MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  domunsncan Structured version   Visualization version   GIF version

Theorem domunsncan 8609
Description: A singleton cancellation law for dominance. (Contributed by Stefan O'Rear, 19-Feb-2015.) (Revised by Stefan O'Rear, 5-May-2015.)
Hypotheses
Ref Expression
domunsncan.a 𝐴 ∈ V
domunsncan.b 𝐵 ∈ V
Assertion
Ref Expression
domunsncan ((¬ 𝐴𝑋 ∧ ¬ 𝐵𝑌) → (({𝐴} ∪ 𝑋) ≼ ({𝐵} ∪ 𝑌) ↔ 𝑋𝑌))

Proof of Theorem domunsncan
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 ssun2 4147 . . . 4 𝑌 ⊆ ({𝐵} ∪ 𝑌)
2 reldom 8507 . . . . . 6 Rel ≼
32brrelex2i 5602 . . . . 5 (({𝐴} ∪ 𝑋) ≼ ({𝐵} ∪ 𝑌) → ({𝐵} ∪ 𝑌) ∈ V)
43adantl 484 . . . 4 (((¬ 𝐴𝑋 ∧ ¬ 𝐵𝑌) ∧ ({𝐴} ∪ 𝑋) ≼ ({𝐵} ∪ 𝑌)) → ({𝐵} ∪ 𝑌) ∈ V)
5 ssexg 5218 . . . 4 ((𝑌 ⊆ ({𝐵} ∪ 𝑌) ∧ ({𝐵} ∪ 𝑌) ∈ V) → 𝑌 ∈ V)
61, 4, 5sylancr 589 . . 3 (((¬ 𝐴𝑋 ∧ ¬ 𝐵𝑌) ∧ ({𝐴} ∪ 𝑋) ≼ ({𝐵} ∪ 𝑌)) → 𝑌 ∈ V)
7 brdomi 8512 . . . . 5 (({𝐴} ∪ 𝑋) ≼ ({𝐵} ∪ 𝑌) → ∃𝑓 𝑓:({𝐴} ∪ 𝑋)–1-1→({𝐵} ∪ 𝑌))
8 vex 3496 . . . . . . . . . . 11 𝑓 ∈ V
98resex 5892 . . . . . . . . . 10 (𝑓 ↾ (({𝐴} ∪ 𝑋) ∖ {𝐴})) ∈ V
10 simprr 771 . . . . . . . . . . 11 (((¬ 𝐴𝑋 ∧ ¬ 𝐵𝑌) ∧ (𝑌 ∈ V ∧ 𝑓:({𝐴} ∪ 𝑋)–1-1→({𝐵} ∪ 𝑌))) → 𝑓:({𝐴} ∪ 𝑋)–1-1→({𝐵} ∪ 𝑌))
11 difss 4106 . . . . . . . . . . 11 (({𝐴} ∪ 𝑋) ∖ {𝐴}) ⊆ ({𝐴} ∪ 𝑋)
12 f1ores 6622 . . . . . . . . . . 11 ((𝑓:({𝐴} ∪ 𝑋)–1-1→({𝐵} ∪ 𝑌) ∧ (({𝐴} ∪ 𝑋) ∖ {𝐴}) ⊆ ({𝐴} ∪ 𝑋)) → (𝑓 ↾ (({𝐴} ∪ 𝑋) ∖ {𝐴})):(({𝐴} ∪ 𝑋) ∖ {𝐴})–1-1-onto→(𝑓 “ (({𝐴} ∪ 𝑋) ∖ {𝐴})))
