| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | ssun2 4178 | . . . 4
⊢ 𝑌 ⊆ ({𝐵} ∪ 𝑌) | 
| 2 |  | reldom 8992 | . . . . . 6
⊢ Rel
≼ | 
| 3 | 2 | brrelex2i 5741 | . . . . 5
⊢ (({𝐴} ∪ 𝑋) ≼ ({𝐵} ∪ 𝑌) → ({𝐵} ∪ 𝑌) ∈ V) | 
| 4 | 3 | adantl 481 | . . . 4
⊢ (((¬
𝐴 ∈ 𝑋 ∧ ¬ 𝐵 ∈ 𝑌) ∧ ({𝐴} ∪ 𝑋) ≼ ({𝐵} ∪ 𝑌)) → ({𝐵} ∪ 𝑌) ∈ V) | 
| 5 |  | ssexg 5322 | . . . 4
⊢ ((𝑌 ⊆ ({𝐵} ∪ 𝑌) ∧ ({𝐵} ∪ 𝑌) ∈ V) → 𝑌 ∈ V) | 
| 6 | 1, 4, 5 | sylancr 587 | . . 3
⊢ (((¬
𝐴 ∈ 𝑋 ∧ ¬ 𝐵 ∈ 𝑌) ∧ ({𝐴} ∪ 𝑋) ≼ ({𝐵} ∪ 𝑌)) → 𝑌 ∈ V) | 
| 7 |  | brdomi 9000 | . . . . 5
⊢ (({𝐴} ∪ 𝑋) ≼ ({𝐵} ∪ 𝑌) → ∃𝑓 𝑓:({𝐴} ∪ 𝑋)–1-1→({𝐵} ∪ 𝑌)) | 
| 8 |  | vex 3483 | . . . . . . . . . . 11
⊢ 𝑓 ∈ V | 
| 9 | 8 | resex 6046 | . . . . . . . . . 10
⊢ (𝑓 ↾ (({𝐴} ∪ 𝑋) ∖ {𝐴})) ∈ V | 
| 10 |  | simprr 772 | . . . . . . . . . . 11
⊢ (((¬
𝐴 ∈ 𝑋 ∧ ¬ 𝐵 ∈ 𝑌) ∧ (𝑌 ∈ V ∧ 𝑓:({𝐴} ∪ 𝑋)–1-1→({𝐵} ∪ 𝑌))) → 𝑓:({𝐴} ∪ 𝑋)–1-1→({𝐵} ∪ 𝑌)) | 
| 11 |  | difss 4135 | . . . . . . . . . . 11
⊢ (({𝐴} ∪ 𝑋) ∖ {𝐴}) ⊆ ({𝐴} ∪ 𝑋) | 
| 12 |  | f1ores 6861 | . . . . . . . . . . 11
⊢ ((𝑓:({𝐴} ∪ 𝑋)–1-1→({𝐵} ∪ 𝑌) ∧ (({𝐴} ∪ 𝑋) ∖ {𝐴}) ⊆ ({𝐴} ∪ 𝑋)) → (𝑓 ↾ (({𝐴} ∪ 𝑋) ∖ {𝐴})):(({𝐴} ∪ 𝑋) ∖ {𝐴})–1-1-onto→(𝑓 “ (({𝐴} ∪ 𝑋) ∖ {𝐴}))) | 
| 13 | 10, 11, 12 | sylancl 586 | . . . . . . . . . 10
⊢ (((¬
𝐴 ∈ 𝑋 ∧ ¬ 𝐵 ∈ 𝑌) ∧ (𝑌 ∈ V ∧ 𝑓:({𝐴} ∪ 𝑋)–1-1→({𝐵} ∪ 𝑌))) → (𝑓 ↾ (({𝐴} ∪ 𝑋) ∖ {𝐴})):(({𝐴} ∪ 𝑋) ∖ {𝐴})–1-1-onto→(𝑓 “ (({𝐴} ∪ 𝑋) ∖ {𝐴}))) | 
| 14 |  | f1oen3g 9008 | . . . . . . . . . 10
