Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hoiprodp1 Structured version   Visualization version   GIF version

Theorem hoiprodp1 43804
Description: The dimensional volume of a half-open interval with dimension 𝑛 + 1. Used in the first equality of step (e) of Lemma 115B of [Fremlin1] p. 30. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
Hypotheses
Ref Expression
hoiprodp1.l 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))
hoiprodp1.y (𝜑𝑌 ∈ Fin)
hoiprodp1.3 (𝜑𝑍𝑉)
hoiprodp1.z (𝜑 → ¬ 𝑍𝑌)
hoiprodp1.x 𝑋 = (𝑌 ∪ {𝑍})
hoiprodp1.a (𝜑𝐴:𝑋⟶ℝ)
hoiprodp1.b (𝜑𝐵:𝑋⟶ℝ)
hoiprodp1.g 𝐺 = ∏𝑘𝑌 (vol‘((𝐴𝑘)[,)(𝐵𝑘)))
Assertion
Ref Expression
hoiprodp1 (𝜑 → (𝐴(𝐿𝑋)𝐵) = (𝐺 · (vol‘((𝐴𝑍)[,)(𝐵𝑍)))))
Distinct variable groups:   𝐴,𝑎,𝑏,𝑘   𝐵,𝑎,𝑏,𝑘   𝑋,𝑎,𝑏,𝑘,𝑥   𝑘,𝑌   𝑘,𝑍   𝜑,𝑎,𝑏,𝑘,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐺(𝑥,𝑘,𝑎,𝑏)   𝐿(𝑥,𝑘,𝑎,𝑏)   𝑉(𝑥,𝑘,𝑎,𝑏)   𝑌(𝑥,𝑎,𝑏)   𝑍(𝑥,𝑎,𝑏)

Proof of Theorem hoiprodp1
StepHypRef Expression
1 hoiprodp1.l . . 3 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))
2 hoiprodp1.x . . . 4 𝑋 = (𝑌 ∪ {𝑍})
3 hoiprodp1.y . . . . 5 (𝜑𝑌 ∈ Fin)
4 snfi 8721 . . . . . 6 {𝑍} ∈ Fin
54a1i 11 . . . . 5 (𝜑 → {𝑍} ∈ Fin)
6 unfi 8850 . . . . 5 ((𝑌 ∈ Fin ∧ {𝑍} ∈ Fin) → (𝑌 ∪ {𝑍}) ∈ Fin)
73, 5, 6syl2anc 587 . . . 4 (𝜑 → (𝑌 ∪ {𝑍}) ∈ Fin)
82, 7eqeltrid 2842 . . 3 (𝜑𝑋 ∈ Fin)
9 hoiprodp1.3 . . . . . . 7 (𝜑𝑍𝑉)
10 snidg 4575 . . . . . . 7 (𝑍𝑉𝑍 ∈ {𝑍})
119, 10syl 17 . . . . . 6 (𝜑𝑍 ∈ {𝑍})
12 elun2 4091 . . . . . 6 (𝑍 ∈ {𝑍} → 𝑍 ∈ (𝑌 ∪ {𝑍}))
1311, 12syl 17 . . . . 5 (𝜑𝑍 ∈ (𝑌 ∪ {𝑍}))
1413, 2eleqtrrdi 2849 . . . 4 (𝜑𝑍𝑋)
1514ne0d 4250 . . 3 (𝜑𝑋 ≠ ∅)
16 hoiprodp1.a . . 3 (𝜑𝐴:𝑋⟶ℝ)
17 hoiprodp1.b . . 3 (𝜑𝐵:𝑋⟶ℝ)
181, 8, 15, 16, 17hoidmvn0val 43800 . 2 (𝜑 → (𝐴(𝐿𝑋)𝐵) = ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
1916ffvelrnda 6904 . . . . 5 ((𝜑𝑘𝑋) → (𝐴𝑘) ∈ ℝ)
2017ffvelrnda 6904 . . . . 5 ((𝜑𝑘𝑋) → (𝐵𝑘) ∈ ℝ)
21 volicore 43797 . . . . 5 (((𝐴𝑘) ∈ ℝ ∧ (𝐵𝑘) ∈ ℝ) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ ℝ)
2219, 20, 21syl2anc 587 . . . 4 ((𝜑𝑘𝑋) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ ℝ)
2322recnd 10861 . . 3 ((𝜑𝑘𝑋) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ ℂ)
24 fveq2 6717 . . . . . 6 (𝑘 = 𝑍 → (𝐴𝑘) = (𝐴𝑍))