1310, 11, 12sylancl 588 . . . . . . . . . 10 (((¬ 𝐴𝑋 ∧ ¬ 𝐵𝑌) ∧ (𝑌 ∈ V ∧ 𝑓:({𝐴} ∪ 𝑋)–1-1→({𝐵} ∪ 𝑌))) → (𝑓 ↾ (({𝐴} ∪ 𝑋) ∖ {𝐴})):(({𝐴} ∪ 𝑋) ∖ {𝐴})–1-1-onto→(𝑓 “ (({𝐴} ∪ 𝑋) ∖ {𝐴})))
14 f1oen3g 8517 . . . . . . . . . 10 (((𝑓 ↾ (({𝐴} ∪ 𝑋) ∖ {𝐴})) ∈ V ∧ (𝑓 ↾ (({𝐴} ∪ 𝑋) ∖ {𝐴})):(({𝐴} ∪ 𝑋) ∖ {𝐴})–1-1-onto→(𝑓 “ (({𝐴} ∪ 𝑋) ∖ {𝐴}))) → (({𝐴} ∪ 𝑋) ∖ {𝐴}) ≈ (𝑓 “ (({𝐴} ∪ 𝑋) ∖ {𝐴})))
159, 13, 14sylancr 589 . . . . . . . . 9 (((¬ 𝐴𝑋 ∧ ¬ 𝐵𝑌) ∧ (𝑌 ∈ V ∧ 𝑓:({𝐴} ∪ 𝑋)–1-1→({𝐵} ∪ 𝑌))) → (({𝐴} ∪ 𝑋) ∖ {𝐴}) ≈ (𝑓 “ (({𝐴} ∪ 𝑋) ∖ {𝐴})))
16 df-f1 6353 . . . . . . . . . . . 12 (𝑓:({𝐴} ∪ 𝑋)–1-1→({𝐵} ∪ 𝑌) ↔ (𝑓:({𝐴} ∪ 𝑋)⟶({𝐵} ∪ 𝑌) ∧ Fun 𝑓))
17 imadif 6431 . . . . . . . . . . . 12 (Fun 𝑓 → (𝑓 “ (({𝐴} ∪ 𝑋) ∖ {𝐴})) = ((𝑓 “ ({𝐴} ∪ 𝑋)) ∖ (𝑓 “ {𝐴})))
1816, 17simplbiim 507 . . . . . . . . . . 11 (𝑓:({𝐴} ∪ 𝑋)–1-1→({𝐵} ∪ 𝑌) → (𝑓 “ (({𝐴} ∪ 𝑋) ∖ {𝐴})) = ((𝑓 “ ({𝐴} ∪ 𝑋)) ∖ (𝑓 “ {𝐴})))
1918ad2antll 727 . . . . . . . . . 10 (((¬ 𝐴𝑋 ∧ ¬ 𝐵𝑌) ∧ (𝑌 ∈ V ∧ 𝑓:({𝐴} ∪ 𝑋)–1-1→({𝐵} ∪ 𝑌))) → (𝑓 “ (({𝐴} ∪ 𝑋) ∖ {𝐴})) = ((𝑓 “ ({𝐴} ∪ 𝑋)) ∖ (𝑓 “ {𝐴})))
20 snex 5322 . . . . . . . . . . . . . 14 {𝐵} ∈ V
21 simprl 769 . . . . . . . . . . . . . 14 (((¬ 𝐴𝑋 ∧ ¬ 𝐵𝑌) ∧ (𝑌 ∈ V ∧ 𝑓:({𝐴} ∪ 𝑋)–1-1→({𝐵} ∪ 𝑌))) → 𝑌 ∈ V)
22 unexg 7464 . . . . . . . . . . . . . 14 (({𝐵} ∈ V ∧ 𝑌 ∈ V) → ({𝐵} ∪ 𝑌) ∈ V)
2320, 21, 22sylancr 589 . . . . . . . . . . . . 13 (((¬ 𝐴𝑋 ∧ ¬ 𝐵𝑌) ∧ (𝑌 ∈ V ∧ 𝑓:({𝐴} ∪ 𝑋)–1-1→({𝐵} ∪ 𝑌))) → ({𝐵} ∪ 𝑌) ∈ V)
24 difexg 5222 . . . . . . . . . . . . 13 (({𝐵} ∪ 𝑌) ∈ V → (({𝐵} ∪ 𝑌) ∖ {(𝑓𝐴)}) ∈ V)
2523, 24syl 17 . . . . . . . . . . . 12 (((¬ 𝐴𝑋 ∧ ¬ 𝐵𝑌) ∧ (𝑌 ∈ V ∧ 𝑓:({𝐴} ∪ 𝑋)–1-1→({𝐵} ∪ 𝑌))) → (({𝐵} ∪ 𝑌) ∖ {(𝑓𝐴)}) ∈ V)
