Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrge00 Structured version   Visualization version   GIF version

Theorem xrge00 31304
Description: The zero of the extended nonnegative real numbers monoid. (Contributed by Thierry Arnoux, 30-Jan-2017.)
Assertion
Ref Expression
xrge00 0 = (0g‘(ℝ*𝑠s (0[,]+∞)))

Proof of Theorem xrge00
StepHypRef Expression
1 eqid 2739 . . 3 (ℝ*𝑠s (ℝ* ∖ {-∞})) = (ℝ*𝑠s (ℝ* ∖ {-∞}))
21xrs1mnd 20645 . 2 (ℝ*𝑠s (ℝ* ∖ {-∞})) ∈ Mnd
3 xrge0cmn 20649 . . 3 (ℝ*𝑠s (0[,]+∞)) ∈ CMnd
4 cmnmnd 19411 . . 3 ((ℝ*𝑠s (0[,]+∞)) ∈ CMnd → (ℝ*𝑠s (0[,]+∞)) ∈ Mnd)
53, 4ax-mp 5 . 2 (ℝ*𝑠s (0[,]+∞)) ∈ Mnd
6 mnflt0 12870 . . . . . . 7 -∞ < 0
7 mnfxr 11041 . . . . . . . 8 -∞ ∈ ℝ*
8 0xr 11031 . . . . . . . 8 0 ∈ ℝ*
9 xrltnle 11051 . . . . . . . 8 ((-∞ ∈ ℝ* ∧ 0 ∈ ℝ*) → (-∞ < 0 ↔ ¬ 0 ≤ -∞))
107, 8, 9mp2an 689 . . . . . . 7 (-∞ < 0 ↔ ¬ 0 ≤ -∞)
116, 10mpbi 229 . . . . . 6 ¬ 0 ≤ -∞
1211intnan 487 . . . . 5 ¬ (-∞ ∈ ℝ* ∧ 0 ≤ -∞)
13 elxrge0 13198 . . . . 5 (-∞ ∈ (0[,]+∞) ↔ (-∞ ∈ ℝ* ∧ 0 ≤ -∞))
1412, 13mtbir 323 . . . 4 ¬ -∞ ∈ (0[,]+∞)
15 difsn 4732 . . . 4 (¬ -∞ ∈ (0[,]+∞) → ((0[,]+∞) ∖ {-∞}) = (0[,]+∞))
1614, 15ax-mp 5 . . 3 ((0[,]+∞) ∖ {-∞}) = (0[,]+∞)
17 iccssxr 13171 . . . 4 (0[,]+∞) ⊆ ℝ*
18 ssdif 4075 . . . 4 ((0[,]+∞) ⊆ ℝ* → ((0[,]+∞) ∖ {-∞}) ⊆ (ℝ* ∖ {-∞}))
1917, 18ax-mp 5 . . 3 ((0[,]+∞) ∖ {-∞}) ⊆ (ℝ* ∖ {-∞})
2016, 19eqsstrri 3957 . 2 (0[,]+∞) ⊆ (ℝ* ∖ {-∞})
21 0e0iccpnf 13200 . 2 0 ∈ (0[,]+∞)
22 difss 4067 . . . . 5 (ℝ* ∖ {-∞}) ⊆ ℝ*
23 df-ss 3905 . . . . 5 ((ℝ* ∖ {-∞}) ⊆ ℝ* ↔ ((ℝ* ∖ {-∞}) ∩ ℝ*) = (ℝ* ∖ {-∞}))
2422, 23mpbi 229 . . . 4 ((ℝ* ∖ {-∞}) ∩ ℝ*) = (ℝ* ∖ {-∞})
25 xrex 12736 . . . . . 6 * ∈ V
26 difexg 5252 . . . . . 6 (ℝ* ∈ V → (ℝ* ∖ {-∞}) ∈ V)
2725, 26ax-mp 5 . . . . 5 (ℝ* ∖ {-∞}) ∈ V
28 xrsbas 20623 . . . . . 6 * = (Base‘ℝ*𝑠)
291, 28ressbas 16956 . . . . 5 ((ℝ* ∖ {-∞}) ∈ V → ((ℝ* ∖ {-∞}) ∩ ℝ*) = (Base‘(ℝ*𝑠s (ℝ* ∖ {-∞}))))
3027, 29ax-mp 5 . . . 4 ((ℝ* ∖ {-∞}) ∩ ℝ*) = (Base‘(ℝ*𝑠s (ℝ* ∖ {-∞})))
3124, 30eqtr3i 2769 . . 3 (ℝ* ∖ {-∞}) = (Base‘(ℝ*𝑠s (ℝ* ∖ {-∞})))
321xrs10 20646 . . 3 0 = (0g‘(ℝ*𝑠s (ℝ* ∖ {-∞})))
33 ovex 7317 . . . . 5 (0[,]+∞) ∈ V
34 ressress 16967 . . . . 5 (((ℝ* ∖ {-∞}) ∈ V ∧ (0[,]+∞) ∈ V) → ((ℝ*𝑠s (ℝ* ∖ {-∞})) ↾s (0[,]+∞)) = (ℝ*𝑠s ((ℝ* ∖ {-∞}) ∩ (0[,]+∞))))
3527, 33, 34mp2an 689 . . . 4 ((ℝ*𝑠s (ℝ* ∖ {-∞})) ↾s (0[,]+∞)) = (ℝ*𝑠s ((ℝ* ∖ {-∞}) ∩ (0[,]+∞)))
36 dfss 3906 . . . . . . 7 ((0[,]+∞) ⊆ (ℝ* ∖ {-∞}) ↔ (0[,]+∞) = ((0[,]+∞) ∩ (ℝ* ∖ {-∞})))
3720, 36mpbi 229 . . . . . 6 (0[,]+∞) = ((0[,]+∞) ∩ (ℝ* ∖ {-∞}))
38 incom 4136 . . . . . 6 ((0[,]+∞) ∩ (ℝ* ∖ {-∞})) = ((ℝ* ∖ {-∞}) ∩ (0[,]+∞))
3937, 38eqtr2i 2768 . . . . 5 ((ℝ* ∖ {-∞}) ∩ (0[,]+∞)) = (0[,]+∞)
4039oveq2i 7295 . . . 4 (ℝ*𝑠s ((ℝ* ∖ {-∞}) ∩ (0[,]+∞))) = (ℝ*𝑠s (0[,]+∞))
4135, 40eqtr2i 2768 . . 3 (ℝ*𝑠s (0[,]+∞)) = ((ℝ*𝑠s (ℝ* ∖ {-∞})) ↾s (0[,]+∞))
