![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > xrge00 | Structured version Visualization version GIF version |
Description: The zero of the extended nonnegative real numbers monoid. (Contributed by Thierry Arnoux, 30-Jan-2017.) |
Ref | Expression |
---|---|
xrge00 | ⊢ 0 = (0g‘(ℝ*𝑠 ↾s (0[,]+∞))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2732 | . . 3 ⊢ (ℝ*𝑠 ↾s (ℝ* ∖ {-∞})) = (ℝ*𝑠 ↾s (ℝ* ∖ {-∞})) | |
2 | 1 | xrs1mnd 21183 | . 2 ⊢ (ℝ*𝑠 ↾s (ℝ* ∖ {-∞})) ∈ Mnd |
3 | xrge0cmn 21187 | . . 3 ⊢ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ CMnd | |
4 | cmnmnd 19706 | . . 3 ⊢ ((ℝ*𝑠 ↾s (0[,]+∞)) ∈ CMnd → (ℝ*𝑠 ↾s (0[,]+∞)) ∈ Mnd) | |
5 | 3, 4 | ax-mp 5 | . 2 ⊢ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ Mnd |
6 | mnflt0 13109 | . . . . . . 7 ⊢ -∞ < 0 | |
7 | mnfxr 11275 | . . . . . . . 8 ⊢ -∞ ∈ ℝ* | |
8 | 0xr 11265 | . . . . . . . 8 ⊢ 0 ∈ ℝ* | |
9 | xrltnle 11285 | . . . . . . . 8 ⊢ ((-∞ ∈ ℝ* ∧ 0 ∈ ℝ*) → (-∞ < 0 ↔ ¬ 0 ≤ -∞)) | |
10 | 7, 8, 9 | mp2an 690 | . . . . . . 7 ⊢ (-∞ < 0 ↔ ¬ 0 ≤ -∞) |
11 | 6, 10 | mpbi 229 | . . . . . 6 ⊢ ¬ 0 ≤ -∞ |
12 | 11 | intnan 487 | . . . . 5 ⊢ ¬ (-∞ ∈ ℝ* ∧ 0 ≤ -∞) |
13 | elxrge0 13438 | . . . . 5 ⊢ (-∞ ∈ (0[,]+∞) ↔ (-∞ ∈ ℝ* ∧ 0 ≤ -∞)) | |
14 | 12, 13 | mtbir 322 | . . . 4 ⊢ ¬ -∞ ∈ (0[,]+∞) |
15 | difsn 4801 | . . . 4 ⊢ (¬ -∞ ∈ (0[,]+∞) → ((0[,]+∞) ∖ {-∞}) = (0[,]+∞)) | |
16 | 14, 15 | ax-mp 5 | . . 3 ⊢ ((0[,]+∞) ∖ {-∞}) = (0[,]+∞) |
17 | iccssxr 13411 | . . . 4 ⊢ (0[,]+∞) ⊆ ℝ* | |
18 | ssdif 4139 | . . . 4 ⊢ ((0[,]+∞) ⊆ ℝ* → ((0[,]+∞) ∖ {-∞}) ⊆ (ℝ* ∖ {-∞})) | |
19 | 17, 18 | ax-mp 5 | . . 3 ⊢ ((0[,]+∞) ∖ {-∞}) ⊆ (ℝ* ∖ {-∞}) |
20 | 16, 19 | eqsstrri 4017 | . 2 ⊢ (0[,]+∞) ⊆ (ℝ* ∖ {-∞}) |
21 | 0e0iccpnf 13440 | . 2 ⊢ 0 ∈ (0[,]+∞) | |
22 | difss 4131 | . . . . 5 ⊢ (ℝ* ∖ {-∞}) ⊆ ℝ* | |
23 | df-ss 3965 | . . . . 5 ⊢ ((ℝ* ∖ {-∞}) ⊆ ℝ* ↔ ((ℝ* ∖ {-∞}) ∩ ℝ*) = (ℝ* ∖ {-∞})) | |
24 | 22, 23 | mpbi 229 | . . . 4 ⊢ ((ℝ* ∖ {-∞}) ∩ ℝ*) = (ℝ* ∖ {-∞}) |
25 | xrex 12975 | . . . . . 6 ⊢ ℝ* ∈ V | |
26 | difexg 5327 | . . . . . 6 ⊢ (ℝ* ∈ V → (ℝ* ∖ {-∞}) ∈ V) | |
27 | 25, 26 | ax-mp 5 | . . . . 5 ⊢ (ℝ* ∖ {-∞}) ∈ V |
28 | xrsbas 21161 | . . . . . 6 ⊢ ℝ* = (Base‘ℝ*𝑠) | |
29 | 1, 28 | ressbas 17183 | . . . . 5 ⊢ ((ℝ* ∖ {-∞}) ∈ V → ((ℝ* ∖ {-∞}) ∩ ℝ*) = (Base‘(ℝ*𝑠 ↾s (ℝ* ∖ {-∞})))) |
30 | 27, 29 | ax-mp 5 | . . . 4 ⊢ ((ℝ* ∖ {-∞}) ∩ ℝ*) = (Base‘(ℝ*𝑠 ↾s (ℝ* ∖ {-∞}))) |
31 | 24, 30 | eqtr3i 2762 | . . 3 ⊢ (ℝ* ∖ {-∞}) = (Base‘(ℝ*𝑠 ↾s (ℝ* ∖ {-∞}))) |