26 f1f 6568 . . . . . . . . . . . . . . . 16 (𝑓:({𝐴} ∪ 𝑋)–1-1→({𝐵} ∪ 𝑌) → 𝑓:({𝐴} ∪ 𝑋)⟶({𝐵} ∪ 𝑌))
27 fimass 6548 . . . . . . . . . . . . . . . 16 (𝑓:({𝐴} ∪ 𝑋)⟶({𝐵} ∪ 𝑌) → (𝑓 “ ({𝐴} ∪ 𝑋)) ⊆ ({𝐵} ∪ 𝑌))
2826, 27syl 17 . . . . . . . . . . . . . . 15 (𝑓:({𝐴} ∪ 𝑋)–1-1→({𝐵} ∪ 𝑌) → (𝑓 “ ({𝐴} ∪ 𝑋)) ⊆ ({𝐵} ∪ 𝑌))
2928ad2antll 727 . . . . . . . . . . . . . 14 (((¬ 𝐴𝑋 ∧ ¬ 𝐵𝑌) ∧ (𝑌 ∈ V ∧ 𝑓:({𝐴} ∪ 𝑋)–1-1→({𝐵} ∪ 𝑌))) → (𝑓 “ ({𝐴} ∪ 𝑋)) ⊆ ({𝐵} ∪ 𝑌))
3029ssdifd 4115 . . . . . . . . . . . . 13 (((¬ 𝐴𝑋 ∧ ¬ 𝐵𝑌) ∧ (𝑌 ∈ V ∧ 𝑓:({𝐴} ∪ 𝑋)–1-1→({𝐵} ∪ 𝑌))) → ((𝑓 “ ({𝐴} ∪ 𝑋)) ∖ (𝑓 “ {𝐴})) ⊆ (({𝐵} ∪ 𝑌) ∖ (𝑓 “ {𝐴})))
31 f1fn 6569 . . . . . . . . . . . . . . . 16 (𝑓:({𝐴} ∪ 𝑋)–1-1→({𝐵} ∪ 𝑌) → 𝑓 Fn ({𝐴} ∪ 𝑋))
3231ad2antll 727 . . . . . . . . . . . . . . 15 (((¬ 𝐴𝑋 ∧ ¬ 𝐵𝑌) ∧ (𝑌 ∈ V ∧ 𝑓:({𝐴} ∪ 𝑋)–1-1→({𝐵} ∪ 𝑌))) → 𝑓 Fn ({𝐴} ∪ 𝑋))
33 domunsncan.a . . . . . . . . . . . . . . . . 17 𝐴 ∈ V
3433snid 4593 . . . . . . . . . . . . . . . 16 𝐴 ∈ {𝐴}
35 elun1 4150 . . . . . . . . . . . . . . . 16 (𝐴 ∈ {𝐴} → 𝐴 ∈ ({𝐴} ∪ 𝑋))
3634, 35ax-mp 5 . . . . . . . . . . . . . . 15 𝐴 ∈ ({𝐴} ∪ 𝑋)
37 fnsnfv 6736 . . . . . . . . . . . . . . 15 ((𝑓 Fn ({𝐴} ∪ 𝑋) ∧ 𝐴 ∈ ({𝐴} ∪ 𝑋)) → {(𝑓𝐴)} = (𝑓 “ {𝐴}))
3832, 36, 37sylancl 588 . . . . . . . . . . . . . 14 (((¬ 𝐴𝑋 ∧ ¬ 𝐵𝑌) ∧ (𝑌 ∈ V ∧ 𝑓:({𝐴} ∪ 𝑋)–1-1→({𝐵} ∪ 𝑌))) → {(𝑓𝐴)} = (𝑓 “ {𝐴}))
3938difeq2d 4097 . . . . . . . . . . . . 13 (((¬ 𝐴𝑋 ∧ ¬ 𝐵𝑌) ∧ (𝑌 ∈ V ∧ 𝑓:({𝐴} ∪ 𝑋)–1-1→({𝐵} ∪ 𝑌))) → (({𝐵} ∪ 𝑌) ∖ {(𝑓𝐴)}) = (({𝐵} ∪ 𝑌) ∖ (𝑓 “ {𝐴})))
