Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrge00 Structured version   Visualization version   GIF version

Theorem xrge00 32968
Description: The zero of the extended nonnegative real numbers monoid. (Contributed by Thierry Arnoux, 30-Jan-2017.)
Assertion
Ref Expression
xrge00 0 = (0g‘(ℝ*𝑠s (0[,]+∞)))

Proof of Theorem xrge00
StepHypRef Expression
1 eqid 2729 . . 3 (ℝ*𝑠s (ℝ* ∖ {-∞})) = (ℝ*𝑠s (ℝ* ∖ {-∞}))
21xrs1mnd 21347 . 2 (ℝ*𝑠s (ℝ* ∖ {-∞})) ∈ Mnd
3 xrge0cmn 21351 . . 3 (ℝ*𝑠s (0[,]+∞)) ∈ CMnd
4 cmnmnd 19676 . . 3 ((ℝ*𝑠s (0[,]+∞)) ∈ CMnd → (ℝ*𝑠s (0[,]+∞)) ∈ Mnd)
53, 4ax-mp 5 . 2 (ℝ*𝑠s (0[,]+∞)) ∈ Mnd
6 mnflt0 13027 . . . . . . 7 -∞ < 0
7 mnfxr 11172 . . . . . . . 8 -∞ ∈ ℝ*
8 0xr 11162 . . . . . . . 8 0 ∈ ℝ*
9 xrltnle 11182 . . . . . . . 8 ((-∞ ∈ ℝ* ∧ 0 ∈ ℝ*) → (-∞ < 0 ↔ ¬ 0 ≤ -∞))
107, 8, 9mp2an 692 . . . . . . 7 (-∞ < 0 ↔ ¬ 0 ≤ -∞)
116, 10mpbi 230 . . . . . 6 ¬ 0 ≤ -∞
1211intnan 486 . . . . 5 ¬ (-∞ ∈ ℝ* ∧ 0 ≤ -∞)
13 elxrge0 13360 . . . . 5 (-∞ ∈ (0[,]+∞) ↔ (-∞ ∈ ℝ* ∧ 0 ≤ -∞))
1412, 13mtbir 323 . . . 4 ¬ -∞ ∈ (0[,]+∞)
15 difsn 4749 . . . 4 (¬ -∞ ∈ (0[,]+∞) → ((0[,]+∞) ∖ {-∞}) = (0[,]+∞))
1614, 15ax-mp 5 . . 3 ((0[,]+∞) ∖ {-∞}) = (0[,]+∞)
17 iccssxr 13333 . . . 4 (0[,]+∞) ⊆ ℝ*
18 ssdif 4095 . . . 4 ((0[,]+∞) ⊆ ℝ* → ((0[,]+∞) ∖ {-∞}) ⊆ (ℝ* ∖ {-∞}))
1917, 18ax-mp 5 . . 3 ((0[,]+∞) ∖ {-∞}) ⊆ (ℝ* ∖ {-∞})
2016, 19eqsstrri 3983 . 2 (0[,]+∞) ⊆ (ℝ* ∖ {-∞})
21 0e0iccpnf 13362 . 2 0 ∈ (0[,]+∞)
22 difss 4087 . . . . 5 (ℝ* ∖ {-∞}) ⊆ ℝ*
23 dfss2 3921 . . . . 5 ((ℝ* ∖ {-∞}) ⊆ ℝ* ↔ ((ℝ* ∖ {-∞}) ∩ ℝ*) = (ℝ* ∖ {-∞}))
2422, 23mpbi 230 . . . 4 ((ℝ* ∖ {-∞}) ∩ ℝ*) = (ℝ* ∖ {-∞})
25 xrex 12888 . . . . . 6 * ∈ V
26 difexg 5268 . . . . . 6 (ℝ* ∈ V → (ℝ* ∖ {-∞}) ∈ V)
2725, 26ax-mp 5 . . . . 5 (ℝ* ∖ {-∞}) ∈ V
28 xrsbas 17510 . . . . . 6 * = (Base‘ℝ*𝑠)
291, 28ressbas 17147 . . . . 5 ((ℝ* ∖ {-∞}) ∈ V → ((ℝ* ∖ {-∞}) ∩ ℝ*) = (Base‘(ℝ*𝑠s (ℝ* ∖ {-∞}))))
3027, 29ax-mp 5 . . . 4 ((ℝ* ∖ {-∞}) ∩ ℝ*) = (Base‘(ℝ*𝑠s (ℝ* ∖ {-∞})))
3124, 30eqtr3i 2754 . . 3 (ℝ* ∖ {-∞}) = (Base‘(ℝ*𝑠s (ℝ* ∖ {-∞})))