⊢ (((𝑓 ↾ (({𝐴} ∪ 𝑋) ∖ {𝐴})) ∈ V ∧ (𝑓 ↾ (({𝐴} ∪ 𝑋) ∖ {𝐴})):(({𝐴} ∪ 𝑋) ∖ {𝐴})–1-1-onto→(𝑓 “ (({𝐴} ∪ 𝑋) ∖ {𝐴}))) → (({𝐴} ∪ 𝑋) ∖ {𝐴}) ≈ (𝑓 “ (({𝐴} ∪ 𝑋) ∖ {𝐴}))) | 
| 15 | 9, 13, 14 | sylancr 587 | . . . . . . . . 9
⊢ (((¬
𝐴 ∈ 𝑋 ∧ ¬ 𝐵 ∈ 𝑌) ∧ (𝑌 ∈ V ∧ 𝑓:({𝐴} ∪ 𝑋)–1-1→({𝐵} ∪ 𝑌))) → (({𝐴} ∪ 𝑋) ∖ {𝐴}) ≈ (𝑓 “ (({𝐴} ∪ 𝑋) ∖ {𝐴}))) | 
| 16 |  | df-f1 6565 | . . . . . . . . . . . 12
⊢ (𝑓:({𝐴} ∪ 𝑋)–1-1→({𝐵} ∪ 𝑌) ↔ (𝑓:({𝐴} ∪ 𝑋)⟶({𝐵} ∪ 𝑌) ∧ Fun ◡𝑓)) | 
| 17 |  | imadif 6649 | . . . . . . . . . . . 12
⊢ (Fun
◡𝑓 → (𝑓 “ (({𝐴} ∪ 𝑋) ∖ {𝐴})) = ((𝑓 “ ({𝐴} ∪ 𝑋)) ∖ (𝑓 “ {𝐴}))) | 
| 18 | 16, 17 | simplbiim 504 | . . . . . . . . . . 11
⊢ (𝑓:({𝐴} ∪ 𝑋)–1-1→({𝐵} ∪ 𝑌) → (𝑓 “ (({𝐴} ∪ 𝑋) ∖ {𝐴})) = ((𝑓 “ ({𝐴} ∪ 𝑋)) ∖ (𝑓 “ {𝐴}))) | 
| 19 | 18 | ad2antll 729 | . . . . . . . . . 10
⊢ (((¬
𝐴 ∈ 𝑋 ∧ ¬ 𝐵 ∈ 𝑌) ∧ (𝑌 ∈ V ∧ 𝑓:({𝐴} ∪ 𝑋)–1-1→({𝐵} ∪ 𝑌))) → (𝑓 “ (({𝐴} ∪ 𝑋) ∖ {𝐴})) = ((𝑓 “ ({𝐴} ∪ 𝑋)) ∖ (𝑓 “ {𝐴}))) | 
| 20 |  | snex 5435 | . . . . . . . . . . . . . 14
⊢ {𝐵} ∈ V | 
| 21 |  | simprl 770 | . . . . . . . . . . . . . 14
⊢ (((¬
𝐴 ∈ 𝑋 ∧ ¬ 𝐵 ∈ 𝑌) ∧ (𝑌 ∈ V ∧ 𝑓:({𝐴} ∪ 𝑋)–1-1→({𝐵} ∪ 𝑌))) → 𝑌 ∈ V) | 
| 22 |  | unexg 7764 | . . . . . . . . . . . . . 14
⊢ (({𝐵} ∈ V ∧ 𝑌 ∈ V) → ({𝐵} ∪ 𝑌) ∈ V) | 
| 23 | 20, 21, 22 | sylancr 587 | . . . . . . . . . . . . 13
⊢ (((¬
𝐴 ∈ 𝑋 ∧ ¬ 𝐵 ∈ 𝑌) ∧ (𝑌 ∈ V ∧ 𝑓:({𝐴} ∪ 𝑋)–1-1→({𝐵} ∪ 𝑌))) → ({𝐵} ∪ 𝑌) ∈ V) | 
| 24 | 23 | difexd 5330 | . . . . . . . . . . . 12
⊢ (((¬
𝐴 ∈ 𝑋 ∧ ¬ 𝐵 ∈ 𝑌) ∧ (𝑌 ∈ V ∧ 𝑓:({𝐴} ∪ 𝑋)–1-1→({𝐵} ∪ 𝑌))) → (({𝐵} ∪ 𝑌) ∖ {(𝑓‘𝐴)}) ∈ V) | 