4030, 39sseqtrrd 4006 . . . . . . . . . . . 12 (((¬ 𝐴𝑋 ∧ ¬ 𝐵𝑌) ∧ (𝑌 ∈ V ∧ 𝑓:({𝐴} ∪ 𝑋)–1-1→({𝐵} ∪ 𝑌))) → ((𝑓 “ ({𝐴} ∪ 𝑋)) ∖ (𝑓 “ {𝐴})) ⊆ (({𝐵} ∪ 𝑌) ∖ {(𝑓𝐴)}))
41 ssdomg 8547 . . . . . . . . . . . 12 ((({𝐵} ∪ 𝑌) ∖ {(𝑓𝐴)}) ∈ V → (((𝑓 “ ({𝐴} ∪ 𝑋)) ∖ (𝑓 “ {𝐴})) ⊆ (({𝐵} ∪ 𝑌) ∖ {(𝑓𝐴)}) → ((𝑓 “ ({𝐴} ∪ 𝑋)) ∖ (𝑓 “ {𝐴})) ≼ (({𝐵} ∪ 𝑌) ∖ {(𝑓𝐴)})))
4225, 40, 41sylc 65 . . . . . . . . . . 11 (((¬ 𝐴𝑋 ∧ ¬ 𝐵𝑌) ∧ (𝑌 ∈ V ∧ 𝑓:({𝐴} ∪ 𝑋)–1-1→({𝐵} ∪ 𝑌))) → ((𝑓 “ ({𝐴} ∪ 𝑋)) ∖ (𝑓 “ {𝐴})) ≼ (({𝐵} ∪ 𝑌) ∖ {(𝑓𝐴)}))
43 ffvelrn 6842 . . . . . . . . . . . . . 14 ((𝑓:({𝐴} ∪ 𝑋)⟶({𝐵} ∪ 𝑌) ∧ 𝐴 ∈ ({𝐴} ∪ 𝑋)) → (𝑓𝐴) ∈ ({𝐵} ∪ 𝑌))
4426, 36, 43sylancl 588 . . . . . . . . . . . . 13 (𝑓:({𝐴} ∪ 𝑋)–1-1→({𝐵} ∪ 𝑌) → (𝑓𝐴) ∈ ({𝐵} ∪ 𝑌))
4544ad2antll 727 . . . . . . . . . . . 12 (((¬ 𝐴𝑋 ∧ ¬ 𝐵𝑌) ∧ (𝑌 ∈ V ∧ 𝑓:({𝐴} ∪ 𝑋)–1-1→({𝐵} ∪ 𝑌))) → (𝑓𝐴) ∈ ({𝐵} ∪ 𝑌))
46 domunsncan.b . . . . . . . . . . . . . 14 𝐵 ∈ V
4746snid 4593 . . . . . . . . . . . . 13 𝐵 ∈ {𝐵}
48 elun1 4150 . . . . . . . . . . . . 13 (𝐵 ∈ {𝐵} → 𝐵 ∈ ({𝐵} ∪ 𝑌))
4947, 48mp1i 13 . . . . . . . . . . . 12 (((¬ 𝐴𝑋 ∧ ¬ 𝐵𝑌) ∧ (𝑌 ∈ V ∧ 𝑓:({𝐴} ∪ 𝑋)–1-1→({𝐵} ∪ 𝑌))) → 𝐵 ∈ ({𝐵} ∪ 𝑌))
50 difsnen 8591 . . . . . . . . . . . 12 ((({𝐵} ∪ 𝑌) ∈ V ∧ (𝑓𝐴) ∈ ({𝐵} ∪ 𝑌) ∧ 𝐵 ∈ ({𝐵} ∪ 𝑌)) → (({𝐵} ∪ 𝑌) ∖ {(𝑓𝐴)}) ≈ (({𝐵} ∪ 𝑌) ∖ {𝐵}))
5123, 45, 49, 50syl3anc 1366 . . . . . . . . . . 11 (((¬ 𝐴𝑋 ∧ ¬ 𝐵𝑌) ∧ (𝑌 ∈ V ∧ 𝑓:({𝐴} ∪ 𝑋)–1-1→({𝐵} ∪ 𝑌))) → (({𝐵} ∪ 𝑌) ∖ {(𝑓𝐴)}) ≈ (({𝐵} ∪ 𝑌) ∖ {𝐵}))
52 domentr 8560 . . . . . . . . . . 11 ((((𝑓 “ ({𝐴} ∪ 𝑋)) ∖ (𝑓 “ {𝐴})) ≼ (({𝐵} ∪ 𝑌) ∖ {(𝑓𝐴)}) ∧ (({𝐵} ∪ 𝑌) ∖ {(𝑓𝐴)}) ≈ (({𝐵} ∪ 𝑌) ∖ {𝐵})) → ((𝑓 “ ({𝐴} ∪ 𝑋)) ∖ (𝑓 “ {𝐴})) ≼ (({𝐵} ∪ 𝑌) ∖ {𝐵}))
