| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > xrge00 | Structured version Visualization version GIF version | ||
| Description: The zero of the extended nonnegative real numbers monoid. (Contributed by Thierry Arnoux, 30-Jan-2017.) |
| Ref | Expression |
|---|---|
| xrge00 | ⊢ 0 = (0g‘(ℝ*𝑠 ↾s (0[,]+∞))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2737 | . . 3 ⊢ (ℝ*𝑠 ↾s (ℝ* ∖ {-∞})) = (ℝ*𝑠 ↾s (ℝ* ∖ {-∞})) | |
| 2 | 1 | xrs1mnd 21422 | . 2 ⊢ (ℝ*𝑠 ↾s (ℝ* ∖ {-∞})) ∈ Mnd |
| 3 | xrge0cmn 21426 | . . 3 ⊢ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ CMnd | |
| 4 | cmnmnd 19815 | . . 3 ⊢ ((ℝ*𝑠 ↾s (0[,]+∞)) ∈ CMnd → (ℝ*𝑠 ↾s (0[,]+∞)) ∈ Mnd) | |
| 5 | 3, 4 | ax-mp 5 | . 2 ⊢ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ Mnd |
| 6 | mnflt0 13167 | . . . . . . 7 ⊢ -∞ < 0 | |
| 7 | mnfxr 11318 | . . . . . . . 8 ⊢ -∞ ∈ ℝ* | |
| 8 | 0xr 11308 | . . . . . . . 8 ⊢ 0 ∈ ℝ* | |
| 9 | xrltnle 11328 | . . . . . . . 8 ⊢ ((-∞ ∈ ℝ* ∧ 0 ∈ ℝ*) → (-∞ < 0 ↔ ¬ 0 ≤ -∞)) | |
| 10 | 7, 8, 9 | mp2an 692 | . . . . . . 7 ⊢ (-∞ < 0 ↔ ¬ 0 ≤ -∞) |
| 11 | 6, 10 | mpbi 230 | . . . . . 6 ⊢ ¬ 0 ≤ -∞ |
| 12 | 11 | intnan 486 | . . . . 5 ⊢ ¬ (-∞ ∈ ℝ* ∧ 0 ≤ -∞) |
| 13 | elxrge0 13497 | . . . . 5 ⊢ (-∞ ∈ (0[,]+∞) ↔ (-∞ ∈ ℝ* ∧ 0 ≤ -∞)) | |
| 14 | 12, 13 | mtbir 323 | . . . 4 ⊢ ¬ -∞ ∈ (0[,]+∞) |
| 15 | difsn 4798 | . . . 4 ⊢ (¬ -∞ ∈ (0[,]+∞) → ((0[,]+∞) ∖ {-∞}) = (0[,]+∞)) | |
| 16 | 14, 15 | ax-mp 5 | . . 3 ⊢ ((0[,]+∞) ∖ {-∞}) = (0[,]+∞) |
| 17 | iccssxr 13470 | . . . 4 ⊢ (0[,]+∞) ⊆ ℝ* | |
| 18 | ssdif 4144 | . . . 4 ⊢ ((0[,]+∞) ⊆ ℝ* → ((0[,]+∞) ∖ {-∞}) ⊆ (ℝ* ∖ {-∞})) | |
| 19 | 17, 18 | ax-mp 5 | . . 3 ⊢ ((0[,]+∞) ∖ {-∞}) ⊆ (ℝ* ∖ {-∞}) |
| 20 | 16, 19 | eqsstrri 4031 | . 2 ⊢ (0[,]+∞) ⊆ (ℝ* ∖ {-∞}) |
| 21 | 0e0iccpnf 13499 | . 2 ⊢ 0 ∈ (0[,]+∞) | |
| 22 | difss 4136 | . . . . 5 ⊢ (ℝ* ∖ {-∞}) ⊆ ℝ* | |
| 23 | dfss2 3969 | . . . . 5 ⊢ ((ℝ* ∖ {-∞}) ⊆ ℝ* ↔ ((ℝ* ∖ {-∞}) ∩ ℝ*) = (ℝ* ∖ {-∞})) | |
| 24 | 22, 23 | mpbi 230 | . . . 4 ⊢ ((ℝ* ∖ {-∞}) ∩ ℝ*) = (ℝ* ∖ {-∞}) |
| 25 | xrex 13029 | . . . . . 6 ⊢ ℝ* ∈ V | |
| 26 | difexg 5329 | . . . . . 6 ⊢ (ℝ* ∈ V → (ℝ* ∖ {-∞}) ∈ V) | |
| 27 | 25, 26 | ax-mp 5 | . . . . 5 ⊢ (ℝ* ∖ {-∞}) ∈ V |
| 28 | xrsbas 21396 | . . . . . 6 ⊢ ℝ* = (Base‘ℝ*𝑠) | |
| 29 | 1, 28 | ressbas 17280 | . . . . 5 ⊢ ((ℝ* ∖ {-∞}) ∈ V → ((ℝ* ∖ {-∞}) ∩ ℝ*) = (Base‘(ℝ*𝑠 ↾s (ℝ* ∖ {-∞})))) |
| 30 | 27, 29 | ax-mp 5 | . . . 4 ⊢ ((ℝ* ∖ {-∞}) ∩ ℝ*) = (Base‘(ℝ*𝑠 ↾s (ℝ* ∖ {-∞}))) |
