Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrge00 Structured version   Visualization version   GIF version

Theorem xrge00 32953
Description: The zero of the extended nonnegative real numbers monoid. (Contributed by Thierry Arnoux, 30-Jan-2017.)
Assertion
Ref Expression
xrge00 0 = (0g‘(ℝ*𝑠s (0[,]+∞)))

Proof of Theorem xrge00
StepHypRef Expression
1 eqid 2729 . . 3 (ℝ*𝑠s (ℝ* ∖ {-∞})) = (ℝ*𝑠s (ℝ* ∖ {-∞}))
21xrs1mnd 21321 . 2 (ℝ*𝑠s (ℝ* ∖ {-∞})) ∈ Mnd
3 xrge0cmn 21325 . . 3 (ℝ*𝑠s (0[,]+∞)) ∈ CMnd
4 cmnmnd 19727 . . 3 ((ℝ*𝑠s (0[,]+∞)) ∈ CMnd → (ℝ*𝑠s (0[,]+∞)) ∈ Mnd)
53, 4ax-mp 5 . 2 (ℝ*𝑠s (0[,]+∞)) ∈ Mnd
6 mnflt0 13085 . . . . . . 7 -∞ < 0
7 mnfxr 11231 . . . . . . . 8 -∞ ∈ ℝ*
8 0xr 11221 . . . . . . . 8 0 ∈ ℝ*
9 xrltnle 11241 . . . . . . . 8 ((-∞ ∈ ℝ* ∧ 0 ∈ ℝ*) → (-∞ < 0 ↔ ¬ 0 ≤ -∞))
107, 8, 9mp2an 692 . . . . . . 7 (-∞ < 0 ↔ ¬ 0 ≤ -∞)
116, 10mpbi 230 . . . . . 6 ¬ 0 ≤ -∞
1211intnan 486 . . . . 5 ¬ (-∞ ∈ ℝ* ∧ 0 ≤ -∞)
13 elxrge0 13418 . . . . 5 (-∞ ∈ (0[,]+∞) ↔ (-∞ ∈ ℝ* ∧ 0 ≤ -∞))
1412, 13mtbir 323 . . . 4 ¬ -∞ ∈ (0[,]+∞)
15 difsn 4762 . . . 4 (¬ -∞ ∈ (0[,]+∞) → ((0[,]+∞) ∖ {-∞}) = (0[,]+∞))
1614, 15ax-mp 5 . . 3 ((0[,]+∞) ∖ {-∞}) = (0[,]+∞)
17 iccssxr 13391 . . . 4 (0[,]+∞) ⊆ ℝ*
18 ssdif 4107 . . . 4 ((0[,]+∞) ⊆ ℝ* → ((0[,]+∞) ∖ {-∞}) ⊆ (ℝ* ∖ {-∞}))
1917, 18ax-mp 5 . . 3 ((0[,]+∞) ∖ {-∞}) ⊆ (ℝ* ∖ {-∞})
2016, 19eqsstrri 3994 . 2 (0[,]+∞) ⊆ (ℝ* ∖ {-∞})
21 0e0iccpnf 13420 . 2 0 ∈ (0[,]+∞)
22 difss 4099 . . . . 5 (ℝ* ∖ {-∞}) ⊆ ℝ*
23 dfss2 3932 . . . . 5 ((ℝ* ∖ {-∞}) ⊆ ℝ* ↔ ((ℝ* ∖ {-∞}) ∩ ℝ*) = (ℝ* ∖ {-∞}))
2422, 23mpbi 230 . . . 4 ((ℝ* ∖ {-∞}) ∩ ℝ*) = (ℝ* ∖ {-∞})
25 xrex 12946 . . . . . 6 * ∈ V
26 difexg 5284 . . . . . 6 (ℝ* ∈ V → (ℝ* ∖ {-∞}) ∈ V)
2725, 26ax-mp 5 . . . . 5 (ℝ* ∖ {-∞}) ∈ V
28 xrsbas 21295 . . . . . 6 * = (Base‘ℝ*𝑠)
291, 28ressbas 17206 . . . . 5 ((ℝ* ∖ {-∞}) ∈ V → ((ℝ* ∖ {-∞}) ∩ ℝ*) = (Base‘(ℝ*𝑠s (ℝ* ∖ {-∞}))))
3027, 29ax-mp 5 . . . 4 ((ℝ* ∖ {-∞}) ∩ ℝ*) = (Base‘(ℝ*𝑠s (ℝ* ∖ {-∞})))
3124, 30eqtr3i 2754 . . 3 (ℝ* ∖ {-∞}) = (Base‘(ℝ*𝑠s (ℝ* ∖ {-∞})))
