MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clslp Structured version   Visualization version   GIF version

Theorem clslp 23084
Description: The closure of a subset of a topological space is the subset together with its limit points. Theorem 6.6 of [Munkres] p. 97. (Contributed by NM, 26-Feb-2007.)
Hypothesis
Ref Expression
lpfval.1 𝑋 = 𝐽
Assertion
Ref Expression
clslp ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((cls‘𝐽)‘𝑆) = (𝑆 ∪ ((limPt‘𝐽)‘𝑆)))

Proof of Theorem clslp
Dummy variables 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lpfval.1 . . . . . . . . . . . . 13 𝑋 = 𝐽
21neindisj 23053 . . . . . . . . . . . 12 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ (𝑥 ∈ ((cls‘𝐽)‘𝑆) ∧ 𝑛 ∈ ((nei‘𝐽)‘{𝑥}))) → (𝑛𝑆) ≠ ∅)
32expr 456 . . . . . . . . . . 11 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑥 ∈ ((cls‘𝐽)‘𝑆)) → (𝑛 ∈ ((nei‘𝐽)‘{𝑥}) → (𝑛𝑆) ≠ ∅))
43adantr 480 . . . . . . . . . 10 ((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑥 ∈ ((cls‘𝐽)‘𝑆)) ∧ ¬ 𝑥𝑆) → (𝑛 ∈ ((nei‘𝐽)‘{𝑥}) → (𝑛𝑆) ≠ ∅))
5 difsn 4774 . . . . . . . . . . . . 13 𝑥𝑆 → (𝑆 ∖ {𝑥}) = 𝑆)
65ineq2d 4195 . . . . . . . . . . . 12 𝑥𝑆 → (𝑛 ∩ (𝑆 ∖ {𝑥})) = (𝑛𝑆))
76neeq1d 2991 . . . . . . . . . . 11 𝑥𝑆 → ((𝑛 ∩ (𝑆 ∖ {𝑥})) ≠ ∅ ↔ (𝑛𝑆) ≠ ∅))
87adantl 481 . . . . . . . . . 10 ((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑥 ∈ ((cls‘𝐽)‘𝑆)) ∧ ¬ 𝑥𝑆) → ((𝑛 ∩ (𝑆 ∖ {𝑥})) ≠ ∅ ↔ (𝑛𝑆) ≠ ∅))
94, 8sylibrd 259 . . . . . . . . 9 ((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑥 ∈ ((cls‘𝐽)‘𝑆)) ∧ ¬ 𝑥𝑆) → (𝑛 ∈ ((nei‘𝐽)‘{𝑥}) → (𝑛 ∩ (𝑆 ∖ {𝑥})) ≠ ∅))
109ex 412 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑥 ∈ ((cls‘𝐽)‘𝑆)) → (¬ 𝑥𝑆 → (𝑛 ∈ ((nei‘𝐽)‘{𝑥}) → (𝑛 ∩ (𝑆 ∖ {𝑥})) ≠ ∅)))
1110ralrimdv 3138 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑥 ∈ ((cls‘𝐽)‘𝑆)) → (¬ 𝑥𝑆 → ∀𝑛 ∈ ((nei‘𝐽)‘{𝑥})(𝑛 ∩ (𝑆 ∖ {𝑥})) ≠ ∅))
12 simpll 766 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑥 ∈ ((cls‘𝐽)‘𝑆)) → 𝐽 ∈ Top)
13 simplr 768 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑥 ∈ ((cls‘𝐽)‘𝑆)) → 𝑆𝑋)
141clsss3 22995 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((cls‘𝐽)‘𝑆) ⊆ 𝑋)
1514sselda 3958 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑥 ∈ ((cls‘𝐽)‘𝑆)) → 𝑥𝑋)
161islp2 23081 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑥𝑋) → (𝑥 ∈ ((limPt‘𝐽)‘𝑆) ↔ ∀𝑛 ∈ ((nei‘𝐽)‘{𝑥})(𝑛 ∩ (𝑆 ∖ {𝑥})) ≠ ∅))
1712, 13, 15, 16syl3anc 1373 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑥 ∈ ((cls‘𝐽)‘𝑆)) → (𝑥 ∈ ((limPt‘𝐽)‘𝑆) ↔ ∀𝑛 ∈ ((nei‘𝐽)‘{𝑥})(𝑛 ∩ (𝑆 ∖ {𝑥})) ≠ ∅))
1811, 17sylibrd 259 . . . . . 6 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑥 ∈ ((cls‘𝐽)‘𝑆)) → (¬ 𝑥𝑆𝑥 ∈ ((limPt‘𝐽)‘𝑆)))
1918orrd 863 . . . . 5 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑥 ∈ ((cls‘𝐽)‘𝑆)) → (𝑥𝑆𝑥 ∈ ((limPt‘𝐽)‘𝑆)))
20 elun 4128 . . . . 5 (𝑥 ∈ (𝑆 ∪ ((limPt‘𝐽)‘𝑆)) ↔ (𝑥𝑆𝑥 ∈ ((limPt‘𝐽)‘𝑆)))
2119, 20sylibr 234 . . . 4 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑥 ∈ ((cls‘𝐽)‘𝑆)) → 𝑥 ∈ (𝑆 ∪ ((limPt‘𝐽)‘𝑆)))
2221ex 412 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑥 ∈ ((cls‘𝐽)‘𝑆) → 𝑥 ∈ (𝑆 ∪ ((limPt‘𝐽)‘𝑆))))
2322ssrdv 3964 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((cls‘𝐽)‘𝑆) ⊆ (𝑆 ∪ ((limPt‘𝐽)‘𝑆)))
241sscls 22992 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋) → 𝑆 ⊆ ((cls‘𝐽)‘𝑆))
251lpsscls 23077 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((limPt‘𝐽)‘𝑆) ⊆ ((cls‘𝐽)‘𝑆))
2624, 25unssd 4167 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑆 ∪ ((limPt‘𝐽)‘𝑆)) ⊆ ((cls‘𝐽)‘𝑆))
2723, 26eqssd 3976 1 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((cls‘𝐽)‘𝑆) = (𝑆 ∪ ((limPt‘𝐽)‘𝑆)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2108  wne 2932  wral 3051  cdif 3923  cun 3924  cin 3925  wss 3926  c0 4308  {csn 4601   cuni 4883  cfv 6530  Topctop 22829  clsccl 22954  neicnei 23033  limPtclp 23070
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-top 22830  df-cld 22955  df-ntr 22956  df-cls 22957  df-nei 23034  df-lp 23072
This theorem is referenced by:  islpi  23085  cldlp  23086  perfcls  23301
  Copyright terms: Public domain W3C validator