| 25 |  | f1f 6803 | . . . . . . . . . . . . . . . 16
⊢ (𝑓:({𝐴} ∪ 𝑋)–1-1→({𝐵} ∪ 𝑌) → 𝑓:({𝐴} ∪ 𝑋)⟶({𝐵} ∪ 𝑌)) | 
| 26 |  | fimass 6755 | . . . . . . . . . . . . . . . 16
⊢ (𝑓:({𝐴} ∪ 𝑋)⟶({𝐵} ∪ 𝑌) → (𝑓 “ ({𝐴} ∪ 𝑋)) ⊆ ({𝐵} ∪ 𝑌)) | 
| 27 | 25, 26 | syl 17 | . . . . . . . . . . . . . . 15
⊢ (𝑓:({𝐴} ∪ 𝑋)–1-1→({𝐵} ∪ 𝑌) → (𝑓 “ ({𝐴} ∪ 𝑋)) ⊆ ({𝐵} ∪ 𝑌)) | 
| 28 | 27 | ad2antll 729 | . . . . . . . . . . . . . 14
⊢ (((¬
𝐴 ∈ 𝑋 ∧ ¬ 𝐵 ∈ 𝑌) ∧ (𝑌 ∈ V ∧ 𝑓:({𝐴} ∪ 𝑋)–1-1→({𝐵} ∪ 𝑌))) → (𝑓 “ ({𝐴} ∪ 𝑋)) ⊆ ({𝐵} ∪ 𝑌)) | 
| 29 | 28 | ssdifd 4144 | . . . . . . . . . . . . 13
⊢ (((¬
𝐴 ∈ 𝑋 ∧ ¬ 𝐵 ∈ 𝑌) ∧ (𝑌 ∈ V ∧ 𝑓:({𝐴} ∪ 𝑋)–1-1→({𝐵} ∪ 𝑌))) → ((𝑓 “ ({𝐴} ∪ 𝑋)) ∖ (𝑓 “ {𝐴})) ⊆ (({𝐵} ∪ 𝑌) ∖ (𝑓 “ {𝐴}))) | 
| 30 |  | f1fn 6804 | . . . . . . . . . . . . . . . 16
⊢ (𝑓:({𝐴} ∪ 𝑋)–1-1→({𝐵} ∪ 𝑌) → 𝑓 Fn ({𝐴} ∪ 𝑋)) | 
| 31 | 30 | ad2antll 729 | . . . . . . . . . . . . . . 15
⊢ (((¬
𝐴 ∈ 𝑋 ∧ ¬ 𝐵 ∈ 𝑌) ∧ (𝑌 ∈ V ∧ 𝑓:({𝐴} ∪ 𝑋)–1-1→({𝐵} ∪ 𝑌))) → 𝑓 Fn ({𝐴} ∪ 𝑋)) | 
| 32 |  | domunsncan.a | . . . . . . . . . . . . . . . . 17
⊢ 𝐴 ∈ V | 
| 33 | 32 | snid 4661 | . . . . . . . . . . . . . . . 16
⊢ 𝐴 ∈ {𝐴} | 
| 34 |  | elun1 4181 | . . . . . . . . . . . . . . . 16
⊢ (𝐴 ∈ {𝐴} → 𝐴 ∈ ({𝐴} ∪ 𝑋)) | 
| 35 | 33, 34 | ax-mp 5 | . . . . . . . . . . . . . . 15
⊢ 𝐴 ∈ ({𝐴} ∪ 𝑋) | 
| 36 |  | fnsnfv 6987 | . . . . . . . . . . . . . . 15
⊢ ((𝑓 Fn ({𝐴} ∪ 𝑋) ∧ 𝐴 ∈ ({𝐴} ∪ 𝑋)) → {(𝑓‘𝐴)} = (𝑓 “ {𝐴})) | 
| 37 | 31, 35, 36 | sylancl 586 | . . . . . . . . . . . . . 14