32 | 1 | xrs10 21184 | . . 3 ⊢ 0 = (0g‘(ℝ*𝑠 ↾s (ℝ* ∖ {-∞}))) |
33 | ovex 7444 | . . . . 5 ⊢ (0[,]+∞) ∈ V | |
34 | ressress 17197 | . . . . 5 ⊢ (((ℝ* ∖ {-∞}) ∈ V ∧ (0[,]+∞) ∈ V) → ((ℝ*𝑠 ↾s (ℝ* ∖ {-∞})) ↾s (0[,]+∞)) = (ℝ*𝑠 ↾s ((ℝ* ∖ {-∞}) ∩ (0[,]+∞)))) | |
35 | 27, 33, 34 | mp2an 690 | . . . 4 ⊢ ((ℝ*𝑠 ↾s (ℝ* ∖ {-∞})) ↾s (0[,]+∞)) = (ℝ*𝑠 ↾s ((ℝ* ∖ {-∞}) ∩ (0[,]+∞))) |
36 | dfss 3966 | . . . . . . 7 ⊢ ((0[,]+∞) ⊆ (ℝ* ∖ {-∞}) ↔ (0[,]+∞) = ((0[,]+∞) ∩ (ℝ* ∖ {-∞}))) | |
37 | 20, 36 | mpbi 229 | . . . . . 6 ⊢ (0[,]+∞) = ((0[,]+∞) ∩ (ℝ* ∖ {-∞})) |
38 | incom 4201 | . . . . . 6 ⊢ ((0[,]+∞) ∩ (ℝ* ∖ {-∞})) = ((ℝ* ∖ {-∞}) ∩ (0[,]+∞)) | |
39 | 37, 38 | eqtr2i 2761 | . . . . 5 ⊢ ((ℝ* ∖ {-∞}) ∩ (0[,]+∞)) = (0[,]+∞) |
40 | 39 | oveq2i 7422 | . . . 4 ⊢ (ℝ*𝑠 ↾s ((ℝ* ∖ {-∞}) ∩ (0[,]+∞))) = (ℝ*𝑠 ↾s (0[,]+∞)) |
41 | 35, 40 | eqtr2i 2761 | . . 3 ⊢ (ℝ*𝑠 ↾s (0[,]+∞)) = ((ℝ*𝑠 ↾s (ℝ* ∖ {-∞})) ↾s (0[,]+∞)) |
42 | 31, 32, 41 | submnd0 18688 | . 2 ⊢ ((((ℝ*𝑠 ↾s (ℝ* ∖ {-∞})) ∈ Mnd ∧ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ Mnd) ∧ ((0[,]+∞) ⊆ (ℝ* ∖ {-∞}) ∧ 0 ∈ (0[,]+∞))) → 0 = (0g‘(ℝ*𝑠 ↾s (0[,]+∞)))) |
43 | 2, 5, 20, 21, 42 | mp4an 691 | 1 ⊢ 0 = (0g‘(ℝ*𝑠 ↾s (0[,]+∞))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 Vcvv 3474 ∖ cdif 3945 ∩ cin 3947 ⊆ wss 3948 {csn 4628 class class class wbr 5148 ‘cfv 6543 (class class class)co 7411 0cc0 11112 +∞cpnf 11249 -∞cmnf 11250 ℝ*cxr 11251 < clt 11252 ≤ cle 11253 [,]cicc 13331 Basecbs 17148 ↾s cress 17177 0gc0g 17389 ℝ*𝑠cxrs 17450 Mndcmnd 18659 CMndccmn 19689 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-1st 7977 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-1o 8468 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-2 12279 df-3 12280 df-4 12281 df-5 12282 df-6 12283 df-7 12284 df-8 12285 df-9 12286 df-n0 12477 df-z 12563 df-dec 12682 df-uz 12827 df-xadd 13097 df-icc 13335 df-fz 13489 df-struct 17084 df-sets 17101 df-slot 17119 df-ndx 17131 df-base 17149 df-ress 17178 df-plusg 17214 df-mulr 17215 df-tset 17220 df-ple 17221 df-ds 17223 df-0g 17391 df-xrs 17452 df-mgm 18565 df-sgrp 18644 df-mnd 18660 df-submnd 18706 df-cmn 19691 |
This theorem is referenced by: xrge0mulgnn0 32445 xrge0slmod 32721 xrge0iifmhm 33205 esumgsum 33329 esumnul 33332 esum0 33333 gsumesum 33343 esumsnf 33348 esumss 33356 esumpfinval 33359 esumpfinvalf 33360 esumcocn 33364 sitmcl 33636 |
Copyright terms: Public domain | W3C validator |