5342, 51, 52syl2anc 586 . . . . . . . . . 10 (((¬ 𝐴𝑋 ∧ ¬ 𝐵𝑌) ∧ (𝑌 ∈ V ∧ 𝑓:({𝐴} ∪ 𝑋)–1-1→({𝐵} ∪ 𝑌))) → ((𝑓 “ ({𝐴} ∪ 𝑋)) ∖ (𝑓 “ {𝐴})) ≼ (({𝐵} ∪ 𝑌) ∖ {𝐵}))
5419, 53eqbrtrd 5079 . . . . . . . . 9 (((¬ 𝐴𝑋 ∧ ¬ 𝐵𝑌) ∧ (𝑌 ∈ V ∧ 𝑓:({𝐴} ∪ 𝑋)–1-1→({𝐵} ∪ 𝑌))) → (𝑓 “ (({𝐴} ∪ 𝑋) ∖ {𝐴})) ≼ (({𝐵} ∪ 𝑌) ∖ {𝐵}))
55 endomtr 8559 . . . . . . . . 9 (((({𝐴} ∪ 𝑋) ∖ {𝐴}) ≈ (𝑓 “ (({𝐴} ∪ 𝑋) ∖ {𝐴})) ∧ (𝑓 “ (({𝐴} ∪ 𝑋) ∖ {𝐴})) ≼ (({𝐵} ∪ 𝑌) ∖ {𝐵})) → (({𝐴} ∪ 𝑋) ∖ {𝐴}) ≼ (({𝐵} ∪ 𝑌) ∖ {𝐵}))
5615, 54, 55syl2anc 586 . . . . . . . 8 (((¬ 𝐴𝑋 ∧ ¬ 𝐵𝑌) ∧ (𝑌 ∈ V ∧ 𝑓:({𝐴} ∪ 𝑋)–1-1→({𝐵} ∪ 𝑌))) → (({𝐴} ∪ 𝑋) ∖ {𝐴}) ≼ (({𝐵} ∪ 𝑌) ∖ {𝐵}))
57 uncom 4127 . . . . . . . . . . . 12 ({𝐴} ∪ 𝑋) = (𝑋 ∪ {𝐴})
5857difeq1i 4093 . . . . . . . . . . 11 (({𝐴} ∪ 𝑋) ∖ {𝐴}) = ((𝑋 ∪ {𝐴}) ∖ {𝐴})
59 difun2 4427 . . . . . . . . . . 11 ((𝑋 ∪ {𝐴}) ∖ {𝐴}) = (𝑋 ∖ {𝐴})
6058, 59eqtri 2842 . . . . . . . . . 10 (({𝐴} ∪ 𝑋) ∖ {𝐴}) = (𝑋 ∖ {𝐴})
61 difsn 4723 . . . . . . . . . 10 𝐴𝑋 → (𝑋 ∖ {𝐴}) = 𝑋)
6260, 61syl5eq 2866 . . . . . . . . 9 𝐴𝑋 → (({𝐴} ∪ 𝑋) ∖ {𝐴}) = 𝑋)
6362ad2antrr 724 . . . . . . . 8 (((¬ 𝐴𝑋 ∧ ¬ 𝐵𝑌) ∧ (𝑌 ∈ V ∧ 𝑓:({𝐴} ∪ 𝑋)–1-1→({𝐵} ∪ 𝑌))) → (({𝐴} ∪ 𝑋) ∖ {𝐴}) = 𝑋)
64 uncom 4127 . . . . . . . . . . . 12 ({𝐵} ∪ 𝑌) = (𝑌 ∪ {𝐵})
6564difeq1i 4093 . . . . . . . . . . 11 (({𝐵} ∪ 𝑌) ∖ {𝐵}) = ((𝑌 ∪ {𝐵}) ∖ {𝐵})
66 difun2 4427 . . . . . . . . . . 11 ((𝑌 ∪ {𝐵}) ∖ {𝐵}) = (𝑌 ∖ {𝐵})
6765, 66eqtri 2842 . . . . . . . . . 10 (({𝐵} ∪ 𝑌) ∖ {𝐵}) = (𝑌 ∖ {𝐵})
