MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clslp Structured version   Visualization version   GIF version

Theorem clslp 23171
Description: The closure of a subset of a topological space is the subset together with its limit points. Theorem 6.6 of [Munkres] p. 97. (Contributed by NM, 26-Feb-2007.)
Hypothesis
Ref Expression
lpfval.1 𝑋 = 𝐽
Assertion
Ref Expression
clslp ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((cls‘𝐽)‘𝑆) = (𝑆 ∪ ((limPt‘𝐽)‘𝑆)))

Proof of Theorem clslp
Dummy variables 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lpfval.1 . . . . . . . . . . . . 13 𝑋 = 𝐽
21neindisj 23140 . . . . . . . . . . . 12 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ (𝑥 ∈ ((cls‘𝐽)‘𝑆) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝑥}))) → (𝑛𝑆) ≠ ∅)
32expr 456 . . . . . . . . . . 11 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑥 ∈ ((cls‘𝐽)‘𝑆)) → (𝑛 ∈ ((nei‘𝐽)‘{𝑥}) → (𝑛𝑆) ≠ ∅))
43adantr 480 . . . . . . . . . 10 ((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑥 ∈ ((cls‘𝐽)‘𝑆)) ∧ ¬ 𝑥𝑆) → (𝑛 ∈ ((nei‘𝐽)‘{𝑥}) → (𝑛𝑆) ≠ ∅))
5 difsn 4802 . . . . . . . . . . . . 13 𝑥𝑆 → (𝑆 ∖ {𝑥}) = 𝑆)
65ineq2d 4227 . . . . . . . . . . . 12 𝑥𝑆 → (𝑛 ∩ (𝑆 ∖ {𝑥})) = (𝑛𝑆))
76neeq1d 2997 . . . . . . . . . . 11 𝑥𝑆 → ((𝑛 ∩ (𝑆 ∖ {𝑥})) ≠ ∅ ↔ (𝑛𝑆) ≠ ∅))
87adantl 481 . . . . . . . . . 10 ((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑥 ∈ ((cls‘𝐽)‘𝑆)) ∧ ¬ 𝑥𝑆) → ((𝑛 ∩ (𝑆 ∖ {𝑥})) ≠ ∅ ↔ (𝑛𝑆) ≠ ∅))
94, 8sylibrd 259 . . . . . . . . 9 ((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑥 ∈ ((cls‘𝐽)‘𝑆)) ∧ ¬ 𝑥𝑆) → (𝑛 ∈ ((nei‘𝐽)‘{𝑥}) → (𝑛 ∩ (𝑆 ∖ {𝑥})) ≠ ∅))
109ex 412 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑥 ∈ ((cls‘𝐽)‘𝑆)) → (¬ 𝑥𝑆 → (𝑛 ∈ ((nei‘𝐽)‘{𝑥}) → (𝑛 ∩ (𝑆 ∖ {𝑥})) ≠ ∅)))
1110ralrimdv 3149 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑥 ∈ ((cls‘𝐽)‘𝑆)) → (¬ 𝑥𝑆 → ∀𝑛 ∈ ((nei‘𝐽)‘{𝑥})(𝑛 ∩ (𝑆 ∖ {𝑥})) ≠ ∅))
12 simpll 767 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑥 ∈ ((cls‘𝐽)‘𝑆)) → 𝐽 ∈ Top)
13 simplr 769 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑥 ∈ ((cls‘𝐽)‘𝑆)) → 𝑆𝑋)
141clsss3 23082 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((cls‘𝐽)‘𝑆) ⊆ 𝑋)
1514sselda 3994 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑥 ∈ ((cls‘𝐽)‘𝑆)) → 𝑥𝑋)
161islp2 23168 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑥𝑋) → (𝑥 ∈ ((limPt‘𝐽)‘𝑆) ↔ ∀𝑛 ∈ ((nei‘𝐽)‘{𝑥})(𝑛 ∩ (𝑆 ∖ {𝑥})) ≠ ∅))
1712, 13, 15, 16syl3anc 1370 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑥 ∈ ((cls‘𝐽)‘𝑆)) → (𝑥 ∈ ((limPt‘𝐽)‘𝑆) ↔ ∀𝑛 ∈ ((nei‘𝐽)‘{𝑥})(𝑛 ∩ (𝑆 ∖ {𝑥})) ≠ ∅))
1811, 17sylibrd 259 . . . . . 6 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑥 ∈ ((cls‘𝐽)‘𝑆)) → (¬ 𝑥𝑆𝑥 ∈ ((limPt‘𝐽)‘𝑆)))
1918orrd 863 . . . . 5 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑥 ∈ ((cls‘𝐽)‘𝑆)) → (𝑥𝑆𝑥 ∈ ((limPt‘𝐽)‘𝑆)))
20 elun 4162 . . . . 5 (𝑥 ∈ (𝑆 ∪ ((limPt‘𝐽)‘𝑆)) ↔ (𝑥𝑆𝑥 ∈ ((limPt‘𝐽)‘𝑆)))
2119, 20sylibr 234 . . . 4 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑥 ∈ ((cls‘𝐽)‘𝑆)) → 𝑥 ∈ (𝑆 ∪ ((limPt‘𝐽)‘𝑆)))
2221ex 412 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑥 ∈ ((cls‘𝐽)‘𝑆) → 𝑥 ∈ (𝑆 ∪ ((limPt‘𝐽)‘𝑆))))
2322ssrdv 4000 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((cls‘𝐽)‘𝑆) ⊆ (𝑆 ∪ ((limPt‘𝐽)‘𝑆)))
241sscls 23079 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋) → 𝑆 ⊆ ((cls‘𝐽)‘𝑆))
251lpsscls 23164 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((limPt‘𝐽)‘𝑆) ⊆ ((cls‘𝐽)‘𝑆))
2624, 25unssd 4201 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑆 ∪ ((limPt‘𝐽)‘𝑆)) ⊆ ((cls‘𝐽)‘𝑆))
2723, 26eqssd 4012 1 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((cls‘𝐽)‘𝑆) = (𝑆 ∪ ((limPt‘𝐽)‘𝑆)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1536  wcel 2105  wne 2937  wral 3058  cdif 3959  cun 3960  cin 3961  wss 3962  c0 4338  {csn 4630   cuni 4911  cfv 6562  Topctop 22914  clsccl 23041  neicnei 23120  limPtclp 23157
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-ral 3059  df-rex 3068  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-iin 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5582  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-top 22915  df-cld 23042  df-ntr 23043  df-cls 23044  df-nei 23121  df-lp 23159
This theorem is referenced by:  islpi  23172  cldlp  23173  perfcls  23388
  Copyright terms: Public domain W3C validator