| 31 | 24, 30 | eqtr3i 2767 | . . 3 ⊢ (ℝ* ∖ {-∞}) = (Base‘(ℝ*𝑠 ↾s (ℝ* ∖ {-∞}))) |
| 32 | 1 | xrs10 21423 | . . 3 ⊢ 0 = (0g‘(ℝ*𝑠 ↾s (ℝ* ∖ {-∞}))) |
| 33 | ovex 7464 | . . . . 5 ⊢ (0[,]+∞) ∈ V | |
| 34 | ressress 17293 | . . . . 5 ⊢ (((ℝ* ∖ {-∞}) ∈ V ∧ (0[,]+∞) ∈ V) → ((ℝ*𝑠 ↾s (ℝ* ∖ {-∞})) ↾s (0[,]+∞)) = (ℝ*𝑠 ↾s ((ℝ* ∖ {-∞}) ∩ (0[,]+∞)))) | |
| 35 | 27, 33, 34 | mp2an 692 | . . . 4 ⊢ ((ℝ*𝑠 ↾s (ℝ* ∖ {-∞})) ↾s (0[,]+∞)) = (ℝ*𝑠 ↾s ((ℝ* ∖ {-∞}) ∩ (0[,]+∞))) |
| 36 | dfss 3970 | . . . . . . 7 ⊢ ((0[,]+∞) ⊆ (ℝ* ∖ {-∞}) ↔ (0[,]+∞) = ((0[,]+∞) ∩ (ℝ* ∖ {-∞}))) | |
| 37 | 20, 36 | mpbi 230 | . . . . . 6 ⊢ (0[,]+∞) = ((0[,]+∞) ∩ (ℝ* ∖ {-∞})) |
| 38 | incom 4209 | . . . . . 6 ⊢ ((0[,]+∞) ∩ (ℝ* ∖ {-∞})) = ((ℝ* ∖ {-∞}) ∩ (0[,]+∞)) | |
| 39 | 37, 38 | eqtr2i 2766 | . . . . 5 ⊢ ((ℝ* ∖ {-∞}) ∩ (0[,]+∞)) = (0[,]+∞) |
| 40 | 39 | oveq2i 7442 | . . . 4 ⊢ (ℝ*𝑠 ↾s ((ℝ* ∖ {-∞}) ∩ (0[,]+∞))) = (ℝ*𝑠 ↾s (0[,]+∞)) |
| 41 | 35, 40 | eqtr2i 2766 | . . 3 ⊢ (ℝ*𝑠 ↾s (0[,]+∞)) = ((ℝ*𝑠 ↾s (ℝ* ∖ {-∞})) ↾s (0[,]+∞)) |
| 42 | 31, 32, 41 | submnd0 18776 | . 2 ⊢ ((((ℝ*𝑠 ↾s (ℝ* ∖ {-∞})) ∈ Mnd ∧ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ Mnd) ∧ ((0[,]+∞) ⊆ (ℝ* ∖ {-∞}) ∧ 0 ∈ (0[,]+∞))) → 0 = (0g‘(ℝ*𝑠 ↾s (0[,]+∞)))) |
| 43 | 2, 5, 20, 21, 42 | mp4an 693 | 1 ⊢ 0 = (0g‘(ℝ*𝑠 ↾s (0[,]+∞))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 Vcvv 3480 ∖ cdif 3948 ∩ cin 3950 ⊆ wss 3951 {csn 4626 class class class wbr 5143 ‘cfv 6561 (class class class)co 7431 0cc0 11155 +∞cpnf 11292 -∞cmnf 11293 ℝ*cxr 11294 < clt 11295 ≤ cle 11296 [,]cicc 13390 Basecbs 17247 ↾s cress 17274 0gc0g 17484 ℝ*𝑠cxrs 17545 Mndcmnd 18747 CMndccmn 19798 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-tp 4631 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-2 12329 df-3 12330 df-4 12331 df-5 12332 df-6 12333 df-7 12334 df-8 12335 df-9 12336 df-n0 12527 df-z 12614 df-dec 12734 df-uz 12879 df-xadd 13155 df-icc 13394 df-fz 13548 df-struct 17184 df-sets 17201 df-slot 17219 df-ndx 17231 df-base 17248 df-ress 17275 df-plusg 17310 df-mulr 17311 df-tset 17316 df-ple 17317 df-ds 17319 df-0g 17486 df-xrs 17547 df-mgm 18653 df-sgrp 18732 df-mnd 18748 df-submnd 18797 df-cmn 19800 |
| This theorem is referenced by: xrge0mulgnn0 33020 xrge0slmod 33376 xrge0iifmhm 33938 esumgsum 34046 esumnul 34049 esum0 34050 gsumesum 34060 esumsnf 34065 esumss 34073 esumpfinval 34076 esumpfinvalf 34077 esumcocn 34081 sitmcl 34353 |
| Copyright terms: Public domain | W3C validator |