| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > xrge00 | Structured version Visualization version GIF version | ||
| Description: The zero of the extended nonnegative real numbers monoid. (Contributed by Thierry Arnoux, 30-Jan-2017.) |
| Ref | Expression |
|---|---|
| xrge00 | ⊢ 0 = (0g‘(ℝ*𝑠 ↾s (0[,]+∞))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . 3 ⊢ (ℝ*𝑠 ↾s (ℝ* ∖ {-∞})) = (ℝ*𝑠 ↾s (ℝ* ∖ {-∞})) | |
| 2 | 1 | xrs1mnd 21377 | . 2 ⊢ (ℝ*𝑠 ↾s (ℝ* ∖ {-∞})) ∈ Mnd |
| 3 | xrge0cmn 21381 | . . 3 ⊢ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ CMnd | |
| 4 | cmnmnd 19709 | . . 3 ⊢ ((ℝ*𝑠 ↾s (0[,]+∞)) ∈ CMnd → (ℝ*𝑠 ↾s (0[,]+∞)) ∈ Mnd) | |
| 5 | 3, 4 | ax-mp 5 | . 2 ⊢ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ Mnd |
| 6 | mnflt0 13024 | . . . . . . 7 ⊢ -∞ < 0 | |
| 7 | mnfxr 11169 | . . . . . . . 8 ⊢ -∞ ∈ ℝ* | |
| 8 | 0xr 11159 | . . . . . . . 8 ⊢ 0 ∈ ℝ* | |
| 9 | xrltnle 11179 | . . . . . . . 8 ⊢ ((-∞ ∈ ℝ* ∧ 0 ∈ ℝ*) → (-∞ < 0 ↔ ¬ 0 ≤ -∞)) | |
| 10 | 7, 8, 9 | mp2an 692 | . . . . . . 7 ⊢ (-∞ < 0 ↔ ¬ 0 ≤ -∞) |
| 11 | 6, 10 | mpbi 230 | . . . . . 6 ⊢ ¬ 0 ≤ -∞ |
| 12 | 11 | intnan 486 | . . . . 5 ⊢ ¬ (-∞ ∈ ℝ* ∧ 0 ≤ -∞) |
| 13 | elxrge0 13357 | . . . . 5 ⊢ (-∞ ∈ (0[,]+∞) ↔ (-∞ ∈ ℝ* ∧ 0 ≤ -∞)) | |
| 14 | 12, 13 | mtbir 323 | . . . 4 ⊢ ¬ -∞ ∈ (0[,]+∞) |
| 15 | difsn 4747 | . . . 4 ⊢ (¬ -∞ ∈ (0[,]+∞) → ((0[,]+∞) ∖ {-∞}) = (0[,]+∞)) | |
| 16 | 14, 15 | ax-mp 5 | . . 3 ⊢ ((0[,]+∞) ∖ {-∞}) = (0[,]+∞) |
| 17 | iccssxr 13330 | . . . 4 ⊢ (0[,]+∞) ⊆ ℝ* | |
| 18 | ssdif 4091 | . . . 4 ⊢ ((0[,]+∞) ⊆ ℝ* → ((0[,]+∞) ∖ {-∞}) ⊆ (ℝ* ∖ {-∞})) | |
| 19 | 17, 18 | ax-mp 5 | . . 3 ⊢ ((0[,]+∞) ∖ {-∞}) ⊆ (ℝ* ∖ {-∞}) |
| 20 | 16, 19 | eqsstrri 3977 | . 2 ⊢ (0[,]+∞) ⊆ (ℝ* ∖ {-∞}) |
| 21 | 0e0iccpnf 13359 | . 2 ⊢ 0 ∈ (0[,]+∞) | |
| 22 | difss 4083 | . . . . 5 ⊢ (ℝ* ∖ {-∞}) ⊆ ℝ* | |
| 23 | dfss2 3915 | . . . . 5 ⊢ ((ℝ* ∖ {-∞}) ⊆ ℝ* ↔ ((ℝ* ∖ {-∞}) ∩ ℝ*) = (ℝ* ∖ {-∞})) | |
| 24 | 22, 23 | mpbi 230 | . . . 4 ⊢ ((ℝ* ∖ {-∞}) ∩ ℝ*) = (ℝ* ∖ {-∞}) |
| 25 | xrex 12885 | . . . . . 6 ⊢ ℝ* ∈ V | |
| 26 | difexg 5265 | . . . . . 6 ⊢ (ℝ* ∈ V → (ℝ* ∖ {-∞}) ∈ V) | |
| 27 | 25, 26 | ax-mp 5 | . . . . 5 ⊢ (ℝ* ∖ {-∞}) ∈ V |
| 28 | xrsbas 17510 | . . . . . 6 ⊢ ℝ* = (Base‘ℝ*𝑠) | |
| 29 | 1, 28 | ressbas 17147 | . . . . 5 ⊢ ((ℝ* ∖ {-∞}) ∈ V → ((ℝ* ∖ {-∞}) ∩ ℝ*) = (Base‘(ℝ*𝑠 ↾s (ℝ* ∖ {-∞})))) |