⊢ (((¬
𝐴 ∈ 𝑋 ∧ ¬ 𝐵 ∈ 𝑌) ∧ (𝑌 ∈ V ∧ 𝑓:({𝐴} ∪ 𝑋)–1-1→({𝐵} ∪ 𝑌))) → {(𝑓‘𝐴)} = (𝑓 “ {𝐴})) | 
| 38 | 37 | difeq2d 4125 | . . . . . . . . . . . . 13
⊢ (((¬
𝐴 ∈ 𝑋 ∧ ¬ 𝐵 ∈ 𝑌) ∧ (𝑌 ∈ V ∧ 𝑓:({𝐴} ∪ 𝑋)–1-1→({𝐵} ∪ 𝑌))) → (({𝐵} ∪ 𝑌) ∖ {(𝑓‘𝐴)}) = (({𝐵} ∪ 𝑌) ∖ (𝑓 “ {𝐴}))) | 
| 39 | 29, 38 | sseqtrrd 4020 | . . . . . . . . . . . 12
⊢ (((¬
𝐴 ∈ 𝑋 ∧ ¬ 𝐵 ∈ 𝑌) ∧ (𝑌 ∈ V ∧ 𝑓:({𝐴} ∪ 𝑋)–1-1→({𝐵} ∪ 𝑌))) → ((𝑓 “ ({𝐴} ∪ 𝑋)) ∖ (𝑓 “ {𝐴})) ⊆ (({𝐵} ∪ 𝑌) ∖ {(𝑓‘𝐴)})) | 
| 40 |  | ssdomg 9041 | . . . . . . . . . . . 12
⊢ ((({𝐵} ∪ 𝑌) ∖ {(𝑓‘𝐴)}) ∈ V → (((𝑓 “ ({𝐴} ∪ 𝑋)) ∖ (𝑓 “ {𝐴})) ⊆ (({𝐵} ∪ 𝑌) ∖ {(𝑓‘𝐴)}) → ((𝑓 “ ({𝐴} ∪ 𝑋)) ∖ (𝑓 “ {𝐴})) ≼ (({𝐵} ∪ 𝑌) ∖ {(𝑓‘𝐴)}))) | 
| 41 | 24, 39, 40 | sylc 65 | . . . . . . . . . . 11
⊢ (((¬
𝐴 ∈ 𝑋 ∧ ¬ 𝐵 ∈ 𝑌) ∧ (𝑌 ∈ V ∧ 𝑓:({𝐴} ∪ 𝑋)–1-1→({𝐵} ∪ 𝑌))) → ((𝑓 “ ({𝐴} ∪ 𝑋)) ∖ (𝑓 “ {𝐴})) ≼ (({𝐵} ∪ 𝑌) ∖ {(𝑓‘𝐴)})) | 
| 42 |  | ffvelcdm 7100 | . . . . . . . . . . . . . 14
⊢ ((𝑓:({𝐴} ∪ 𝑋)⟶({𝐵} ∪ 𝑌) ∧ 𝐴 ∈ ({𝐴} ∪ 𝑋)) → (𝑓‘𝐴) ∈ ({𝐵} ∪ 𝑌)) | 
| 43 | 25, 35, 42 | sylancl 586 | . . . . . . . . . . . . 13
⊢ (𝑓:({𝐴} ∪ 𝑋)–1-1→({𝐵} ∪ 𝑌) → (𝑓‘𝐴) ∈ ({𝐵} ∪ 𝑌)) | 
| 44 | 43 | ad2antll 729 | . . . . . . . . . . . 12
⊢ (((¬
𝐴 ∈ 𝑋 ∧ ¬ 𝐵 ∈ 𝑌) ∧ (𝑌 ∈ V ∧ 𝑓:({𝐴} ∪ 𝑋)–1-1→({𝐵} ∪ 𝑌))) → (𝑓‘𝐴) ∈ ({𝐵} ∪ 𝑌)) | 
| 45 |  | domunsncan.b | . . . . . . . . . . . . . 14
⊢ 𝐵 ∈ V | 
| 46 | 45 | snid 4661 | . . . . . . . . . . . . 13
⊢ 𝐵 ∈ {𝐵} | 
| 47 |  | elun1 4181 | . . . . . . . . . . . . 13
⊢ (𝐵 ∈ {𝐵} → 𝐵 ∈ ({𝐵} ∪ 𝑌)) | 
