Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrge00 Structured version   Visualization version   GIF version

Theorem xrge00 32926
Description: The zero of the extended nonnegative real numbers monoid. (Contributed by Thierry Arnoux, 30-Jan-2017.)
Assertion
Ref Expression
xrge00 0 = (0g‘(ℝ*𝑠s (0[,]+∞)))

Proof of Theorem xrge00
StepHypRef Expression
1 eqid 2729 . . 3 (ℝ*𝑠s (ℝ* ∖ {-∞})) = (ℝ*𝑠s (ℝ* ∖ {-∞}))
21xrs1mnd 21297 . 2 (ℝ*𝑠s (ℝ* ∖ {-∞})) ∈ Mnd
3 xrge0cmn 21301 . . 3 (ℝ*𝑠s (0[,]+∞)) ∈ CMnd
4 cmnmnd 19703 . . 3 ((ℝ*𝑠s (0[,]+∞)) ∈ CMnd → (ℝ*𝑠s (0[,]+∞)) ∈ Mnd)
53, 4ax-mp 5 . 2 (ℝ*𝑠s (0[,]+∞)) ∈ Mnd
6 mnflt0 13061 . . . . . . 7 -∞ < 0
7 mnfxr 11207 . . . . . . . 8 -∞ ∈ ℝ*
8 0xr 11197 . . . . . . . 8 0 ∈ ℝ*
9 xrltnle 11217 . . . . . . . 8 ((-∞ ∈ ℝ* ∧ 0 ∈ ℝ*) → (-∞ < 0 ↔ ¬ 0 ≤ -∞))
107, 8, 9mp2an 692 . . . . . . 7 (-∞ < 0 ↔ ¬ 0 ≤ -∞)
116, 10mpbi 230 . . . . . 6 ¬ 0 ≤ -∞
1211intnan 486 . . . . 5 ¬ (-∞ ∈ ℝ* ∧ 0 ≤ -∞)
13 elxrge0 13394 . . . . 5 (-∞ ∈ (0[,]+∞) ↔ (-∞ ∈ ℝ* ∧ 0 ≤ -∞))
1412, 13mtbir 323 . . . 4 ¬ -∞ ∈ (0[,]+∞)
15 difsn 4758 . . . 4 (¬ -∞ ∈ (0[,]+∞) → ((0[,]+∞) ∖ {-∞}) = (0[,]+∞))
1614, 15ax-mp 5 . . 3 ((0[,]+∞) ∖ {-∞}) = (0[,]+∞)
17 iccssxr 13367 . . . 4 (0[,]+∞) ⊆ ℝ*
18 ssdif 4103 . . . 4 ((0[,]+∞) ⊆ ℝ* → ((0[,]+∞) ∖ {-∞}) ⊆ (ℝ* ∖ {-∞}))
1917, 18ax-mp 5 . . 3 ((0[,]+∞) ∖ {-∞}) ⊆ (ℝ* ∖ {-∞})
2016, 19eqsstrri 3991 . 2 (0[,]+∞) ⊆ (ℝ* ∖ {-∞})
21 0e0iccpnf 13396 . 2 0 ∈ (0[,]+∞)
22 difss 4095 . . . . 5 (ℝ* ∖ {-∞}) ⊆ ℝ*
23 dfss2 3929 . . . . 5 ((ℝ* ∖ {-∞}) ⊆ ℝ* ↔ ((ℝ* ∖ {-∞}) ∩ ℝ*) = (ℝ* ∖ {-∞}))
2422, 23mpbi 230 . . . 4 ((ℝ* ∖ {-∞}) ∩ ℝ*) = (ℝ* ∖ {-∞})
25 xrex 12922 . . . . . 6 * ∈ V
26 difexg 5279 . . . . . 6 (ℝ* ∈ V → (ℝ* ∖ {-∞}) ∈ V)
2725, 26ax-mp 5 . . . . 5 (ℝ* ∖ {-∞}) ∈ V
28 xrsbas 21271 . . . . . 6 * = (Base‘ℝ*𝑠)
291, 28ressbas 17182 . . . . 5 ((ℝ* ∖ {-∞}) ∈ V → ((ℝ* ∖ {-∞}) ∩ ℝ*) = (Base‘(ℝ*𝑠s (ℝ* ∖ {-∞}))))
3027, 29ax-mp 5 . . . 4 ((ℝ* ∖ {-∞}) ∩ ℝ*) = (Base‘(ℝ*𝑠s (ℝ* ∖ {-∞})))
3124, 30eqtr3i 2754 . . 3 (ℝ* ∖ {-∞}) = (Base‘(ℝ*𝑠s (ℝ* ∖ {-∞})))