25 fveq2 6717 . . . . . 6 (𝑘 = 𝑍 → (𝐵𝑘) = (𝐵𝑍))
2624, 25oveq12d 7231 . . . . 5 (𝑘 = 𝑍 → ((𝐴𝑘)[,)(𝐵𝑘)) = ((𝐴𝑍)[,)(𝐵𝑍)))
2726fveq2d 6721 . . . 4 (𝑘 = 𝑍 → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = (vol‘((𝐴𝑍)[,)(𝐵𝑍))))
2827adantl 485 . . 3 ((𝜑𝑘 = 𝑍) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = (vol‘((𝐴𝑍)[,)(𝐵𝑍))))
298, 23, 14, 28fprodsplit1 42812 . 2 (𝜑 → ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = ((vol‘((𝐴𝑍)[,)(𝐵𝑍))) · ∏𝑘 ∈ (𝑋 ∖ {𝑍})(vol‘((𝐴𝑘)[,)(𝐵𝑘)))))
302difeq1i 4033 . . . . . . . 8 (𝑋 ∖ {𝑍}) = ((𝑌 ∪ {𝑍}) ∖ {𝑍})
3130a1i 11 . . . . . . 7 (𝜑 → (𝑋 ∖ {𝑍}) = ((𝑌 ∪ {𝑍}) ∖ {𝑍}))
32 difun2 4395 . . . . . . . 8 ((𝑌 ∪ {𝑍}) ∖ {𝑍}) = (𝑌 ∖ {𝑍})
3332a1i 11 . . . . . . 7 (𝜑 → ((𝑌 ∪ {𝑍}) ∖ {𝑍}) = (𝑌 ∖ {𝑍}))
34 hoiprodp1.z . . . . . . . 8 (𝜑 → ¬ 𝑍𝑌)
35 difsn 4711 . . . . . . . 8 𝑍𝑌 → (𝑌 ∖ {𝑍}) = 𝑌)
3634, 35syl 17 . . . . . . 7 (𝜑 → (𝑌 ∖ {𝑍}) = 𝑌)
3731, 33, 363eqtrd 2781 . . . . . 6 (𝜑 → (𝑋 ∖ {𝑍}) = 𝑌)
3837prodeq1d 15483 . . . . 5 (𝜑 → ∏𝑘 ∈ (𝑋 ∖ {𝑍})(vol‘((𝐴𝑘)[,)(𝐵𝑘))) = ∏𝑘𝑌 (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
39 hoiprodp1.g . . . . . . 7 𝐺 = ∏𝑘𝑌 (vol‘((𝐴𝑘)[,)(𝐵𝑘)))
4039eqcomi 2746 . . . . . 6 𝑘𝑌 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = 𝐺
4140a1i 11 . . . . 5 (𝜑 → ∏𝑘𝑌 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = 𝐺)
4238, 41eqtrd 2777 . . . 4 (𝜑 → ∏𝑘 ∈ (𝑋 ∖ {𝑍})(vol‘((𝐴𝑘)[,)(𝐵𝑘))) = 𝐺)
4342oveq2d 7229 . . 3 (𝜑 → ((vol‘((𝐴𝑍)[,)(𝐵𝑍))) · ∏𝑘 ∈ (𝑋 ∖ {𝑍})(vol‘((𝐴𝑘)[,)(𝐵𝑘)))) = ((vol‘((𝐴𝑍)[,)(𝐵𝑍))) · 𝐺))
4416, 14ffvelrnd 6905 . . . . . 6 (𝜑 → (𝐴𝑍) ∈ ℝ)
4517, 14ffvelrnd 6905 . . . . . 6 (𝜑 → (𝐵𝑍) ∈ ℝ)
46 volicore 43797 . . . . . 6 (((𝐴𝑍) ∈ ℝ ∧ (𝐵𝑍) ∈ ℝ) → (vol‘((𝐴𝑍)[,)(𝐵𝑍))) ∈ ℝ)
4744, 45, 46syl2anc 587 . . . . 5 (𝜑 → (vol‘((𝐴𝑍)[,)(𝐵𝑍))) ∈ ℝ)
4847recnd 10861 . . . 4 (𝜑 → (vol‘((𝐴𝑍)[,)(𝐵𝑍))) ∈ ℂ)
4916adantr 484 . . . . . . . . 9 ((𝜑𝑘𝑌) → 𝐴:𝑋⟶ℝ)
50 ssun1 4086 . . . . . . . . . . . 12 𝑌 ⊆ (𝑌 ∪ {𝑍})
5150, 2sseqtrri 3938 . . . . . . . . . . 11 𝑌𝑋
52 id 22 . . . . . . . . . . 11 (𝑘𝑌𝑘𝑌)
5351, 52sseldi 3899 . . . . . . . . . 10 (𝑘𝑌𝑘𝑋)
5453adantl 485 . . . . . . . . 9 ((𝜑𝑘𝑌) → 𝑘𝑋)
5549, 54ffvelrnd 6905 . . . . . . . 8 ((𝜑𝑘𝑌) → (𝐴𝑘) ∈ ℝ)
5617adantr 484 . . . . . . . . 9 ((𝜑𝑘𝑌) → 𝐵:𝑋⟶ℝ)
5756, 54ffvelrnd 6905 . . . . . . . 8 ((𝜑𝑘𝑌) → (𝐵𝑘) ∈ ℝ)