| 48 | 46, 47 | mp1i 13 | . . . . . . . . . . . 12
⊢ (((¬
𝐴 ∈ 𝑋 ∧ ¬ 𝐵 ∈ 𝑌) ∧ (𝑌 ∈ V ∧ 𝑓:({𝐴} ∪ 𝑋)–1-1→({𝐵} ∪ 𝑌))) → 𝐵 ∈ ({𝐵} ∪ 𝑌)) | 
| 49 |  | difsnen 9094 | . . . . . . . . . . . 12
⊢ ((({𝐵} ∪ 𝑌) ∈ V ∧ (𝑓‘𝐴) ∈ ({𝐵} ∪ 𝑌) ∧ 𝐵 ∈ ({𝐵} ∪ 𝑌)) → (({𝐵} ∪ 𝑌) ∖ {(𝑓‘𝐴)}) ≈ (({𝐵} ∪ 𝑌) ∖ {𝐵})) | 
| 50 | 23, 44, 48, 49 | syl3anc 1372 | . . . . . . . . . . 11
⊢ (((¬
𝐴 ∈ 𝑋 ∧ ¬ 𝐵 ∈ 𝑌) ∧ (𝑌 ∈ V ∧ 𝑓:({𝐴} ∪ 𝑋)–1-1→({𝐵} ∪ 𝑌))) → (({𝐵} ∪ 𝑌) ∖ {(𝑓‘𝐴)}) ≈ (({𝐵} ∪ 𝑌) ∖ {𝐵})) | 
| 51 |  | domentr 9054 | . . . . . . . . . . 11
⊢ ((((𝑓 “ ({𝐴} ∪ 𝑋)) ∖ (𝑓 “ {𝐴})) ≼ (({𝐵} ∪ 𝑌) ∖ {(𝑓‘𝐴)}) ∧ (({𝐵} ∪ 𝑌) ∖ {(𝑓‘𝐴)}) ≈ (({𝐵} ∪ 𝑌) ∖ {𝐵})) → ((𝑓 “ ({𝐴} ∪ 𝑋)) ∖ (𝑓 “ {𝐴})) ≼ (({𝐵} ∪ 𝑌) ∖ {𝐵})) | 
| 52 | 41, 50, 51 | syl2anc 584 | . . . . . . . . . 10
⊢ (((¬
𝐴 ∈ 𝑋 ∧ ¬ 𝐵 ∈ 𝑌) ∧ (𝑌 ∈ V ∧ 𝑓:({𝐴} ∪ 𝑋)–1-1→({𝐵} ∪ 𝑌))) → ((𝑓 “ ({𝐴} ∪ 𝑋)) ∖ (𝑓 “ {𝐴})) ≼ (({𝐵} ∪ 𝑌) ∖ {𝐵})) | 
| 53 | 19, 52 | eqbrtrd 5164 | . . . . . . . . 9
⊢ (((¬
𝐴 ∈ 𝑋 ∧ ¬ 𝐵 ∈ 𝑌) ∧ (𝑌 ∈ V ∧ 𝑓:({𝐴} ∪ 𝑋)–1-1→({𝐵} ∪ 𝑌))) → (𝑓 “ (({𝐴} ∪ 𝑋) ∖ {𝐴})) ≼ (({𝐵} ∪ 𝑌) ∖ {𝐵})) | 
| 54 |  | endomtr 9053 | . . . . . . . . 9
⊢
(((({𝐴} ∪ 𝑋) ∖ {𝐴}) ≈ (𝑓 “ (({𝐴} ∪ 𝑋) ∖ {𝐴})) ∧ (𝑓 “ (({𝐴} ∪ 𝑋) ∖ {𝐴})) ≼ (({𝐵} ∪ 𝑌) ∖ {𝐵})) → (({𝐴} ∪ 𝑋) ∖ {𝐴}) ≼ (({𝐵} ∪ 𝑌) ∖ {𝐵})) | 
| 55 | 15, 53, 54 | syl2anc 584 | . . . . . . . 8
⊢ (((¬
𝐴 ∈ 𝑋 ∧ ¬ 𝐵 ∈ 𝑌) ∧ (𝑌 ∈ V ∧ 𝑓:({𝐴} ∪ 𝑋)–1-1→({𝐵} ∪ 𝑌))) → (({𝐴} ∪ 𝑋) ∖ {𝐴}) ≼ (({𝐵} ∪ 𝑌) ∖ {𝐵})) | 
| 56 |  | uncom 4157 | . . . . . . . . . . . 12
⊢ ({𝐴} ∪ 𝑋) = (𝑋 ∪ {𝐴}) | 
