![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > idref | Structured version Visualization version GIF version |
Description: Two ways to state that a relation is reflexive on a class. (Contributed by FL, 15-Jan-2012.) (Proof shortened by Mario Carneiro, 3-Nov-2015.) (Revised by NM, 30-Mar-2016.) |
Ref | Expression |
---|---|
idref | ⊢ (( I ↾ 𝐴) ⊆ 𝑅 ↔ ∀𝑥 ∈ 𝐴 𝑥𝑅𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2732 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↦ ⟨𝑥, 𝑥⟩) = (𝑥 ∈ 𝐴 ↦ ⟨𝑥, 𝑥⟩) | |
2 | 1 | fmpt 7106 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ⟨𝑥, 𝑥⟩ ∈ 𝑅 ↔ (𝑥 ∈ 𝐴 ↦ ⟨𝑥, 𝑥⟩):𝐴⟶𝑅) |
3 | opex 5463 | . . . . 5 ⊢ ⟨𝑥, 𝑥⟩ ∈ V | |
4 | 3, 1 | fnmpti 6690 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↦ ⟨𝑥, 𝑥⟩) Fn 𝐴 |
5 | df-f 6544 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ↦ ⟨𝑥, 𝑥⟩):𝐴⟶𝑅 ↔ ((𝑥 ∈ 𝐴 ↦ ⟨𝑥, 𝑥⟩) Fn 𝐴 ∧ ran (𝑥 ∈ 𝐴 ↦ ⟨𝑥, 𝑥⟩) ⊆ 𝑅)) | |
6 | 4, 5 | mpbiran 707 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ↦ ⟨𝑥, 𝑥⟩):𝐴⟶𝑅 ↔ ran (𝑥 ∈ 𝐴 ↦ ⟨𝑥, 𝑥⟩) ⊆ 𝑅) |
7 | 2, 6 | bitri 274 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ⟨𝑥, 𝑥⟩ ∈ 𝑅 ↔ ran (𝑥 ∈ 𝐴 ↦ ⟨𝑥, 𝑥⟩) ⊆ 𝑅) |
8 | df-br 5148 | . . 3 ⊢ (𝑥𝑅𝑥 ↔ ⟨𝑥, 𝑥⟩ ∈ 𝑅) | |
9 | 8 | ralbii 3093 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝑥𝑅𝑥 ↔ ∀𝑥 ∈ 𝐴 ⟨𝑥, 𝑥⟩ ∈ 𝑅) |
10 | mptresid 6048 | . . . 4 ⊢ ( I ↾ 𝐴) = (𝑥 ∈ 𝐴 ↦ 𝑥) | |
11 | vex 3478 | . . . . 5 ⊢ 𝑥 ∈ V | |
12 | 11 | fnasrn 7139 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↦ 𝑥) = ran (𝑥 ∈ 𝐴 ↦ ⟨𝑥, 𝑥⟩) |
13 | 10, 12 | eqtri 2760 | . . 3 ⊢ ( I ↾ 𝐴) = ran (𝑥 ∈ 𝐴 ↦ ⟨𝑥, 𝑥⟩) |
14 | 13 | sseq1i 4009 | . 2 ⊢ (( I ↾ 𝐴) ⊆ 𝑅 ↔ ran (𝑥 ∈ 𝐴 ↦ ⟨𝑥, 𝑥⟩) ⊆ 𝑅) |
15 | 7, 9, 14 | 3bitr4ri 303 | 1 ⊢ (( I ↾ 𝐴) ⊆ 𝑅 ↔ ∀𝑥 ∈ 𝐴 𝑥𝑅𝑥) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∈ wcel 2106 ∀wral 3061 ⊆ wss 3947 ⟨cop 4633 class class class wbr 5147 ↦ cmpt 5230 I cid 5572 ran crn 5676 ↾ cres 5677 Fn wfn 6535 ⟶wf 6536 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 |
This theorem is referenced by: retos 21162 filnetlem2 35252 |
Copyright terms: Public domain | W3C validator |