Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hoiprodp1 Structured version   Visualization version   GIF version

Theorem hoiprodp1 46685
Description: The dimensional volume of a half-open interval with dimension 𝑛 + 1. Used in the first equality of step (e) of Lemma 115B of [Fremlin1] p. 30. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
Hypotheses
Ref Expression
hoiprodp1.l 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))
hoiprodp1.y (𝜑𝑌 ∈ Fin)
hoiprodp1.3 (𝜑𝑍𝑉)
hoiprodp1.z (𝜑 → ¬ 𝑍𝑌)
hoiprodp1.x 𝑋 = (𝑌 ∪ {𝑍})
hoiprodp1.a (𝜑𝐴:𝑋⟶ℝ)
hoiprodp1.b (𝜑𝐵:𝑋⟶ℝ)
hoiprodp1.g 𝐺 = ∏𝑘𝑌 (vol‘((𝐴𝑘)[,)(𝐵𝑘)))
Assertion
Ref Expression
hoiprodp1 (𝜑 → (𝐴(𝐿𝑋)𝐵) = (𝐺 · (vol‘((𝐴𝑍)[,)(𝐵𝑍)))))
Distinct variable groups:   𝐴,𝑎,𝑏,𝑘   𝐵,𝑎,𝑏,𝑘   𝑋,𝑎,𝑏,𝑘,𝑥   𝑘,𝑌   𝑘,𝑍   𝜑,𝑎,𝑏,𝑘,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐺(𝑥,𝑘,𝑎,𝑏)   𝐿(𝑥,𝑘,𝑎,𝑏)   𝑉(𝑥,𝑘,𝑎,𝑏)   𝑌(𝑥,𝑎,𝑏)   𝑍(𝑥,𝑎,𝑏)

Proof of Theorem hoiprodp1
StepHypRef Expression
1 hoiprodp1.l . . 3 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))
2 hoiprodp1.x . . . 4 𝑋 = (𝑌 ∪ {𝑍})
3 hoiprodp1.y . . . . 5 (𝜑𝑌 ∈ Fin)
4 snfi 8965 . . . . . 6 {𝑍} ∈ Fin
54a1i 11 . . . . 5 (𝜑 → {𝑍} ∈ Fin)
6 unfi 9080 . . . . 5 ((𝑌 ∈ Fin ∧ {𝑍} ∈ Fin) → (𝑌 ∪ {𝑍}) ∈ Fin)
73, 5, 6syl2anc 584 . . . 4 (𝜑 → (𝑌 ∪ {𝑍}) ∈ Fin)
82, 7eqeltrid 2835 . . 3 (𝜑𝑋 ∈ Fin)
9 hoiprodp1.3 . . . . . . 7 (𝜑𝑍𝑉)
10 snidg 4610 . . . . . . 7 (𝑍𝑉𝑍 ∈ {𝑍})
119, 10syl 17 . . . . . 6 (𝜑𝑍 ∈ {𝑍})
12 elun2 4130 . . . . . 6 (𝑍 ∈ {𝑍} → 𝑍 ∈ (𝑌 ∪ {𝑍}))
1311, 12syl 17 . . . . 5 (𝜑𝑍 ∈ (𝑌 ∪ {𝑍}))
1413, 2eleqtrrdi 2842 . . . 4 (𝜑𝑍𝑋)
1514ne0d 4289 . . 3 (𝜑𝑋 ≠ ∅)
16 hoiprodp1.a . . 3 (𝜑𝐴:𝑋⟶ℝ)
17 hoiprodp1.b . . 3 (𝜑𝐵:𝑋⟶ℝ)
181, 8, 15, 16, 17hoidmvn0val 46681 . 2 (𝜑 → (𝐴(𝐿𝑋)𝐵) = ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
1916ffvelcdmda 7017 . . . . 5 ((𝜑𝑘𝑋) → (𝐴𝑘) ∈ ℝ)
2017ffvelcdmda 7017 . . . . 5 ((𝜑𝑘𝑋) → (𝐵𝑘) ∈ ℝ)
21 volicore 46678 . . . . 5 (((𝐴𝑘) ∈ ℝ ∧ (𝐵𝑘) ∈ ℝ) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ ℝ)
2219, 20, 21syl2anc 584 . . . 4 ((𝜑𝑘𝑋) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ ℝ)