| 57 | 56 | difeq1i 4121 | . . . . . . . . . . 11
⊢ (({𝐴} ∪ 𝑋) ∖ {𝐴}) = ((𝑋 ∪ {𝐴}) ∖ {𝐴}) | 
| 58 |  | difun2 4480 | . . . . . . . . . . 11
⊢ ((𝑋 ∪ {𝐴}) ∖ {𝐴}) = (𝑋 ∖ {𝐴}) | 
| 59 | 57, 58 | eqtri 2764 | . . . . . . . . . 10
⊢ (({𝐴} ∪ 𝑋) ∖ {𝐴}) = (𝑋 ∖ {𝐴}) | 
| 60 |  | difsn 4797 | . . . . . . . . . 10
⊢ (¬
𝐴 ∈ 𝑋 → (𝑋 ∖ {𝐴}) = 𝑋) | 
| 61 | 59, 60 | eqtrid 2788 | . . . . . . . . 9
⊢ (¬
𝐴 ∈ 𝑋 → (({𝐴} ∪ 𝑋) ∖ {𝐴}) = 𝑋) | 
| 62 | 61 | ad2antrr 726 | . . . . . . . 8
⊢ (((¬
𝐴 ∈ 𝑋 ∧ ¬ 𝐵 ∈ 𝑌) ∧ (𝑌 ∈ V ∧ 𝑓:({𝐴} ∪ 𝑋)–1-1→({𝐵} ∪ 𝑌))) → (({𝐴} ∪ 𝑋) ∖ {𝐴}) = 𝑋) | 
| 63 |  | uncom 4157 | . . . . . . . . . . . 12
⊢ ({𝐵} ∪ 𝑌) = (𝑌 ∪ {𝐵}) | 
| 64 | 63 | difeq1i 4121 | . . . . . . . . . . 11
⊢ (({𝐵} ∪ 𝑌) ∖ {𝐵}) = ((𝑌 ∪ {𝐵}) ∖ {𝐵}) | 
| 65 |  | difun2 4480 | . . . . . . . . . . 11
⊢ ((𝑌 ∪ {𝐵}) ∖ {𝐵}) = (𝑌 ∖ {𝐵}) | 
| 66 | 64, 65 | eqtri 2764 | . . . . . . . . . 10
⊢ (({𝐵} ∪ 𝑌) ∖ {𝐵}) = (𝑌 ∖ {𝐵}) | 
| 67 |  | difsn 4797 | . . . . . . . . . 10
⊢ (¬
𝐵 ∈ 𝑌 → (𝑌 ∖ {𝐵}) = 𝑌) | 
| 68 | 66, 67 | eqtrid 2788 | . . . . . . . . 9
⊢ (¬
𝐵 ∈ 𝑌 → (({𝐵} ∪ 𝑌) ∖ {𝐵}) = 𝑌) | 
| 69 | 68 | ad2antlr 727 | . . . . . . . 8
⊢ (((¬
𝐴 ∈ 𝑋 ∧ ¬ 𝐵 ∈ 𝑌) ∧ (𝑌 ∈ V ∧ 𝑓:({𝐴} ∪ 𝑋)–1-1→({𝐵} ∪ 𝑌))) → (({𝐵} ∪ 𝑌) ∖ {𝐵}) = 𝑌) | 
| 70 | 55, 62, 69 | 3brtr3d 5173 | . . . . . . 7
⊢ (((¬
𝐴 ∈ 𝑋 ∧ ¬ 𝐵 ∈ 𝑌) ∧ (𝑌 ∈ V ∧ 𝑓:({𝐴} ∪ 𝑋)–1-1→({𝐵} ∪ 𝑌))) → 𝑋 ≼ 𝑌) | 
| 71 | 70 | expr 456 | . . . . . 6
⊢ (((¬
𝐴 ∈ 𝑋 ∧ ¬ 𝐵 ∈ 𝑌) ∧ 𝑌 ∈ V) → (𝑓:({𝐴} ∪ 𝑋)–1-1→({𝐵} ∪ 𝑌) → 𝑋 ≼ 𝑌)) | 
