![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > idref | Structured version Visualization version GIF version |
Description: Two ways to state that a relation is reflexive on a class. (Contributed by FL, 15-Jan-2012.) (Proof shortened by Mario Carneiro, 3-Nov-2015.) (Revised by NM, 30-Mar-2016.) |
Ref | Expression |
---|---|
idref | ⊢ (( I ↾ 𝐴) ⊆ 𝑅 ↔ ∀𝑥 ∈ 𝐴 𝑥𝑅𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↦ 〈𝑥, 𝑥〉) = (𝑥 ∈ 𝐴 ↦ 〈𝑥, 𝑥〉) | |
2 | 1 | fmpt 7144 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 〈𝑥, 𝑥〉 ∈ 𝑅 ↔ (𝑥 ∈ 𝐴 ↦ 〈𝑥, 𝑥〉):𝐴⟶𝑅) |
3 | opex 5484 | . . . . 5 ⊢ 〈𝑥, 𝑥〉 ∈ V | |
4 | 3, 1 | fnmpti 6723 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↦ 〈𝑥, 𝑥〉) Fn 𝐴 |
5 | df-f 6577 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ↦ 〈𝑥, 𝑥〉):𝐴⟶𝑅 ↔ ((𝑥 ∈ 𝐴 ↦ 〈𝑥, 𝑥〉) Fn 𝐴 ∧ ran (𝑥 ∈ 𝐴 ↦ 〈𝑥, 𝑥〉) ⊆ 𝑅)) | |
6 | 4, 5 | mpbiran 708 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ↦ 〈𝑥, 𝑥〉):𝐴⟶𝑅 ↔ ran (𝑥 ∈ 𝐴 ↦ 〈𝑥, 𝑥〉) ⊆ 𝑅) |
7 | 2, 6 | bitri 275 | . 2 ⊢ (∀𝑥 ∈ 𝐴 〈𝑥, 𝑥〉 ∈ 𝑅 ↔ ran (𝑥 ∈ 𝐴 ↦ 〈𝑥, 𝑥〉) ⊆ 𝑅) |
8 | df-br 5167 | . . 3 ⊢ (𝑥𝑅𝑥 ↔ 〈𝑥, 𝑥〉 ∈ 𝑅) | |
9 | 8 | ralbii 3099 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝑥𝑅𝑥 ↔ ∀𝑥 ∈ 𝐴 〈𝑥, 𝑥〉 ∈ 𝑅) |
10 | mptresid 6080 | . . . 4 ⊢ ( I ↾ 𝐴) = (𝑥 ∈ 𝐴 ↦ 𝑥) | |
11 | vex 3492 | . . . . 5 ⊢ 𝑥 ∈ V | |
12 | 11 | fnasrn 7179 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↦ 𝑥) = ran (𝑥 ∈ 𝐴 ↦ 〈𝑥, 𝑥〉) |
13 | 10, 12 | eqtri 2768 | . . 3 ⊢ ( I ↾ 𝐴) = ran (𝑥 ∈ 𝐴 ↦ 〈𝑥, 𝑥〉) |
14 | 13 | sseq1i 4037 | . 2 ⊢ (( I ↾ 𝐴) ⊆ 𝑅 ↔ ran (𝑥 ∈ 𝐴 ↦ 〈𝑥, 𝑥〉) ⊆ 𝑅) |
15 | 7, 9, 14 | 3bitr4ri 304 | 1 ⊢ (( I ↾ 𝐴) ⊆ 𝑅 ↔ ∀𝑥 ∈ 𝐴 𝑥𝑅𝑥) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∈ wcel 2108 ∀wral 3067 ⊆ wss 3976 〈cop 4654 class class class wbr 5166 ↦ cmpt 5249 I cid 5592 ran crn 5701 ↾ cres 5702 Fn wfn 6568 ⟶wf 6569 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 |
This theorem is referenced by: retos 21659 filnetlem2 36345 |
Copyright terms: Public domain | W3C validator |