Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > xrge00 | Structured version Visualization version GIF version |
Description: The zero of the extended nonnegative real numbers monoid. (Contributed by Thierry Arnoux, 30-Jan-2017.) |
Ref | Expression |
---|---|
xrge00 | ⊢ 0 = (0g‘(ℝ*𝑠 ↾s (0[,]+∞))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . 3 ⊢ (ℝ*𝑠 ↾s (ℝ* ∖ {-∞})) = (ℝ*𝑠 ↾s (ℝ* ∖ {-∞})) | |
2 | 1 | xrs1mnd 20548 | . 2 ⊢ (ℝ*𝑠 ↾s (ℝ* ∖ {-∞})) ∈ Mnd |
3 | xrge0cmn 20552 | . . 3 ⊢ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ CMnd | |
4 | cmnmnd 19317 | . . 3 ⊢ ((ℝ*𝑠 ↾s (0[,]+∞)) ∈ CMnd → (ℝ*𝑠 ↾s (0[,]+∞)) ∈ Mnd) | |
5 | 3, 4 | ax-mp 5 | . 2 ⊢ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ Mnd |
6 | mnflt0 12790 | . . . . . . 7 ⊢ -∞ < 0 | |
7 | mnfxr 10963 | . . . . . . . 8 ⊢ -∞ ∈ ℝ* | |
8 | 0xr 10953 | . . . . . . . 8 ⊢ 0 ∈ ℝ* | |
9 | xrltnle 10973 | . . . . . . . 8 ⊢ ((-∞ ∈ ℝ* ∧ 0 ∈ ℝ*) → (-∞ < 0 ↔ ¬ 0 ≤ -∞)) | |
10 | 7, 8, 9 | mp2an 688 | . . . . . . 7 ⊢ (-∞ < 0 ↔ ¬ 0 ≤ -∞) |
11 | 6, 10 | mpbi 229 | . . . . . 6 ⊢ ¬ 0 ≤ -∞ |
12 | 11 | intnan 486 | . . . . 5 ⊢ ¬ (-∞ ∈ ℝ* ∧ 0 ≤ -∞) |
13 | elxrge0 13118 | . . . . 5 ⊢ (-∞ ∈ (0[,]+∞) ↔ (-∞ ∈ ℝ* ∧ 0 ≤ -∞)) | |
14 | 12, 13 | mtbir 322 | . . . 4 ⊢ ¬ -∞ ∈ (0[,]+∞) |
15 | difsn 4728 | . . . 4 ⊢ (¬ -∞ ∈ (0[,]+∞) → ((0[,]+∞) ∖ {-∞}) = (0[,]+∞)) | |
16 | 14, 15 | ax-mp 5 | . . 3 ⊢ ((0[,]+∞) ∖ {-∞}) = (0[,]+∞) |
17 | iccssxr 13091 | . . . 4 ⊢ (0[,]+∞) ⊆ ℝ* | |
18 | ssdif 4070 | . . . 4 ⊢ ((0[,]+∞) ⊆ ℝ* → ((0[,]+∞) ∖ {-∞}) ⊆ (ℝ* ∖ {-∞})) | |
19 | 17, 18 | ax-mp 5 | . . 3 ⊢ ((0[,]+∞) ∖ {-∞}) ⊆ (ℝ* ∖ {-∞}) |
20 | 16, 19 | eqsstrri 3952 | . 2 ⊢ (0[,]+∞) ⊆ (ℝ* ∖ {-∞}) |
21 | 0e0iccpnf 13120 | . 2 ⊢ 0 ∈ (0[,]+∞) | |
22 | difss 4062 | . . . . 5 ⊢ (ℝ* ∖ {-∞}) ⊆ ℝ* | |
23 | df-ss 3900 | . . . . 5 ⊢ ((ℝ* ∖ {-∞}) ⊆ ℝ* ↔ ((ℝ* ∖ {-∞}) ∩ ℝ*) = (ℝ* ∖ {-∞})) | |
24 | 22, 23 | mpbi 229 | . . . 4 ⊢ ((ℝ* ∖ {-∞}) ∩ ℝ*) = (ℝ* ∖ {-∞}) |
25 | xrex 12656 | . . . . . 6 ⊢ ℝ* ∈ V | |
26 | difexg 5246 | . . . . . 6 ⊢ (ℝ* ∈ V → (ℝ* ∖ {-∞}) ∈ V) | |
27 | 25, 26 | ax-mp 5 | . . . . 5 ⊢ (ℝ* ∖ {-∞}) ∈ V |
28 | xrsbas 20526 | . . . . . 6 ⊢ ℝ* = (Base‘ℝ*𝑠) | |
29 | 1, 28 | ressbas 16873 | . . . . 5 ⊢ ((ℝ* ∖ {-∞}) ∈ V → ((ℝ* ∖ {-∞}) ∩ ℝ*) = (Base‘(ℝ*𝑠 ↾s (ℝ* ∖ {-∞})))) |