2322recnd 11140 . . 3 ((𝜑𝑘𝑋) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ ℂ)
24 fveq2 6822 . . . . . 6 (𝑘 = 𝑍 → (𝐴𝑘) = (𝐴𝑍))
25 fveq2 6822 . . . . . 6 (𝑘 = 𝑍 → (𝐵𝑘) = (𝐵𝑍))
2624, 25oveq12d 7364 . . . . 5 (𝑘 = 𝑍 → ((𝐴𝑘)[,)(𝐵𝑘)) = ((𝐴𝑍)[,)(𝐵𝑍)))
2726fveq2d 6826 . . . 4 (𝑘 = 𝑍 → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = (vol‘((𝐴𝑍)[,)(𝐵𝑍))))
2827adantl 481 . . 3 ((𝜑𝑘 = 𝑍) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = (vol‘((𝐴𝑍)[,)(𝐵𝑍))))
298, 23, 14, 28fprodsplit1 45692 . 2 (𝜑 → ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = ((vol‘((𝐴𝑍)[,)(𝐵𝑍))) · ∏𝑘 ∈ (𝑋 ∖ {𝑍})(vol‘((𝐴𝑘)[,)(𝐵𝑘)))))
302difeq1i 4069 . . . . . . . 8 (𝑋 ∖ {𝑍}) = ((𝑌 ∪ {𝑍}) ∖ {𝑍})
3130a1i 11 . . . . . . 7 (𝜑 → (𝑋 ∖ {𝑍}) = ((𝑌 ∪ {𝑍}) ∖ {𝑍}))
32 difun2 4428 . . . . . . . 8 ((𝑌 ∪ {𝑍}) ∖ {𝑍}) = (𝑌 ∖ {𝑍})
3332a1i 11 . . . . . . 7 (𝜑 → ((𝑌 ∪ {𝑍}) ∖ {𝑍}) = (𝑌 ∖ {𝑍}))
34 hoiprodp1.z . . . . . . . 8 (𝜑 → ¬ 𝑍𝑌)
35 difsn 4747 . . . . . . . 8 𝑍𝑌 → (𝑌 ∖ {𝑍}) = 𝑌)
3634, 35syl 17 . . . . . . 7 (𝜑 → (𝑌 ∖ {𝑍}) = 𝑌)
3731, 33, 363eqtrd 2770 . . . . . 6 (𝜑 → (𝑋 ∖ {𝑍}) = 𝑌)
3837prodeq1d 15827 . . . . 5 (𝜑 → ∏𝑘 ∈ (𝑋 ∖ {𝑍})(vol‘((𝐴𝑘)[,)(𝐵𝑘))) = ∏𝑘𝑌 (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
39 hoiprodp1.g . . . . . . 7 𝐺 = ∏𝑘𝑌 (vol‘((𝐴𝑘)[,)(𝐵𝑘)))
4039eqcomi 2740 . . . . . 6 𝑘𝑌 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = 𝐺
4140a1i 11 . . . . 5 (𝜑 → ∏𝑘𝑌 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = 𝐺)
4238, 41eqtrd 2766 . . . 4 (𝜑 → ∏𝑘 ∈ (𝑋 ∖ {𝑍})(vol‘((𝐴𝑘)[,)(𝐵𝑘))) = 𝐺)
4342oveq2d 7362 . . 3 (𝜑 → ((vol‘((𝐴𝑍)[,)(𝐵𝑍))) · ∏𝑘 ∈ (𝑋 ∖ {𝑍})(vol‘((𝐴𝑘)[,)(𝐵𝑘)))) = ((vol‘((𝐴𝑍)[,)(𝐵𝑍))) · 𝐺))
4416, 14ffvelcdmd 7018 . . . . . 6 (𝜑 → (𝐴𝑍) ∈ ℝ)
4517, 14ffvelcdmd 7018 . . . . . 6 (𝜑 → (𝐵𝑍) ∈ ℝ)
46 volicore 46678 . . . . . 6 (((𝐴𝑍) ∈ ℝ ∧ (𝐵𝑍) ∈ ℝ) → (vol‘((𝐴𝑍)[,)(𝐵𝑍))) ∈ ℝ)
4744, 45, 46syl2anc 584 . . . . 5 (𝜑 → (vol‘((𝐴𝑍)[,)(𝐵𝑍))) ∈ ℝ)
4847recnd 11140 . . . 4 (𝜑 → (vol‘((𝐴𝑍)[,)(𝐵𝑍))) ∈ ℂ)
4916adantr 480 . . . . . . . . 9 ((𝜑𝑘𝑌) → 𝐴:𝑋⟶ℝ)
50 ssun1 4125 . . . . . . . . . . . 12 𝑌 ⊆ (𝑌 ∪ {𝑍})
