MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clslp Structured version   Visualization version   GIF version

Theorem clslp 21750
Description: The closure of a subset of a topological space is the subset together with its limit points. Theorem 6.6 of [Munkres] p. 97. (Contributed by NM, 26-Feb-2007.)
Hypothesis
Ref Expression
lpfval.1 𝑋 = 𝐽
Assertion
Ref Expression
clslp ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((cls‘𝐽)‘𝑆) = (𝑆 ∪ ((limPt‘𝐽)‘𝑆)))

Proof of Theorem clslp
Dummy variables 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lpfval.1 . . . . . . . . . . . . 13 𝑋 = 𝐽
21neindisj 21719 . . . . . . . . . . . 12 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ (𝑥 ∈ ((cls‘𝐽)‘𝑆) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝑥}))) → (𝑛𝑆) ≠ ∅)
32expr 459 . . . . . . . . . . 11 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑥 ∈ ((cls‘𝐽)‘𝑆)) → (𝑛 ∈ ((nei‘𝐽)‘{𝑥}) → (𝑛𝑆) ≠ ∅))
43adantr 483 . . . . . . . . . 10 ((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑥 ∈ ((cls‘𝐽)‘𝑆)) ∧ ¬ 𝑥𝑆) → (𝑛 ∈ ((nei‘𝐽)‘{𝑥}) → (𝑛𝑆) ≠ ∅))
5 difsn 4725 . . . . . . . . . . . . 13 𝑥𝑆 → (𝑆 ∖ {𝑥}) = 𝑆)
65ineq2d 4189 . . . . . . . . . . . 12 𝑥𝑆 → (𝑛 ∩ (𝑆 ∖ {𝑥})) = (𝑛𝑆))
76neeq1d 3075 . . . . . . . . . . 11 𝑥𝑆 → ((𝑛 ∩ (𝑆 ∖ {𝑥})) ≠ ∅ ↔ (𝑛𝑆) ≠ ∅))
87adantl 484 . . . . . . . . . 10 ((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑥 ∈ ((cls‘𝐽)‘𝑆)) ∧ ¬ 𝑥𝑆) → ((𝑛 ∩ (𝑆 ∖ {𝑥})) ≠ ∅ ↔ (𝑛𝑆) ≠ ∅))
94, 8sylibrd 261 . . . . . . . . 9 ((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑥 ∈ ((cls‘𝐽)‘𝑆)) ∧ ¬ 𝑥𝑆) → (𝑛 ∈ ((nei‘𝐽)‘{𝑥}) → (𝑛 ∩ (𝑆 ∖ {𝑥})) ≠ ∅))
109ex 415 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑥 ∈ ((cls‘𝐽)‘𝑆)) → (¬ 𝑥𝑆 → (𝑛 ∈ ((nei‘𝐽)‘{𝑥}) → (𝑛 ∩ (𝑆 ∖ {𝑥})) ≠ ∅)))
1110ralrimdv 3188 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑥 ∈ ((cls‘𝐽)‘𝑆)) → (¬ 𝑥𝑆 → ∀𝑛 ∈ ((nei‘𝐽)‘{𝑥})(𝑛 ∩ (𝑆 ∖ {𝑥})) ≠ ∅))
12 simpll 765 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑥 ∈ ((cls‘𝐽)‘𝑆)) → 𝐽 ∈ Top)
13 simplr 767 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑥 ∈ ((cls‘𝐽)‘𝑆)) → 𝑆𝑋)
141clsss3 21661 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((cls‘𝐽)‘𝑆) ⊆ 𝑋)
1514sselda 3967 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑥 ∈ ((cls‘𝐽)‘𝑆)) → 𝑥𝑋)
161islp2 21747 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑥𝑋) → (𝑥 ∈ ((limPt‘𝐽)‘𝑆) ↔ ∀𝑛 ∈ ((nei‘𝐽)‘{𝑥})(𝑛 ∩ (𝑆 ∖ {𝑥})) ≠ ∅))
1712, 13, 15, 16syl3anc 1367 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑥 ∈ ((cls‘𝐽)‘𝑆)) → (𝑥 ∈ ((limPt‘𝐽)‘𝑆) ↔ ∀𝑛 ∈ ((nei‘𝐽)‘{𝑥})(𝑛 ∩ (𝑆 ∖ {𝑥})) ≠ ∅))
1811, 17sylibrd 261 . . . . . 6 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑥 ∈ ((cls‘𝐽)‘𝑆)) → (¬ 𝑥𝑆𝑥 ∈ ((limPt‘𝐽)‘𝑆)))
1918orrd 859 . . . . 5 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑥 ∈ ((cls‘𝐽)‘𝑆)) → (𝑥𝑆𝑥 ∈ ((limPt‘𝐽)‘𝑆)))
20 elun 4125 . . . . 5 (𝑥 ∈ (𝑆 ∪ ((limPt‘𝐽)‘𝑆)) ↔ (𝑥𝑆𝑥 ∈ ((limPt‘𝐽)‘𝑆)))
2119, 20sylibr 236 . . . 4 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑥 ∈ ((cls‘𝐽)‘𝑆)) → 𝑥 ∈ (𝑆 ∪ ((limPt‘𝐽)‘𝑆)))
2221ex 415 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑥 ∈ ((cls‘𝐽)‘𝑆) → 𝑥 ∈ (𝑆 ∪ ((limPt‘𝐽)‘𝑆))))
2322ssrdv 3973 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((cls‘𝐽)‘𝑆) ⊆ (𝑆 ∪ ((limPt‘𝐽)‘𝑆)))
241sscls 21658 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋) → 𝑆 ⊆ ((cls‘𝐽)‘𝑆))
251lpsscls 21743 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((limPt‘𝐽)‘𝑆) ⊆ ((cls‘𝐽)‘𝑆))
2624, 25unssd 4162 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑆 ∪ ((limPt‘𝐽)‘𝑆)) ⊆ ((cls‘𝐽)‘𝑆))
2723, 26eqssd 3984 1 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((cls‘𝐽)‘𝑆) = (𝑆 ∪ ((limPt‘𝐽)‘𝑆)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843   = wceq 1533  wcel 2110  wne 3016  wral 3138  cdif 3933  cun 3934  cin 3935  wss 3936  c0 4291  {csn 4561   cuni 4832  cfv 6350  Topctop 21495  clsccl 21620  neicnei 21699  limPtclp 21736
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4833  df-int 4870  df-iun 4914  df-iin 4915  df-br 5060  df-opab 5122  df-mpt 5140  df-id 5455  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-top 21496  df-cld 21621  df-ntr 21622  df-cls 21623  df-nei 21700  df-lp 21738
This theorem is referenced by:  islpi  21751  cldlp  21752  perfcls  21967
  Copyright terms: Public domain W3C validator