Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hoiprodp1 Structured version   Visualization version   GIF version

Theorem hoiprodp1 43227
Description: The dimensional volume of a half-open interval with dimension 𝑛 + 1. Used in the first equality of step (e) of Lemma 115B of [Fremlin1] p. 30. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
Hypotheses
Ref Expression
hoiprodp1.l 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))
hoiprodp1.y (𝜑𝑌 ∈ Fin)
hoiprodp1.3 (𝜑𝑍𝑉)
hoiprodp1.z (𝜑 → ¬ 𝑍𝑌)
hoiprodp1.x 𝑋 = (𝑌 ∪ {𝑍})
hoiprodp1.a (𝜑𝐴:𝑋⟶ℝ)
hoiprodp1.b (𝜑𝐵:𝑋⟶ℝ)
hoiprodp1.g 𝐺 = ∏𝑘𝑌 (vol‘((𝐴𝑘)[,)(𝐵𝑘)))
Assertion
Ref Expression
hoiprodp1 (𝜑 → (𝐴(𝐿𝑋)𝐵) = (𝐺 · (vol‘((𝐴𝑍)[,)(𝐵𝑍)))))
Distinct variable groups:   𝐴,𝑎,𝑏,𝑘   𝐵,𝑎,𝑏,𝑘   𝑋,𝑎,𝑏,𝑘,𝑥   𝑘,𝑌   𝑘,𝑍   𝜑,𝑎,𝑏,𝑘,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐺(𝑥,𝑘,𝑎,𝑏)   𝐿(𝑥,𝑘,𝑎,𝑏)   𝑉(𝑥,𝑘,𝑎,𝑏)   𝑌(𝑥,𝑎,𝑏)   𝑍(𝑥,𝑎,𝑏)

Proof of Theorem hoiprodp1
StepHypRef Expression
1 hoiprodp1.l . . 3 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))
2 hoiprodp1.x . . . 4 𝑋 = (𝑌 ∪ {𝑍})
3 hoiprodp1.y . . . . 5 (𝜑𝑌 ∈ Fin)
4 snfi 8577 . . . . . 6 {𝑍} ∈ Fin
54a1i 11 . . . . 5 (𝜑 → {𝑍} ∈ Fin)
6 unfi 8769 . . . . 5 ((𝑌 ∈ Fin ∧ {𝑍} ∈ Fin) → (𝑌 ∪ {𝑍}) ∈ Fin)
73, 5, 6syl2anc 587 . . . 4 (𝜑 → (𝑌 ∪ {𝑍}) ∈ Fin)
82, 7eqeltrid 2894 . . 3 (𝜑𝑋 ∈ Fin)
9 hoiprodp1.3 . . . . . . 7 (𝜑𝑍𝑉)
10 snidg 4559 . . . . . . 7 (𝑍𝑉𝑍 ∈ {𝑍})
119, 10syl 17 . . . . . 6 (𝜑𝑍 ∈ {𝑍})
12 elun2 4104 . . . . . 6 (𝑍 ∈ {𝑍} → 𝑍 ∈ (𝑌 ∪ {𝑍}))
1311, 12syl 17 . . . . 5 (𝜑𝑍 ∈ (𝑌 ∪ {𝑍}))
1413, 2eleqtrrdi 2901 . . . 4 (𝜑𝑍𝑋)
1514ne0d 4251 . . 3 (𝜑𝑋 ≠ ∅)
16 hoiprodp1.a . . 3 (𝜑𝐴:𝑋⟶ℝ)
17 hoiprodp1.b . . 3 (𝜑𝐵:𝑋⟶ℝ)
181, 8, 15, 16, 17hoidmvn0val 43223 . 2 (𝜑 → (𝐴(𝐿𝑋)𝐵) = ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
1916ffvelrnda 6828 . . . . 5 ((𝜑𝑘𝑋) → (𝐴𝑘) ∈ ℝ)
2017ffvelrnda 6828 . . . . 5 ((𝜑𝑘𝑋) → (𝐵𝑘) ∈ ℝ)
21 volicore 43220 . . . . 5 (((𝐴𝑘) ∈ ℝ ∧ (𝐵𝑘) ∈ ℝ) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ ℝ)