| 72 | 71 | exlimdv 1932 | . . . . 5
⊢ (((¬
𝐴 ∈ 𝑋 ∧ ¬ 𝐵 ∈ 𝑌) ∧ 𝑌 ∈ V) → (∃𝑓 𝑓:({𝐴} ∪ 𝑋)–1-1→({𝐵} ∪ 𝑌) → 𝑋 ≼ 𝑌)) | 
| 73 | 7, 72 | syl5 34 | . . . 4
⊢ (((¬
𝐴 ∈ 𝑋 ∧ ¬ 𝐵 ∈ 𝑌) ∧ 𝑌 ∈ V) → (({𝐴} ∪ 𝑋) ≼ ({𝐵} ∪ 𝑌) → 𝑋 ≼ 𝑌)) | 
| 74 | 73 | impancom 451 | . . 3
⊢ (((¬
𝐴 ∈ 𝑋 ∧ ¬ 𝐵 ∈ 𝑌) ∧ ({𝐴} ∪ 𝑋) ≼ ({𝐵} ∪ 𝑌)) → (𝑌 ∈ V → 𝑋 ≼ 𝑌)) | 
| 75 | 6, 74 | mpd 15 | . 2
⊢ (((¬
𝐴 ∈ 𝑋 ∧ ¬ 𝐵 ∈ 𝑌) ∧ ({𝐴} ∪ 𝑋) ≼ ({𝐵} ∪ 𝑌)) → 𝑋 ≼ 𝑌) | 
| 76 |  | en2sn 9082 | . . . . 5
⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → {𝐴} ≈ {𝐵}) | 
| 77 | 32, 45, 76 | mp2an 692 | . . . 4
⊢ {𝐴} ≈ {𝐵} | 
| 78 |  | endom 9020 | . . . 4
⊢ ({𝐴} ≈ {𝐵} → {𝐴} ≼ {𝐵}) | 
| 79 | 77, 78 | mp1i 13 | . . 3
⊢ (((¬
𝐴 ∈ 𝑋 ∧ ¬ 𝐵 ∈ 𝑌) ∧ 𝑋 ≼ 𝑌) → {𝐴} ≼ {𝐵}) | 
| 80 |  | simpr 484 | . . 3
⊢ (((¬
𝐴 ∈ 𝑋 ∧ ¬ 𝐵 ∈ 𝑌) ∧ 𝑋 ≼ 𝑌) → 𝑋 ≼ 𝑌) | 
| 81 |  | incom 4208 | . . . . 5
⊢ ({𝐵} ∩ 𝑌) = (𝑌 ∩ {𝐵}) | 
| 82 |  | disjsn 4710 | . . . . . 6
⊢ ((𝑌 ∩ {𝐵}) = ∅ ↔ ¬ 𝐵 ∈ 𝑌) | 
| 83 | 82 | biimpri 228 | . . . . 5
⊢ (¬
𝐵 ∈ 𝑌 → (𝑌 ∩ {𝐵}) = ∅) | 
| 84 | 81, 83 | eqtrid 2788 | . . . 4
⊢ (¬
𝐵 ∈ 𝑌 → ({𝐵} ∩ 𝑌) = ∅) | 
| 85 | 84 | ad2antlr 727 | . . 3
⊢ (((¬
𝐴 ∈ 𝑋 ∧ ¬ 𝐵 ∈ 𝑌) ∧ 𝑋 ≼ 𝑌) → ({𝐵} ∩ 𝑌) = ∅) | 
| 86 |  | undom 9100 | . . 3
⊢ ((({𝐴} ≼ {𝐵} ∧ 𝑋 ≼ 𝑌) ∧ ({𝐵} ∩ 𝑌) = ∅) → ({𝐴} ∪ 𝑋) ≼ ({𝐵} ∪ 𝑌)) | 
| 87 | 79, 80, 85, 86 | syl21anc 837 | . 2
⊢ (((¬
𝐴 ∈ 𝑋 ∧ ¬ 𝐵 ∈ 𝑌) ∧ 𝑋 ≼ 𝑌) → ({𝐴} ∪ 𝑋) ≼ ({𝐵} ∪ 𝑌)) | 
| 88 | 75, 87 | impbida 800 | 1
⊢ ((¬
𝐴 ∈ 𝑋 ∧ ¬ 𝐵 ∈ 𝑌) → (({𝐴} ∪ 𝑋) ≼ ({𝐵} ∪ 𝑌) ↔ 𝑋 ≼ 𝑌)) |