| 30 | 27, 29 | ax-mp 5 | . . . 4 ⊢ ((ℝ* ∖ {-∞}) ∩ ℝ*) = (Base‘(ℝ*𝑠 ↾s (ℝ* ∖ {-∞}))) |
| 31 | 24, 30 | eqtr3i 2756 | . . 3 ⊢ (ℝ* ∖ {-∞}) = (Base‘(ℝ*𝑠 ↾s (ℝ* ∖ {-∞}))) |
| 32 | 1 | xrs10 21378 | . . 3 ⊢ 0 = (0g‘(ℝ*𝑠 ↾s (ℝ* ∖ {-∞}))) |
| 33 | ovex 7379 | . . . . 5 ⊢ (0[,]+∞) ∈ V | |
| 34 | ressress 17158 | . . . . 5 ⊢ (((ℝ* ∖ {-∞}) ∈ V ∧ (0[,]+∞) ∈ V) → ((ℝ*𝑠 ↾s (ℝ* ∖ {-∞})) ↾s (0[,]+∞)) = (ℝ*𝑠 ↾s ((ℝ* ∖ {-∞}) ∩ (0[,]+∞)))) | |
| 35 | 27, 33, 34 | mp2an 692 | . . . 4 ⊢ ((ℝ*𝑠 ↾s (ℝ* ∖ {-∞})) ↾s (0[,]+∞)) = (ℝ*𝑠 ↾s ((ℝ* ∖ {-∞}) ∩ (0[,]+∞))) |
| 36 | dfss 3916 | . . . . . . 7 ⊢ ((0[,]+∞) ⊆ (ℝ* ∖ {-∞}) ↔ (0[,]+∞) = ((0[,]+∞) ∩ (ℝ* ∖ {-∞}))) | |
| 37 | 20, 36 | mpbi 230 | . . . . . 6 ⊢ (0[,]+∞) = ((0[,]+∞) ∩ (ℝ* ∖ {-∞})) |
| 38 | incom 4156 | . . . . . 6 ⊢ ((0[,]+∞) ∩ (ℝ* ∖ {-∞})) = ((ℝ* ∖ {-∞}) ∩ (0[,]+∞)) | |
| 39 | 37, 38 | eqtr2i 2755 | . . . . 5 ⊢ ((ℝ* ∖ {-∞}) ∩ (0[,]+∞)) = (0[,]+∞) |
| 40 | 39 | oveq2i 7357 | . . . 4 ⊢ (ℝ*𝑠 ↾s ((ℝ* ∖ {-∞}) ∩ (0[,]+∞))) = (ℝ*𝑠 ↾s (0[,]+∞)) |
| 41 | 35, 40 | eqtr2i 2755 | . . 3 ⊢ (ℝ*𝑠 ↾s (0[,]+∞)) = ((ℝ*𝑠 ↾s (ℝ* ∖ {-∞})) ↾s (0[,]+∞)) |
| 42 | 31, 32, 41 | submnd0 18671 | . 2 ⊢ ((((ℝ*𝑠 ↾s (ℝ* ∖ {-∞})) ∈ Mnd ∧ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ Mnd) ∧ ((0[,]+∞) ⊆ (ℝ* ∖ {-∞}) ∧ 0 ∈ (0[,]+∞))) → 0 = (0g‘(ℝ*𝑠 ↾s (0[,]+∞)))) |
| 43 | 2, 5, 20, 21, 42 | mp4an 693 | 1 ⊢ 0 = (0g‘(ℝ*𝑠 ↾s (0[,]+∞))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∖ cdif 3894 ∩ cin 3896 ⊆ wss 3897 {csn 4573 class class class wbr 5089 ‘cfv 6481 (class class class)co 7346 0cc0 11006 +∞cpnf 11143 -∞cmnf 11144 ℝ*cxr 11145 < clt 11146 ≤ cle 11147 [,]cicc 13248 Basecbs 17120 ↾s cress 17141 0gc0g 17343 ℝ*𝑠cxrs 17404 Mndcmnd 18642 CMndccmn 19692 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-z 12469 df-dec 12589 df-uz 12733 df-xadd 13012 df-icc 13252 df-fz 13408 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-tset 17180 df-ple 17181 df-ds 17183 df-0g 17345 df-xrs 17406 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-submnd 18692 df-cmn 19694 |
| This theorem is referenced by: xrge0mulgnn0 32996 xrge0slmod 33313 xrge0iifmhm 33952 esumgsum 34058 esumnul 34061 esum0 34062 gsumesum 34072 esumsnf 34077 esumss 34085 esumpfinval 34088 esumpfinvalf 34089 esumcocn 34093 sitmcl 34364 |
| Copyright terms: Public domain | W3C validator |