30 | 27, 29 | ax-mp 5 | . . . 4 ⊢ ((ℝ* ∖ {-∞}) ∩ ℝ*) = (Base‘(ℝ*𝑠 ↾s (ℝ* ∖ {-∞}))) |
31 | 24, 30 | eqtr3i 2768 | . . 3 ⊢ (ℝ* ∖ {-∞}) = (Base‘(ℝ*𝑠 ↾s (ℝ* ∖ {-∞}))) |
32 | 1 | xrs10 20549 | . . 3 ⊢ 0 = (0g‘(ℝ*𝑠 ↾s (ℝ* ∖ {-∞}))) |
33 | ovex 7288 | . . . . 5 ⊢ (0[,]+∞) ∈ V | |
34 | ressress 16884 | . . . . 5 ⊢ (((ℝ* ∖ {-∞}) ∈ V ∧ (0[,]+∞) ∈ V) → ((ℝ*𝑠 ↾s (ℝ* ∖ {-∞})) ↾s (0[,]+∞)) = (ℝ*𝑠 ↾s ((ℝ* ∖ {-∞}) ∩ (0[,]+∞)))) | |
35 | 27, 33, 34 | mp2an 688 | . . . 4 ⊢ ((ℝ*𝑠 ↾s (ℝ* ∖ {-∞})) ↾s (0[,]+∞)) = (ℝ*𝑠 ↾s ((ℝ* ∖ {-∞}) ∩ (0[,]+∞))) |
36 | dfss 3901 | . . . . . . 7 ⊢ ((0[,]+∞) ⊆ (ℝ* ∖ {-∞}) ↔ (0[,]+∞) = ((0[,]+∞) ∩ (ℝ* ∖ {-∞}))) | |
37 | 20, 36 | mpbi 229 | . . . . . 6 ⊢ (0[,]+∞) = ((0[,]+∞) ∩ (ℝ* ∖ {-∞})) |
38 | incom 4131 | . . . . . 6 ⊢ ((0[,]+∞) ∩ (ℝ* ∖ {-∞})) = ((ℝ* ∖ {-∞}) ∩ (0[,]+∞)) | |
39 | 37, 38 | eqtr2i 2767 | . . . . 5 ⊢ ((ℝ* ∖ {-∞}) ∩ (0[,]+∞)) = (0[,]+∞) |
40 | 39 | oveq2i 7266 | . . . 4 ⊢ (ℝ*𝑠 ↾s ((ℝ* ∖ {-∞}) ∩ (0[,]+∞))) = (ℝ*𝑠 ↾s (0[,]+∞)) |
41 | 35, 40 | eqtr2i 2767 | . . 3 ⊢ (ℝ*𝑠 ↾s (0[,]+∞)) = ((ℝ*𝑠 ↾s (ℝ* ∖ {-∞})) ↾s (0[,]+∞)) |
42 | 31, 32, 41 | submnd0 18329 | . 2 ⊢ ((((ℝ*𝑠 ↾s (ℝ* ∖ {-∞})) ∈ Mnd ∧ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ Mnd) ∧ ((0[,]+∞) ⊆ (ℝ* ∖ {-∞}) ∧ 0 ∈ (0[,]+∞))) → 0 = (0g‘(ℝ*𝑠 ↾s (0[,]+∞)))) |
43 | 2, 5, 20, 21, 42 | mp4an 689 | 1 ⊢ 0 = (0g‘(ℝ*𝑠 ↾s (0[,]+∞))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ∖ cdif 3880 ∩ cin 3882 ⊆ wss 3883 {csn 4558 class class class wbr 5070 ‘cfv 6418 (class class class)co 7255 0cc0 10802 +∞cpnf 10937 -∞cmnf 10938 ℝ*cxr 10939 < clt 10940 ≤ cle 10941 [,]cicc 13011 Basecbs 16840 ↾s cress 16867 0gc0g 17067 ℝ*𝑠cxrs 17128 Mndcmnd 18300 CMndccmn 19301 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-xadd 12778 df-icc 13015 df-fz 13169 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-tset 16907 df-ple 16908 df-ds 16910 df-0g 17069 df-xrs 17130 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-submnd 18346 df-cmn 19303 |
This theorem is referenced by: xrge0mulgnn0 31200 xrge0slmod 31450 xrge0iifmhm 31791 esumgsum 31913 esumnul 31916 esum0 31917 gsumesum 31927 esumsnf 31932 esumss 31940 esumpfinval 31943 esumpfinvalf 31944 esumcocn 31948 sitmcl 32218 |
Copyright terms: Public domain | W3C validator |