321xrs10 21322 . . 3 0 = (0g‘(ℝ*𝑠s (ℝ* ∖ {-∞})))
33 ovex 7420 . . . . 5 (0[,]+∞) ∈ V
34 ressress 17217 . . . . 5 (((ℝ* ∖ {-∞}) ∈ V ∧ (0[,]+∞) ∈ V) → ((ℝ*𝑠s (ℝ* ∖ {-∞})) ↾s (0[,]+∞)) = (ℝ*𝑠s ((ℝ* ∖ {-∞}) ∩ (0[,]+∞))))
3527, 33, 34mp2an 692 . . . 4 ((ℝ*𝑠s (ℝ* ∖ {-∞})) ↾s (0[,]+∞)) = (ℝ*𝑠s ((ℝ* ∖ {-∞}) ∩ (0[,]+∞)))
36 dfss 3933 . . . . . . 7 ((0[,]+∞) ⊆ (ℝ* ∖ {-∞}) ↔ (0[,]+∞) = ((0[,]+∞) ∩ (ℝ* ∖ {-∞})))
3720, 36mpbi 230 . . . . . 6 (0[,]+∞) = ((0[,]+∞) ∩ (ℝ* ∖ {-∞}))
38 incom 4172 . . . . . 6 ((0[,]+∞) ∩ (ℝ* ∖ {-∞})) = ((ℝ* ∖ {-∞}) ∩ (0[,]+∞))
3937, 38eqtr2i 2753 . . . . 5 ((ℝ* ∖ {-∞}) ∩ (0[,]+∞)) = (0[,]+∞)
4039oveq2i 7398 . . . 4 (ℝ*𝑠s ((ℝ* ∖ {-∞}) ∩ (0[,]+∞))) = (ℝ*𝑠s (0[,]+∞))
4135, 40eqtr2i 2753 . . 3 (ℝ*𝑠s (0[,]+∞)) = ((ℝ*𝑠s (ℝ* ∖ {-∞})) ↾s (0[,]+∞))
4231, 32, 41submnd0 18690 . 2 ((((ℝ*𝑠s (ℝ* ∖ {-∞})) ∈ Mnd ∧ (ℝ*𝑠s (0[,]+∞)) ∈ Mnd) ∧ ((0[,]+∞) ⊆ (ℝ* ∖ {-∞}) ∧ 0 ∈ (0[,]+∞))) → 0 = (0g‘(ℝ*𝑠s (0[,]+∞))))
432, 5, 20, 21, 42mp4an 693 1 0 = (0g‘(ℝ*𝑠s (0[,]+∞)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395   = wceq 1540  wcel 2109  Vcvv 3447  cdif 3911  cin 3913  wss 3914  {csn 4589   class class class wbr 5107  cfv 6511  (class class class)co 7387  0cc0 11068  +∞cpnf 11205  -∞cmnf 11206  *cxr 11207   < clt 11208  cle 11209  [,]cicc 13309  Basecbs 17179  s cress 17200  0gc0g 17402  *𝑠cxrs 17463  Mndcmnd 18661  CMndccmn 19710
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-xadd 13073  df-icc 13313  df-fz 13469  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-tset 17239  df-ple 17240  df-ds 17242  df-0g 17404  df-xrs 17465  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-cmn 19712
This theorem is referenced by:  xrge0mulgnn0  32956  xrge0slmod  33319  xrge0iifmhm  33929  esumgsum  34035  esumnul  34038  esum0  34039  gsumesum  34049  esumsnf  34054  esumss  34062  esumpfinval  34065  esumpfinvalf  34066  esumcocn  34070  sitmcl  34342
  Copyright terms: Public domain W3C validator