321xrs10 21298 . . 3 0 = (0g‘(ℝ*𝑠s (ℝ* ∖ {-∞})))
33 ovex 7402 . . . . 5 (0[,]+∞) ∈ V
34 ressress 17193 . . . . 5 (((ℝ* ∖ {-∞}) ∈ V ∧ (0[,]+∞) ∈ V) → ((ℝ*𝑠s (ℝ* ∖ {-∞})) ↾s (0[,]+∞)) = (ℝ*𝑠s ((ℝ* ∖ {-∞}) ∩ (0[,]+∞))))
3527, 33, 34mp2an 692 . . . 4 ((ℝ*𝑠s (ℝ* ∖ {-∞})) ↾s (0[,]+∞)) = (ℝ*𝑠s ((ℝ* ∖ {-∞}) ∩ (0[,]+∞)))
36 dfss 3930 . . . . . . 7 ((0[,]+∞) ⊆ (ℝ* ∖ {-∞}) ↔ (0[,]+∞) = ((0[,]+∞) ∩ (ℝ* ∖ {-∞})))
3720, 36mpbi 230 . . . . . 6 (0[,]+∞) = ((0[,]+∞) ∩ (ℝ* ∖ {-∞}))
38 incom 4168 . . . . . 6 ((0[,]+∞) ∩ (ℝ* ∖ {-∞})) = ((ℝ* ∖ {-∞}) ∩ (0[,]+∞))
3937, 38eqtr2i 2753 . . . . 5 ((ℝ* ∖ {-∞}) ∩ (0[,]+∞)) = (0[,]+∞)
4039oveq2i 7380 . . . 4 (ℝ*𝑠s ((ℝ* ∖ {-∞}) ∩ (0[,]+∞))) = (ℝ*𝑠s (0[,]+∞))
4135, 40eqtr2i 2753 . . 3 (ℝ*𝑠s (0[,]+∞)) = ((ℝ*𝑠s (ℝ* ∖ {-∞})) ↾s (0[,]+∞))
4231, 32, 41submnd0 18666 . 2 ((((ℝ*𝑠s (ℝ* ∖ {-∞})) ∈ Mnd ∧ (ℝ*𝑠s (0[,]+∞)) ∈ Mnd) ∧ ((0[,]+∞) ⊆ (ℝ* ∖ {-∞}) ∧ 0 ∈ (0[,]+∞))) → 0 = (0g‘(ℝ*𝑠s (0[,]+∞))))
432, 5, 20, 21, 42mp4an 693 1 0 = (0g‘(ℝ*𝑠s (0[,]+∞)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395   = wceq 1540  wcel 2109  Vcvv 3444  cdif 3908  cin 3910  wss 3911  {csn 4585   class class class wbr 5102  cfv 6499  (class class class)co 7369  0cc0 11044  +∞cpnf 11181  -∞cmnf 11182  *cxr 11183   < clt 11184  cle 11185  [,]cicc 13285  Basecbs 17155  s cress 17176  0gc0g 17378  *𝑠cxrs 17439  Mndcmnd 18637  CMndccmn 19686
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-xadd 13049  df-icc 13289  df-fz 13445  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-tset 17215  df-ple 17216  df-ds 17218  df-0g 17380  df-xrs 17441  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-submnd 18687  df-cmn 19688
This theorem is referenced by:  xrge0mulgnn0  32929  xrge0slmod  33292  xrge0iifmhm  33902  esumgsum  34008  esumnul  34011  esum0  34012  gsumesum  34022  esumsnf  34027  esumss  34035  esumpfinval  34038  esumpfinvalf  34039  esumcocn  34043  sitmcl  34315
  Copyright terms: Public domain W3C validator