Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hoiprodp1 Structured version   Visualization version   GIF version

Theorem hoiprodp1 42869
Description: The dimensional volume of a half-open interval with dimension 𝑛 + 1. Used in the first equality of step (e) of Lemma 115B of [Fremlin1] p. 30. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
Hypotheses
Ref Expression
hoiprodp1.l 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))
hoiprodp1.y (𝜑𝑌 ∈ Fin)
hoiprodp1.3 (𝜑𝑍𝑉)
hoiprodp1.z (𝜑 → ¬ 𝑍𝑌)
hoiprodp1.x 𝑋 = (𝑌 ∪ {𝑍})
hoiprodp1.a (𝜑𝐴:𝑋⟶ℝ)
hoiprodp1.b (𝜑𝐵:𝑋⟶ℝ)
hoiprodp1.g 𝐺 = ∏𝑘𝑌 (vol‘((𝐴𝑘)[,)(𝐵𝑘)))
Assertion
Ref Expression
hoiprodp1 (𝜑 → (𝐴(𝐿𝑋)𝐵) = (𝐺 · (vol‘((𝐴𝑍)[,)(𝐵𝑍)))))
Distinct variable groups:   𝐴,𝑎,𝑏,𝑘   𝐵,𝑎,𝑏,𝑘   𝑋,𝑎,𝑏,𝑘,𝑥   𝑘,𝑌   𝑘,𝑍   𝜑,𝑎,𝑏,𝑘,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐺(𝑥,𝑘,𝑎,𝑏)   𝐿(𝑥,𝑘,𝑎,𝑏)   𝑉(𝑥,𝑘,𝑎,𝑏)   𝑌(𝑥,𝑎,𝑏)   𝑍(𝑥,𝑎,𝑏)

Proof of Theorem hoiprodp1
StepHypRef Expression
1 hoiprodp1.l . . 3 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))
2 hoiprodp1.x . . . 4 𝑋 = (𝑌 ∪ {𝑍})
3 hoiprodp1.y . . . . 5 (𝜑𝑌 ∈ Fin)
4 snfi 8593 . . . . . 6 {𝑍} ∈ Fin
54a1i 11 . . . . 5 (𝜑 → {𝑍} ∈ Fin)
6 unfi 8784 . . . . 5 ((𝑌 ∈ Fin ∧ {𝑍} ∈ Fin) → (𝑌 ∪ {𝑍}) ∈ Fin)
73, 5, 6syl2anc 586 . . . 4 (𝜑 → (𝑌 ∪ {𝑍}) ∈ Fin)
82, 7eqeltrid 2917 . . 3 (𝜑𝑋 ∈ Fin)
9 hoiprodp1.3 . . . . . . 7 (𝜑𝑍𝑉)
10 snidg 4598 . . . . . . 7 (𝑍𝑉𝑍 ∈ {𝑍})
119, 10syl 17 . . . . . 6 (𝜑𝑍 ∈ {𝑍})
12 elun2 4152 . . . . . 6 (𝑍 ∈ {𝑍} → 𝑍 ∈ (𝑌 ∪ {𝑍}))
1311, 12syl 17 . . . . 5 (𝜑𝑍 ∈ (𝑌 ∪ {𝑍}))
1413, 2eleqtrrdi 2924 . . . 4 (𝜑𝑍𝑋)
1514ne0d 4300 . . 3 (𝜑𝑋 ≠ ∅)
16 hoiprodp1.a . . 3 (𝜑𝐴:𝑋⟶ℝ)
17 hoiprodp1.b . . 3 (𝜑𝐵:𝑋⟶ℝ)
181, 8, 15, 16, 17hoidmvn0val 42865 . 2 (𝜑 → (𝐴(𝐿𝑋)𝐵) = ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
1916ffvelrnda 6850 . . . . 5 ((𝜑𝑘𝑋) → (𝐴𝑘) ∈ ℝ)
2017ffvelrnda 6850 . . . . 5 ((𝜑𝑘𝑋) → (𝐵𝑘) ∈ ℝ)
21 volicore 42862 . . . . 5 (((𝐴𝑘) ∈ ℝ ∧ (𝐵𝑘) ∈ ℝ) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ ℝ)
2219, 20, 21syl2anc 586 . . . 4 ((𝜑𝑘𝑋) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ ℝ)
2322recnd 10668 . . 3 ((𝜑𝑘𝑋) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ ℂ)
24 fveq2 6669 . . . . . 6 (𝑘 = 𝑍 → (𝐴𝑘) = (𝐴𝑍))
25 fveq2 6669 . . . . . 6 (𝑘 = 𝑍 → (𝐵𝑘) = (𝐵𝑍))