5855, 57, 21syl2anc 587 . . . . . . 7 ((𝜑𝑘𝑌) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ ℝ)
593, 58fprodrecl 15515 . . . . . 6 (𝜑 → ∏𝑘𝑌 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ ℝ)
6039, 59eqeltrid 2842 . . . . 5 (𝜑𝐺 ∈ ℝ)
6160recnd 10861 . . . 4 (𝜑𝐺 ∈ ℂ)
6248, 61mulcomd 10854 . . 3 (𝜑 → ((vol‘((𝐴𝑍)[,)(𝐵𝑍))) · 𝐺) = (𝐺 · (vol‘((𝐴𝑍)[,)(𝐵𝑍)))))
6343, 62eqtrd 2777 . 2 (𝜑 → ((vol‘((𝐴𝑍)[,)(𝐵𝑍))) · ∏𝑘 ∈ (𝑋 ∖ {𝑍})(vol‘((𝐴𝑘)[,)(𝐵𝑘)))) = (𝐺 · (vol‘((𝐴𝑍)[,)(𝐵𝑍)))))
6418, 29, 633eqtrd 2781 1 (𝜑 → (𝐴(𝐿𝑋)𝐵) = (𝐺 · (vol‘((𝐴𝑍)[,)(𝐵𝑍)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1543  wcel 2110  cdif 3863  cun 3864  c0 4237  ifcif 4439  {csn 4541  cmpt 5135  wf 6376  cfv 6380  (class class class)co 7213  cmpo 7215  m cmap 8508  Fincfn 8626  cr 10728  0cc0 10729   · cmul 10734  [,)cico 12937  cprod 15467  volcvol 24360
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-inf2 9256  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806  ax-pre-sup 10807
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-se 5510  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-isom 6389  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-of 7469  df-om 7645  df-1st 7761  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-2o 8203  df-er 8391  df-map 8510  df-pm 8511  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-fi 9027  df-sup 9058  df-inf 9059  df-oi 9126  df-dju 9517  df-card 9555  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-div 11490  df-nn 11831  df-2 11893  df-3 11894  df-n0 12091  df-z 12177  df-uz 12439  df-q 12545  df-rp 12587  df-xneg 12704  df-xadd 12705  df-xmul 12706  df-ioo 12939  df-ico 12941  df-icc 12942  df-fz 13096  df-fzo 13239  df-fl 13367  df-seq 13575  df-exp 13636  df-hash 13897  df-cj 14662  df-re 14663  df-im 14664  df-sqrt 14798  df-abs 14799  df-clim 15049  df-rlim 15050  df-sum 15250  df-prod 15468  df-rest 16927  df-topgen 16948  df-psmet 20355  df-xmet 20356  df-met 20357  df-bl 20358  df-mopn 20359  df-top 21791  df-topon 21808  df-bases 21843  df-cmp 22284  df-ovol 24361  df-vol 24362
This theorem is referenced by:  hoidmvlelem2  43812  hoidmvlelem4  43814
  Copyright terms: Public domain W3C validator