MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clslp Structured version   Visualization version   GIF version

Theorem clslp 23177
Description: The closure of a subset of a topological space is the subset together with its limit points. Theorem 6.6 of [Munkres] p. 97. (Contributed by NM, 26-Feb-2007.)
Hypothesis
Ref Expression
lpfval.1 𝑋 = 𝐽
Assertion
Ref Expression
clslp ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((cls‘𝐽)‘𝑆) = (𝑆 ∪ ((limPt‘𝐽)‘𝑆)))

Proof of Theorem clslp
Dummy variables 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lpfval.1 . . . . . . . . . . . . 13 𝑋 = 𝐽
21neindisj 23146 . . . . . . . . . . . 12 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ (𝑥 ∈ ((cls‘𝐽)‘𝑆) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝑥}))) → (𝑛𝑆) ≠ ∅)
32expr 456 . . . . . . . . . . 11 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑥 ∈ ((cls‘𝐽)‘𝑆)) → (𝑛 ∈ ((nei‘𝐽)‘{𝑥}) → (𝑛𝑆) ≠ ∅))
43adantr 480 . . . . . . . . . 10 ((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑥 ∈ ((cls‘𝐽)‘𝑆)) ∧ ¬ 𝑥𝑆) → (𝑛 ∈ ((nei‘𝐽)‘{𝑥}) → (𝑛𝑆) ≠ ∅))
5 difsn 4823 . . . . . . . . . . . . 13 𝑥𝑆 → (𝑆 ∖ {𝑥}) = 𝑆)
65ineq2d 4241 . . . . . . . . . . . 12 𝑥𝑆 → (𝑛 ∩ (𝑆 ∖ {𝑥})) = (𝑛𝑆))
76neeq1d 3006 . . . . . . . . . . 11 𝑥𝑆 → ((𝑛 ∩ (𝑆 ∖ {𝑥})) ≠ ∅ ↔ (𝑛𝑆) ≠ ∅))
87adantl 481 . . . . . . . . . 10 ((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑥 ∈ ((cls‘𝐽)‘𝑆)) ∧ ¬ 𝑥𝑆) → ((𝑛 ∩ (𝑆 ∖ {𝑥})) ≠ ∅ ↔ (𝑛𝑆) ≠ ∅))
94, 8sylibrd 259 . . . . . . . . 9 ((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑥 ∈ ((cls‘𝐽)‘𝑆)) ∧ ¬ 𝑥𝑆) → (𝑛 ∈ ((nei‘𝐽)‘{𝑥}) → (𝑛 ∩ (𝑆 ∖ {𝑥})) ≠ ∅))
109ex 412 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑥 ∈ ((cls‘𝐽)‘𝑆)) → (¬ 𝑥𝑆 → (𝑛 ∈ ((nei‘𝐽)‘{𝑥}) → (𝑛 ∩ (𝑆 ∖ {𝑥})) ≠ ∅)))
1110ralrimdv 3158 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑥 ∈ ((cls‘𝐽)‘𝑆)) → (¬ 𝑥𝑆 → ∀𝑛 ∈ ((nei‘𝐽)‘{𝑥})(𝑛 ∩ (𝑆 ∖ {𝑥})) ≠ ∅))
12 simpll 766 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑥 ∈ ((cls‘𝐽)‘𝑆)) → 𝐽 ∈ Top)
13 simplr 768 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑥 ∈ ((cls‘𝐽)‘𝑆)) → 𝑆𝑋)
141clsss3 23088 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((cls‘𝐽)‘𝑆) ⊆ 𝑋)
1514sselda 4008 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑥 ∈ ((cls‘𝐽)‘𝑆)) → 𝑥𝑋)
161islp2 23174 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑥𝑋) → (𝑥 ∈ ((limPt‘𝐽)‘𝑆) ↔ ∀𝑛 ∈ ((nei‘𝐽)‘{𝑥})(𝑛 ∩ (𝑆 ∖ {𝑥})) ≠ ∅))
1712, 13, 15, 16syl3anc 1371 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑥 ∈ ((cls‘𝐽)‘𝑆)) → (𝑥 ∈ ((limPt‘𝐽)‘𝑆) ↔ ∀𝑛 ∈ ((nei‘𝐽)‘{𝑥})(𝑛 ∩ (𝑆 ∖ {𝑥})) ≠ ∅))
1811, 17sylibrd 259 . . . . . 6 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑥 ∈ ((cls‘𝐽)‘𝑆)) → (¬ 𝑥𝑆𝑥 ∈ ((limPt‘𝐽)‘𝑆)))
1918orrd 862 . . . . 5 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑥 ∈ ((cls‘𝐽)‘𝑆)) → (𝑥𝑆𝑥 ∈ ((limPt‘𝐽)‘𝑆)))
20 elun 4176 . . . . 5 (𝑥 ∈ (𝑆 ∪ ((limPt‘𝐽)‘𝑆)) ↔ (𝑥𝑆𝑥 ∈ ((limPt‘𝐽)‘𝑆)))
2119, 20sylibr 234 . . . 4 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑥 ∈ ((cls‘𝐽)‘𝑆)) → 𝑥 ∈ (𝑆 ∪ ((limPt‘𝐽)‘𝑆)))
2221ex 412 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑥 ∈ ((cls‘𝐽)‘𝑆) → 𝑥 ∈ (𝑆 ∪ ((limPt‘𝐽)‘𝑆))))
2322ssrdv 4014 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((cls‘𝐽)‘𝑆) ⊆ (𝑆 ∪ ((limPt‘𝐽)‘𝑆)))
241sscls 23085 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋) → 𝑆 ⊆ ((cls‘𝐽)‘𝑆))
251lpsscls 23170 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((limPt‘𝐽)‘𝑆) ⊆ ((cls‘𝐽)‘𝑆))
2624, 25unssd 4215 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑆 ∪ ((limPt‘𝐽)‘𝑆)) ⊆ ((cls‘𝐽)‘𝑆))
2723, 26eqssd 4026 1 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((cls‘𝐽)‘𝑆) = (𝑆 ∪ ((limPt‘𝐽)‘𝑆)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 846   = wceq 1537  wcel 2108  wne 2946  wral 3067  cdif 3973  cun 3974  cin 3975  wss 3976  c0 4352  {csn 4648   cuni 4931  cfv 6573  Topctop 22920  clsccl 23047  neicnei 23126  limPtclp 23163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-top 22921  df-cld 23048  df-ntr 23049  df-cls 23050  df-nei 23127  df-lp 23165
This theorem is referenced by:  islpi  23178  cldlp  23179  perfcls  23394
  Copyright terms: Public domain W3C validator