5150, 2sseqtrri 3979 . . . . . . . . . . 11 𝑌𝑋
52 id 22 . . . . . . . . . . 11 (𝑘𝑌𝑘𝑌)
5351, 52sselid 3927 . . . . . . . . . 10 (𝑘𝑌𝑘𝑋)
5453adantl 481 . . . . . . . . 9 ((𝜑𝑘𝑌) → 𝑘𝑋)
5549, 54ffvelcdmd 7018 . . . . . . . 8 ((𝜑𝑘𝑌) → (𝐴𝑘) ∈ ℝ)
5617adantr 480 . . . . . . . . 9 ((𝜑𝑘𝑌) → 𝐵:𝑋⟶ℝ)
5756, 54ffvelcdmd 7018 . . . . . . . 8 ((𝜑𝑘𝑌) → (𝐵𝑘) ∈ ℝ)
5855, 57, 21syl2anc 584 . . . . . . 7 ((𝜑𝑘𝑌) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ ℝ)
593, 58fprodrecl 15860 . . . . . 6 (𝜑 → ∏𝑘𝑌 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ ℝ)
6039, 59eqeltrid 2835 . . . . 5 (𝜑𝐺 ∈ ℝ)
6160recnd 11140 . . . 4 (𝜑𝐺 ∈ ℂ)
6248, 61mulcomd 11133 . . 3 (𝜑 → ((vol‘((𝐴𝑍)[,)(𝐵𝑍))) · 𝐺) = (𝐺 · (vol‘((𝐴𝑍)[,)(𝐵𝑍)))))
6343, 62eqtrd 2766 . 2 (𝜑 → ((vol‘((𝐴𝑍)[,)(𝐵𝑍))) · ∏𝑘 ∈ (𝑋 ∖ {𝑍})(vol‘((𝐴𝑘)[,)(𝐵𝑘)))) = (𝐺 · (vol‘((𝐴𝑍)[,)(𝐵𝑍)))))
6418, 29, 633eqtrd 2770 1 (𝜑 → (𝐴(𝐿𝑋)𝐵) = (𝐺 · (vol‘((𝐴𝑍)[,)(𝐵𝑍)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2111  cdif 3894  cun 3895  c0 4280  ifcif 4472  {csn 4573  cmpt 5170  wf 6477  cfv 6481  (class class class)co 7346  cmpo 7348  m cmap 8750  Fincfn 8869  cr 11005  0cc0 11006   · cmul 11011  [,)cico 13247  cprod 15810  volcvol 25391
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-pm 8753  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fi 9295  df-sup 9326  df-inf 9327  df-oi 9396  df-dju 9794  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-n0 12382  df-z 12469  df-uz 12733  df-q 12847  df-rp 12891  df-xneg 13011  df-xadd 13012  df-xmul 13013  df-ioo 13249  df-ico 13251  df-icc 13252  df-fz 13408  df-fzo 13555  df-fl 13696  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-rlim 15396  df-sum 15594  df-prod 15811  df-rest 17326  df-topgen 17347  df-psmet 21283  df-xmet 21284  df-met 21285  df-bl 21286  df-mopn 21287  df-top 22809  df-topon 22826  df-bases 22861  df-cmp 23302  df-ovol 25392  df-vol 25393
This theorem is referenced by:  hoidmvlelem2  46693  hoidmvlelem4  46695
  Copyright terms: Public domain W3C validator