𝐴 〈𝑥, 𝑥〉 ∈ 𝑅) |
| 10 | mptresid 6051 | . . . 4 ⊢ ( I ↾ 𝐴) = (𝑥 ∈ 𝐴 ↦ 𝑥) | |
| 11 | vex 3468 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 12 | 11 | fnasrn 7146 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↦ 𝑥) = ran (𝑥 ∈ 𝐴 ↦ 〈𝑥, 𝑥〉) |
| 13 | 10, 12 | eqtri 2757 | . . 3 ⊢ ( I ↾ 𝐴) = ran (𝑥 ∈ 𝐴 ↦ 〈𝑥, 𝑥〉) |
| 14 | 13 | sseq1i 3994 | . 2 ⊢ (( I ↾ 𝐴) ⊆ 𝑅 ↔ ran (𝑥 ∈ 𝐴 ↦ 〈𝑥, 𝑥〉) ⊆ 𝑅) |
| 15 | 7, 9, 14 | 3bitr4ri 304 | 1 ⊢ (( I ↾ 𝐴) ⊆ 𝑅 ↔ ∀𝑥 ∈ 𝐴 𝑥𝑅𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2107 ∀wral 3050 ⊆ wss 3933 〈cop 4614 class class class wbr 5125 ↦ cmpt 5207 I cid 5559 ran crn 5668 ↾ cres 5669 Fn wfn 6537 ⟶wf 6538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pr 5414 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-nul 4316 df-if 4508 df-sn 4609 df-pr 4611 df-op 4615 df-iun 4975 df-br 5126 df-opab 5188 df-mpt 5208 df-id 5560 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 |
| This theorem is referenced by: retos 21603 filnetlem2 36321 |
| Copyright terms: Public domain | W3C validator |