321xrs10 21348 . . 3 0 = (0g‘(ℝ*𝑠s (ℝ* ∖ {-∞})))
33 ovex 7382 . . . . 5 (0[,]+∞) ∈ V
34 ressress 17158 . . . . 5 (((ℝ* ∖ {-∞}) ∈ V ∧ (0[,]+∞) ∈ V) → ((ℝ*𝑠s (ℝ* ∖ {-∞})) ↾s (0[,]+∞)) = (ℝ*𝑠s ((ℝ* ∖ {-∞}) ∩ (0[,]+∞))))
3527, 33, 34mp2an 692 . . . 4 ((ℝ*𝑠s (ℝ* ∖ {-∞})) ↾s (0[,]+∞)) = (ℝ*𝑠s ((ℝ* ∖ {-∞}) ∩ (0[,]+∞)))
36 dfss 3922 . . . . . . 7 ((0[,]+∞) ⊆ (ℝ* ∖ {-∞}) ↔ (0[,]+∞) = ((0[,]+∞) ∩ (ℝ* ∖ {-∞})))
3720, 36mpbi 230 . . . . . 6 (0[,]+∞) = ((0[,]+∞) ∩ (ℝ* ∖ {-∞}))
38 incom 4160 . . . . . 6 ((0[,]+∞) ∩ (ℝ* ∖ {-∞})) = ((ℝ* ∖ {-∞}) ∩ (0[,]+∞))
3937, 38eqtr2i 2753 . . . . 5 ((ℝ* ∖ {-∞}) ∩ (0[,]+∞)) = (0[,]+∞)
4039oveq2i 7360 . . . 4 (ℝ*𝑠s ((ℝ* ∖ {-∞}) ∩ (0[,]+∞))) = (ℝ*𝑠s (0[,]+∞))
4135, 40eqtr2i 2753 . . 3 (ℝ*𝑠s (0[,]+∞)) = ((ℝ*𝑠s (ℝ* ∖ {-∞})) ↾s (0[,]+∞))
4231, 32, 41submnd0 18637 . 2 ((((ℝ*𝑠s (ℝ* ∖ {-∞})) ∈ Mnd ∧ (ℝ*𝑠s (0[,]+∞)) ∈ Mnd) ∧ ((0[,]+∞) ⊆ (ℝ* ∖ {-∞}) ∧ 0 ∈ (0[,]+∞))) → 0 = (0g‘(ℝ*𝑠s (0[,]+∞))))
432, 5, 20, 21, 42mp4an 693 1 0 = (0g‘(ℝ*𝑠s (0[,]+∞)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395   = wceq 1540  wcel 2109  Vcvv 3436  cdif 3900  cin 3902  wss 3903  {csn 4577   class class class wbr 5092  cfv 6482  (class class class)co 7349  0cc0 11009  +∞cpnf 11146  -∞cmnf 11147  *cxr 11148   < clt 11149  cle 11150  [,]cicc 13251  Basecbs 17120  s cress 17141  0gc0g 17343  *𝑠cxrs 17404  Mndcmnd 18608  CMndccmn 19659
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-xadd 13015  df-icc 13255  df-fz 13411  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-tset 17180  df-ple 17181  df-ds 17183  df-0g 17345  df-xrs 17406  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-submnd 18658  df-cmn 19661
This theorem is referenced by:  xrge0mulgnn0  32969  xrge0slmod  33285  xrge0iifmhm  33906  esumgsum  34012  esumnul  34015  esum0  34016  gsumesum  34026  esumsnf  34031  esumss  34039  esumpfinval  34042  esumpfinvalf  34043  esumcocn  34047  sitmcl  34319
  Copyright terms: Public domain W3C validator