2624, 25oveq12d 7173 . . . . 5 (𝑘 = 𝑍 → ((𝐴𝑘)[,)(𝐵𝑘)) = ((𝐴𝑍)[,)(𝐵𝑍)))
2726fveq2d 6673 . . . 4 (𝑘 = 𝑍 → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = (vol‘((𝐴𝑍)[,)(𝐵𝑍))))
2827adantl 484 . . 3 ((𝜑𝑘 = 𝑍) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = (vol‘((𝐴𝑍)[,)(𝐵𝑍))))
298, 23, 14, 28fprodsplit1 41872 . 2 (𝜑 → ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = ((vol‘((𝐴𝑍)[,)(𝐵𝑍))) · ∏𝑘 ∈ (𝑋 ∖ {𝑍})(vol‘((𝐴𝑘)[,)(𝐵𝑘)))))
302difeq1i 4094 . . . . . . . 8 (𝑋 ∖ {𝑍}) = ((𝑌 ∪ {𝑍}) ∖ {𝑍})
3130a1i 11 . . . . . . 7 (𝜑 → (𝑋 ∖ {𝑍}) = ((𝑌 ∪ {𝑍}) ∖ {𝑍}))
32 difun2 4428 . . . . . . . 8 ((𝑌 ∪ {𝑍}) ∖ {𝑍}) = (𝑌 ∖ {𝑍})
3332a1i 11 . . . . . . 7 (𝜑 → ((𝑌 ∪ {𝑍}) ∖ {𝑍}) = (𝑌 ∖ {𝑍}))
34 hoiprodp1.z . . . . . . . 8 (𝜑 → ¬ 𝑍𝑌)
35 difsn 4730 . . . . . . . 8 𝑍𝑌 → (𝑌 ∖ {𝑍}) = 𝑌)
3634, 35syl 17 . . . . . . 7 (𝜑 → (𝑌 ∖ {𝑍}) = 𝑌)
3731, 33, 363eqtrd 2860 . . . . . 6 (𝜑 → (𝑋 ∖ {𝑍}) = 𝑌)
3837prodeq1d 15274 . . . . 5 (𝜑 → ∏𝑘 ∈ (𝑋 ∖ {𝑍})(vol‘((𝐴𝑘)[,)(𝐵𝑘))) = ∏𝑘𝑌 (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
39 hoiprodp1.g . . . . . . 7 𝐺 = ∏𝑘𝑌 (vol‘((𝐴𝑘)[,)(𝐵𝑘)))
4039eqcomi 2830 . . . . . 6 𝑘𝑌 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = 𝐺
4140a1i 11 . . . . 5 (𝜑 → ∏𝑘𝑌 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = 𝐺)
4238, 41eqtrd 2856 . . . 4 (𝜑 → ∏𝑘 ∈ (𝑋 ∖ {𝑍})(vol‘((𝐴𝑘)[,)(𝐵𝑘))) = 𝐺)
4342oveq2d 7171 . . 3 (𝜑 → ((vol‘((𝐴𝑍)[,)(𝐵𝑍))) · ∏𝑘 ∈ (𝑋 ∖ {𝑍})(vol‘((𝐴𝑘)[,)(𝐵𝑘)))) = ((vol‘((𝐴𝑍)[,)(𝐵𝑍))) · 𝐺))
4416, 14ffvelrnd 6851 . . . . . 6 (𝜑 → (𝐴𝑍) ∈ ℝ)
4517, 14ffvelrnd 6851 . . . . . 6 (𝜑 → (𝐵𝑍) ∈ ℝ)
46 volicore 42862 . . . . . 6 (((𝐴𝑍) ∈ ℝ ∧ (𝐵𝑍) ∈ ℝ) → (vol‘((𝐴𝑍)[,)(𝐵𝑍))) ∈ ℝ)
4744, 45, 46syl2anc 586 . . . . 5 (𝜑 → (vol‘((𝐴𝑍)[,)(𝐵𝑍))) ∈ ℝ)
4847recnd 10668 . . . 4 (𝜑 → (vol‘((𝐴𝑍)[,)(𝐵𝑍))) ∈ ℂ)
4916adantr 483 . . . . . . . . 9 ((𝜑𝑘𝑌) → 𝐴:𝑋⟶ℝ)
50 ssun1 4147 . . . . . . . . . . . 12 𝑌 ⊆ (𝑌 ∪ {𝑍})
5150, 2sseqtrri 4003 . . . . . . . . . . 11 𝑌𝑋
52 id 22 . . . . . . . . . . 11 (𝑘𝑌𝑘𝑌)
5351, 52sseldi 3964 . . . . . . . . . 10 (𝑘𝑌𝑘𝑋)
5453adantl 484 . . . . . . . . 9 ((𝜑𝑘𝑌) → 𝑘𝑋)
5549, 54ffvelrnd 6851 . . . . . . . 8 ((𝜑𝑘𝑌) → (𝐴𝑘) ∈ ℝ)
5617adantr 483 . . . . . . . . 9 ((𝜑𝑘𝑌) → 𝐵:𝑋⟶ℝ)
5756, 54ffvelrnd 6851 . . . . . . . 8 ((𝜑𝑘𝑌) → (𝐵𝑘) ∈ ℝ)
5855, 57, 21syl2anc 586 . . . . . . 7 ((𝜑𝑘𝑌) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ ℝ)