2219, 20, 21syl2anc 587 . . . 4 ((𝜑𝑘𝑋) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ ℝ)
2322recnd 10658 . . 3 ((𝜑𝑘𝑋) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ ℂ)
24 fveq2 6645 . . . . . 6 (𝑘 = 𝑍 → (𝐴𝑘) = (𝐴𝑍))
25 fveq2 6645 . . . . . 6 (𝑘 = 𝑍 → (𝐵𝑘) = (𝐵𝑍))
2624, 25oveq12d 7153 . . . . 5 (𝑘 = 𝑍 → ((𝐴𝑘)[,)(𝐵𝑘)) = ((𝐴𝑍)[,)(𝐵𝑍)))
2726fveq2d 6649 . . . 4 (𝑘 = 𝑍 → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = (vol‘((𝐴𝑍)[,)(𝐵𝑍))))
2827adantl 485 . . 3 ((𝜑𝑘 = 𝑍) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = (vol‘((𝐴𝑍)[,)(𝐵𝑍))))
298, 23, 14, 28fprodsplit1 42235 . 2 (𝜑 → ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = ((vol‘((𝐴𝑍)[,)(𝐵𝑍))) · ∏𝑘 ∈ (𝑋 ∖ {𝑍})(vol‘((𝐴𝑘)[,)(𝐵𝑘)))))
302difeq1i 4046 . . . . . . . 8 (𝑋 ∖ {𝑍}) = ((𝑌 ∪ {𝑍}) ∖ {𝑍})
3130a1i 11 . . . . . . 7 (𝜑 → (𝑋 ∖ {𝑍}) = ((𝑌 ∪ {𝑍}) ∖ {𝑍}))
32 difun2 4387 . . . . . . . 8 ((𝑌 ∪ {𝑍}) ∖ {𝑍}) = (𝑌 ∖ {𝑍})
3332a1i 11 . . . . . . 7 (𝜑 → ((𝑌 ∪ {𝑍}) ∖ {𝑍}) = (𝑌 ∖ {𝑍}))
34 hoiprodp1.z . . . . . . . 8 (𝜑 → ¬ 𝑍𝑌)
35 difsn 4691 . . . . . . . 8 𝑍𝑌 → (𝑌 ∖ {𝑍}) = 𝑌)
3634, 35syl 17 . . . . . . 7 (𝜑 → (𝑌 ∖ {𝑍}) = 𝑌)
3731, 33, 363eqtrd 2837 . . . . . 6 (𝜑 → (𝑋 ∖ {𝑍}) = 𝑌)
3837prodeq1d 15267 . . . . 5 (𝜑 → ∏𝑘 ∈ (𝑋 ∖ {𝑍})(vol‘((𝐴𝑘)[,)(𝐵𝑘))) = ∏𝑘𝑌 (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
39 hoiprodp1.g . . . . . . 7 𝐺 = ∏𝑘𝑌 (vol‘((𝐴𝑘)[,)(𝐵𝑘)))
4039eqcomi 2807 . . . . . 6 𝑘𝑌 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = 𝐺
4140a1i 11 . . . . 5 (𝜑 → ∏𝑘𝑌 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = 𝐺)
4238, 41eqtrd 2833 . . . 4 (𝜑 → ∏𝑘 ∈ (𝑋 ∖ {𝑍})(vol‘((𝐴𝑘)[,)(𝐵𝑘))) = 𝐺)
4342oveq2d 7151 . . 3 (𝜑 → ((vol‘((𝐴𝑍)[,)(𝐵𝑍))) · ∏𝑘 ∈ (𝑋 ∖ {𝑍})(vol‘((𝐴𝑘)[,)(𝐵𝑘)))) = ((vol‘((𝐴𝑍)[,)(𝐵𝑍))) · 𝐺))
4416, 14ffvelrnd 6829 . . . . . 6 (𝜑 → (𝐴𝑍) ∈ ℝ)
4517, 14ffvelrnd 6829 . . . . . 6 (𝜑 → (𝐵𝑍) ∈ ℝ)
46 volicore 43220 . . . . . 6 (((𝐴𝑍) ∈ ℝ ∧ (𝐵𝑍) ∈ ℝ) → (vol‘((𝐴𝑍)[,)(𝐵𝑍))) ∈ ℝ)
4744, 45, 46syl2anc 587 . . . . 5 (𝜑 → (vol‘((𝐴𝑍)[,)(𝐵𝑍))) ∈ ℝ)
4847recnd 10658 . . . 4 (𝜑 → (vol‘((𝐴𝑍)[,)(𝐵𝑍))) ∈ ℂ)
