| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > xrge00 | Structured version Visualization version GIF version | ||
| Description: The zero of the extended nonnegative real numbers monoid. (Contributed by Thierry Arnoux, 30-Jan-2017.) |
| Ref | Expression |
|---|---|
| xrge00 | ⊢ 0 = (0g‘(ℝ*𝑠 ↾s (0[,]+∞))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ (ℝ*𝑠 ↾s (ℝ* ∖ {-∞})) = (ℝ*𝑠 ↾s (ℝ* ∖ {-∞})) | |
| 2 | 1 | xrs1mnd 21297 | . 2 ⊢ (ℝ*𝑠 ↾s (ℝ* ∖ {-∞})) ∈ Mnd |
| 3 | xrge0cmn 21301 | . . 3 ⊢ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ CMnd | |
| 4 | cmnmnd 19703 | . . 3 ⊢ ((ℝ*𝑠 ↾s (0[,]+∞)) ∈ CMnd → (ℝ*𝑠 ↾s (0[,]+∞)) ∈ Mnd) | |
| 5 | 3, 4 | ax-mp 5 | . 2 ⊢ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ Mnd |
| 6 | mnflt0 13061 | . . . . . . 7 ⊢ -∞ < 0 | |
| 7 | mnfxr 11207 | . . . . . . . 8 ⊢ -∞ ∈ ℝ* | |
| 8 | 0xr 11197 | . . . . . . . 8 ⊢ 0 ∈ ℝ* | |
| 9 | xrltnle 11217 | . . . . . . . 8 ⊢ ((-∞ ∈ ℝ* ∧ 0 ∈ ℝ*) → (-∞ < 0 ↔ ¬ 0 ≤ -∞)) | |
| 10 | 7, 8, 9 | mp2an 692 | . . . . . . 7 ⊢ (-∞ < 0 ↔ ¬ 0 ≤ -∞) |
| 11 | 6, 10 | mpbi 230 | . . . . . 6 ⊢ ¬ 0 ≤ -∞ |
| 12 | 11 | intnan 486 | . . . . 5 ⊢ ¬ (-∞ ∈ ℝ* ∧ 0 ≤ -∞) |
| 13 | elxrge0 13394 | . . . . 5 ⊢ (-∞ ∈ (0[,]+∞) ↔ (-∞ ∈ ℝ* ∧ 0 ≤ -∞)) | |
| 14 | 12, 13 | mtbir 323 | . . . 4 ⊢ ¬ -∞ ∈ (0[,]+∞) |
| 15 | difsn 4758 | . . . 4 ⊢ (¬ -∞ ∈ (0[,]+∞) → ((0[,]+∞) ∖ {-∞}) = (0[,]+∞)) | |
| 16 | 14, 15 | ax-mp 5 | . . 3 ⊢ ((0[,]+∞) ∖ {-∞}) = (0[,]+∞) |
| 17 | iccssxr 13367 | . . . 4 ⊢ (0[,]+∞) ⊆ ℝ* | |
| 18 | ssdif 4103 | . . . 4 ⊢ ((0[,]+∞) ⊆ ℝ* → ((0[,]+∞) ∖ {-∞}) ⊆ (ℝ* ∖ {-∞})) | |
| 19 | 17, 18 | ax-mp 5 | . . 3 ⊢ ((0[,]+∞) ∖ {-∞}) ⊆ (ℝ* ∖ {-∞}) |
| 20 | 16, 19 | eqsstrri 3991 | . 2 ⊢ (0[,]+∞) ⊆ (ℝ* ∖ {-∞}) |
| 21 | 0e0iccpnf 13396 | . 2 ⊢ 0 ∈ (0[,]+∞) | |
| 22 | difss 4095 | . . . . 5 ⊢ (ℝ* ∖ {-∞}) ⊆ ℝ* | |
| 23 | dfss2 3929 | . . . . 5 ⊢ ((ℝ* ∖ {-∞}) ⊆ ℝ* ↔ ((ℝ* ∖ {-∞}) ∩ ℝ*) = (ℝ* ∖ {-∞})) | |
| 24 | 22, 23 | mpbi 230 | . . . 4 ⊢ ((ℝ* ∖ {-∞}) ∩ ℝ*) = (ℝ* ∖ {-∞}) |
| 25 | xrex 12922 | . . . . . 6 ⊢ ℝ* ∈ V | |
| 26 | difexg 5279 | . . . . . 6 ⊢ (ℝ* ∈ V → (ℝ* ∖ {-∞}) ∈ V) | |
| 27 | 25, 26 | ax-mp 5 | . . . . 5 ⊢ (ℝ* ∖ {-∞}) ∈ V |
| 28 | xrsbas 21271 | . . . . . 6 ⊢ ℝ* = (Base‘ℝ*𝑠) | |
| 29 | 1, 28 | ressbas 17182 | . . . . 5 ⊢ ((ℝ* ∖ {-∞}) ∈ V → ((ℝ* ∖ {-∞}) ∩ ℝ*) = (Base‘(ℝ*𝑠 ↾s (ℝ* ∖ {-∞})))) |