593, 58fprodrecl 15306 . . . . . 6 (𝜑 → ∏𝑘𝑌 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ ℝ)
6039, 59eqeltrid 2917 . . . . 5 (𝜑𝐺 ∈ ℝ)
6160recnd 10668 . . . 4 (𝜑𝐺 ∈ ℂ)
6248, 61mulcomd 10661 . . 3 (𝜑 → ((vol‘((𝐴𝑍)[,)(𝐵𝑍))) · 𝐺) = (𝐺 · (vol‘((𝐴𝑍)[,)(𝐵𝑍)))))
6343, 62eqtrd 2856 . 2 (𝜑 → ((vol‘((𝐴𝑍)[,)(𝐵𝑍))) · ∏𝑘 ∈ (𝑋 ∖ {𝑍})(vol‘((𝐴𝑘)[,)(𝐵𝑘)))) = (𝐺 · (vol‘((𝐴𝑍)[,)(𝐵𝑍)))))
6418, 29, 633eqtrd 2860 1 (𝜑 → (𝐴(𝐿𝑋)𝐵) = (𝐺 · (vol‘((𝐴𝑍)[,)(𝐵𝑍)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398   = wceq 1533  wcel 2110  cdif 3932  cun 3933  c0 4290  ifcif 4466  {csn 4566  cmpt 5145  wf 6350  cfv 6354  (class class class)co 7155  cmpo 7157  m cmap 8405  Fincfn 8508  cr 10535  0cc0 10536   · cmul 10541  [,)cico 12739  cprod 15258  volcvol 24063
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-inf2 9103  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613  ax-pre-sup 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-int 4876  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-se 5514  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-isom 6363  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-of 7408  df-om 7580  df-1st 7688  df-2nd 7689  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-1o 8101  df-2o 8102  df-oadd 8105  df-er 8288  df-map 8407  df-pm 8408  df-en 8509  df-dom 8510  df-sdom 8511  df-fin 8512  df-fi 8874  df-sup 8905  df-inf 8906  df-oi 8973  df-dju 9329  df-card 9367  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-div 11297  df-nn 11638  df-2 11699  df-3 11700  df-n0 11897  df-z 11981  df-uz 12243  df-q 12348  df-rp 12389  df-xneg 12506  df-xadd 12507  df-xmul 12508  df-ioo 12741  df-ico 12743  df-icc 12744  df-fz 12892  df-fzo 13033  df-fl 13161  df-seq 13369  df-exp 13429  df-hash 13690  df-cj 14457  df-re 14458  df-im 14459  df-sqrt 14593  df-abs 14594  df-clim 14844  df-rlim 14845  df-sum 15042  df-prod 15259  df-rest 16695  df-topgen 16716  df-psmet 20536  df-xmet 20537  df-met 20538  df-bl 20539  df-mopn 20540  df-top 21501  df-topon 21518  df-bases 21553  df-cmp 21994  df-ovol 24064  df-vol 24065
This theorem is referenced by:  hoidmvlelem2  42877  hoidmvlelem4  42879
  Copyright terms: Public domain W3C validator