4231, 32, 41submnd0 18423 . 2 ((((ℝ*𝑠s (ℝ* ∖ {-∞})) ∈ Mnd ∧ (ℝ*𝑠s (0[,]+∞)) ∈ Mnd) ∧ ((0[,]+∞) ⊆ (ℝ* ∖ {-∞}) ∧ 0 ∈ (0[,]+∞))) → 0 = (0g‘(ℝ*𝑠s (0[,]+∞))))
432, 5, 20, 21, 42mp4an 690 1 0 = (0g‘(ℝ*𝑠s (0[,]+∞)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wa 396   = wceq 1539  wcel 2107  Vcvv 3433  cdif 3885  cin 3887  wss 3888  {csn 4562   class class class wbr 5075  cfv 6437  (class class class)co 7284  0cc0 10880  +∞cpnf 11015  -∞cmnf 11016  *cxr 11017   < clt 11018  cle 11019  [,]cicc 13091  Basecbs 16921  s cress 16950  0gc0g 17159  *𝑠cxrs 17220  Mndcmnd 18394  CMndccmn 19395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2710  ax-sep 5224  ax-nul 5231  ax-pow 5289  ax-pr 5353  ax-un 7597  ax-cnex 10936  ax-resscn 10937  ax-1cn 10938  ax-icn 10939  ax-addcl 10940  ax-addrcl 10941  ax-mulcl 10942  ax-mulrcl 10943  ax-mulcom 10944  ax-addass 10945  ax-mulass 10946  ax-distr 10947  ax-i2m1 10948  ax-1ne0 10949  ax-1rid 10950  ax-rnegex 10951  ax-rrecex 10952  ax-cnre 10953  ax-pre-lttri 10954  ax-pre-lttrn 10955  ax-pre-ltadd 10956  ax-pre-mulgt0 10957
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-rmo 3072  df-reu 3073  df-rab 3074  df-v 3435  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-pss 3907  df-nul 4258  df-if 4461  df-pw 4536  df-sn 4563  df-pr 4565  df-tp 4567  df-op 4569  df-uni 4841  df-iun 4927  df-br 5076  df-opab 5138  df-mpt 5159  df-tr 5193  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6206  df-ord 6273  df-on 6274  df-lim 6275  df-suc 6276  df-iota 6395  df-fun 6439  df-fn 6440  df-f 6441  df-f1 6442  df-fo 6443  df-f1o 6444  df-fv 6445  df-riota 7241  df-ov 7287  df-oprab 7288  df-mpo 7289  df-om 7722  df-1st 7840  df-2nd 7841  df-frecs 8106  df-wrecs 8137  df-recs 8211  df-rdg 8250  df-1o 8306  df-er 8507  df-en 8743  df-dom 8744  df-sdom 8745  df-fin 8746  df-pnf 11020  df-mnf 11021  df-xr 11022  df-ltxr 11023  df-le 11024  df-sub 11216  df-neg 11217  df-nn 11983  df-2 12045  df-3 12046  df-4 12047  df-5 12048  df-6 12049  df-7 12050  df-8 12051  df-9 12052  df-n0 12243  df-z 12329  df-dec 12447  df-uz 12592  df-xadd 12858  df-icc 13095  df-fz 13249  df-struct 16857  df-sets 16874  df-slot 16892  df-ndx 16904  df-base 16922  df-ress 16951  df-plusg 16984  df-mulr 16985  df-tset 16990  df-ple 16991  df-ds 16993  df-0g 17161  df-xrs 17222  df-mgm 18335  df-sgrp 18384  df-mnd 18395  df-submnd 18440  df-cmn 19397
This theorem is referenced by:  xrge0mulgnn0  31307  xrge0slmod  31557  xrge0iifmhm  31898  esumgsum  32022  esumnul  32025  esum0  32026  gsumesum  32036  esumsnf  32041  esumss  32049  esumpfinval  32052  esumpfinvalf  32053  esumcocn  32057  sitmcl  32327
  Copyright terms: Public domain W3C validator