| 30 | 27, 29 | ax-mp 5 | . . . 4 ⊢ ((ℝ* ∖ {-∞}) ∩ ℝ*) = (Base‘(ℝ*𝑠 ↾s (ℝ* ∖ {-∞}))) |
| 31 | 24, 30 | eqtr3i 2754 | . . 3 ⊢ (ℝ* ∖ {-∞}) = (Base‘(ℝ*𝑠 ↾s (ℝ* ∖ {-∞}))) |
| 32 | 1 | xrs10 21298 | . . 3 ⊢ 0 = (0g‘(ℝ*𝑠 ↾s (ℝ* ∖ {-∞}))) |
| 33 | ovex 7402 | . . . . 5 ⊢ (0[,]+∞) ∈ V | |
| 34 | ressress 17193 | . . . . 5 ⊢ (((ℝ* ∖ {-∞}) ∈ V ∧ (0[,]+∞) ∈ V) → ((ℝ*𝑠 ↾s (ℝ* ∖ {-∞})) ↾s (0[,]+∞)) = (ℝ*𝑠 ↾s ((ℝ* ∖ {-∞}) ∩ (0[,]+∞)))) | |
| 35 | 27, 33, 34 | mp2an 692 | . . . 4 ⊢ ((ℝ*𝑠 ↾s (ℝ* ∖ {-∞})) ↾s (0[,]+∞)) = (ℝ*𝑠 ↾s ((ℝ* ∖ {-∞}) ∩ (0[,]+∞))) |
| 36 | dfss 3930 | . . . . . . 7 ⊢ ((0[,]+∞) ⊆ (ℝ* ∖ {-∞}) ↔ (0[,]+∞) = ((0[,]+∞) ∩ (ℝ* ∖ {-∞}))) | |
| 37 | 20, 36 | mpbi 230 | . . . . . 6 ⊢ (0[,]+∞) = ((0[,]+∞) ∩ (ℝ* ∖ {-∞})) |
| 38 | incom 4168 | . . . . . 6 ⊢ ((0[,]+∞) ∩ (ℝ* ∖ {-∞})) = ((ℝ* ∖ {-∞}) ∩ (0[,]+∞)) | |
| 39 | 37, 38 | eqtr2i 2753 | . . . . 5 ⊢ ((ℝ* ∖ {-∞}) ∩ (0[,]+∞)) = (0[,]+∞) |
| 40 | 39 | oveq2i 7380 | . . . 4 ⊢ (ℝ*𝑠 ↾s ((ℝ* ∖ {-∞}) ∩ (0[,]+∞))) = (ℝ*𝑠 ↾s (0[,]+∞)) |
| 41 | 35, 40 | eqtr2i 2753 | . . 3 ⊢ (ℝ*𝑠 ↾s (0[,]+∞)) = ((ℝ*𝑠 ↾s (ℝ* ∖ {-∞})) ↾s (0[,]+∞)) |
| 42 | 31, 32, 41 | submnd0 18666 | . 2 ⊢ ((((ℝ*𝑠 ↾s (ℝ* ∖ {-∞})) ∈ Mnd ∧ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ Mnd) ∧ ((0[,]+∞) ⊆ (ℝ* ∖ {-∞}) ∧ 0 ∈ (0[,]+∞))) → 0 = (0g‘(ℝ*𝑠 ↾s (0[,]+∞)))) |
| 43 | 2, 5, 20, 21, 42 | mp4an 693 | 1 ⊢ 0 = (0g‘(ℝ*𝑠 ↾s (0[,]+∞))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3444 ∖ cdif 3908 ∩ cin 3910 ⊆ wss 3911 {csn 4585 class class class wbr 5102 ‘cfv 6499 (class class class)co 7369 0cc0 11044 +∞cpnf 11181 -∞cmnf 11182 ℝ*cxr 11183 < clt 11184 ≤ cle 11185 [,]cicc 13285 Basecbs 17155 ↾s cress 17176 0gc0g 17378 ℝ*𝑠cxrs 17439 Mndcmnd 18637 CMndccmn 19686 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-uz 12770 df-xadd 13049 df-icc 13289 df-fz 13445 df-struct 17093 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-mulr 17210 df-tset 17215 df-ple 17216 df-ds 17218 df-0g 17380 df-xrs 17441 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-submnd 18687 df-cmn 19688 |
| This theorem is referenced by: xrge0mulgnn0 32929 xrge0slmod 33292 xrge0iifmhm 33902 esumgsum 34008 esumnul 34011 esum0 34012 gsumesum 34022 esumsnf 34027 esumss 34035 esumpfinval 34038 esumpfinvalf 34039 esumcocn 34043 sitmcl 34315 |
| Copyright terms: Public domain | W3C validator |