4916adantr 484 . . . . . . . . 9 ((𝜑𝑘𝑌) → 𝐴:𝑋⟶ℝ)
50 ssun1 4099 . . . . . . . . . . . 12 𝑌 ⊆ (𝑌 ∪ {𝑍})
5150, 2sseqtrri 3952 . . . . . . . . . . 11 𝑌𝑋
52 id 22 . . . . . . . . . . 11 (𝑘𝑌𝑘𝑌)
5351, 52sseldi 3913 . . . . . . . . . 10 (𝑘𝑌𝑘𝑋)
5453adantl 485 . . . . . . . . 9 ((𝜑𝑘𝑌) → 𝑘𝑋)
5549, 54ffvelrnd 6829 . . . . . . . 8 ((𝜑𝑘𝑌) → (𝐴𝑘) ∈ ℝ)
5617adantr 484 . . . . . . . . 9 ((𝜑𝑘𝑌) → 𝐵:𝑋⟶ℝ)
5756, 54ffvelrnd 6829 . . . . . . . 8 ((𝜑𝑘𝑌) → (𝐵𝑘) ∈ ℝ)
5855, 57, 21syl2anc 587 . . . . . . 7 ((𝜑𝑘𝑌) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ ℝ)
593, 58fprodrecl 15299 . . . . . 6 (𝜑 → ∏𝑘𝑌 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ ℝ)
6039, 59eqeltrid 2894 . . . . 5 (𝜑𝐺 ∈ ℝ)
6160recnd 10658 . . . 4 (𝜑𝐺 ∈ ℂ)
6248, 61mulcomd 10651 . . 3 (𝜑 → ((vol‘((𝐴𝑍)[,)(𝐵𝑍))) · 𝐺) = (𝐺 · (vol‘((𝐴𝑍)[,)(𝐵𝑍)))))
6343, 62eqtrd 2833 . 2 (𝜑 → ((vol‘((𝐴𝑍)[,)(𝐵𝑍))) · ∏𝑘 ∈ (𝑋 ∖ {𝑍})(vol‘((𝐴𝑘)[,)(𝐵𝑘)))) = (𝐺 · (vol‘((𝐴𝑍)[,)(𝐵𝑍)))))
6418, 29, 633eqtrd 2837 1 (𝜑 → (𝐴(𝐿𝑋)𝐵) = (𝐺 · (vol‘((𝐴𝑍)[,)(𝐵𝑍)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1538  wcel 2111  cdif 3878  cun 3879  c0 4243  ifcif 4425  {csn 4525  cmpt 5110  wf 6320  cfv 6324  (class class class)co 7135  cmpo 7137  m cmap 8389  Fincfn 8492  cr 10525  0cc0 10526   · cmul 10531  [,)cico 12728  cprod 15251  volcvol 24067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fi 8859  df-sup 8890  df-inf 8891  df-oi 8958  df-dju 9314  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-ico 12732  df-icc 12733  df-fz 12886  df-fzo 13029  df-fl 13157  df-seq 13365  df-exp 13426  df-hash 13687  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-clim 14837  df-rlim 14838  df-sum 15035  df-prod 15252  df-rest 16688  df-topgen 16709  df-psmet 20083  df-xmet 20084  df-met 20085  df-bl 20086  df-mopn 20087  df-top 21499  df-topon 21516  df-bases 21551  df-cmp 21992  df-ovol 24068  df-vol 24069
This theorem is referenced by:  hoidmvlelem2  43235  hoidmvlelem4  43237
  Copyright terms: Public domain W3C validator