68 difsn 4723 . . . . . . . . . 10 𝐵𝑌 → (𝑌 ∖ {𝐵}) = 𝑌)
6967, 68syl5eq 2866 . . . . . . . . 9 𝐵𝑌 → (({𝐵} ∪ 𝑌) ∖ {𝐵}) = 𝑌)
7069ad2antlr 725 . . . . . . . 8 (((¬ 𝐴𝑋 ∧ ¬ 𝐵𝑌) ∧ (𝑌 ∈ V ∧ 𝑓:({𝐴} ∪ 𝑋)–1-1→({𝐵} ∪ 𝑌))) → (({𝐵} ∪ 𝑌) ∖ {𝐵}) = 𝑌)
7156, 63, 703brtr3d 5088 . . . . . . 7 (((¬ 𝐴𝑋 ∧ ¬ 𝐵𝑌) ∧ (𝑌 ∈ V ∧ 𝑓:({𝐴} ∪ 𝑋)–1-1→({𝐵} ∪ 𝑌))) → 𝑋𝑌)
7271expr 459 . . . . . 6 (((¬ 𝐴𝑋 ∧ ¬ 𝐵𝑌) ∧ 𝑌 ∈ V) → (𝑓:({𝐴} ∪ 𝑋)–1-1→({𝐵} ∪ 𝑌) → 𝑋𝑌))
7372exlimdv 1928 . . . . 5 (((¬ 𝐴𝑋 ∧ ¬ 𝐵𝑌) ∧ 𝑌 ∈ V) → (∃𝑓 𝑓:({𝐴} ∪ 𝑋)–1-1→({𝐵} ∪ 𝑌) → 𝑋𝑌))
747, 73syl5 34 . . . 4 (((¬ 𝐴𝑋 ∧ ¬ 𝐵𝑌) ∧ 𝑌 ∈ V) → (({𝐴} ∪ 𝑋) ≼ ({𝐵} ∪ 𝑌) → 𝑋𝑌))
7574impancom 454 . . 3 (((¬ 𝐴𝑋 ∧ ¬ 𝐵𝑌) ∧ ({𝐴} ∪ 𝑋) ≼ ({𝐵} ∪ 𝑌)) → (𝑌 ∈ V → 𝑋𝑌))
766, 75mpd 15 . 2 (((¬ 𝐴𝑋 ∧ ¬ 𝐵𝑌) ∧ ({𝐴} ∪ 𝑋) ≼ ({𝐵} ∪ 𝑌)) → 𝑋𝑌)
77 en2sn 8585 . . . . 5 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → {𝐴} ≈ {𝐵})
7833, 46, 77mp2an 690 . . . 4 {𝐴} ≈ {𝐵}
79 endom 8528 . . . 4 ({𝐴} ≈ {𝐵} → {𝐴} ≼ {𝐵})
8078, 79mp1i 13 . . 3 (((¬ 𝐴𝑋 ∧ ¬ 𝐵𝑌) ∧ 𝑋𝑌) → {𝐴} ≼ {𝐵})
81 simpr 487 . . 3 (((¬ 𝐴𝑋 ∧ ¬ 𝐵𝑌) ∧ 𝑋𝑌) → 𝑋𝑌)
82 incom 4176 . . . . 5 ({𝐵} ∩ 𝑌) = (𝑌 ∩ {𝐵})
83 disjsn 4639 . . . . . 6 ((𝑌 ∩ {𝐵}) = ∅ ↔ ¬ 𝐵𝑌)
8483biimpri 230 . . . . 5 𝐵𝑌 → (𝑌 ∩ {𝐵}) = ∅)
8582, 84syl5eq 2866 . . . 4 𝐵𝑌 → ({𝐵} ∩ 𝑌) = ∅)
8685ad2antlr 725 . . 3 (((¬ 𝐴𝑋 ∧ ¬ 𝐵𝑌) ∧ 𝑋𝑌) → ({𝐵} ∩ 𝑌) = ∅)
87 undom 8597 . . 3 ((({𝐴} ≼ {𝐵} ∧ 𝑋𝑌) ∧ ({𝐵} ∩ 𝑌) = ∅) → ({𝐴} ∪ 𝑋) ≼ ({𝐵} ∪ 𝑌))
8880, 81, 86, 87syl21anc 835 . 2 (((¬ 𝐴𝑋 ∧ ¬ 𝐵𝑌) ∧ 𝑋𝑌) → ({𝐴} ∪ 𝑋) ≼ ({𝐵} ∪ 𝑌))
8976, 88impbida 799 1 ((¬ 𝐴𝑋 ∧ ¬ 𝐵𝑌) → (({𝐴} ∪ 𝑋) ≼ ({𝐵} ∪ 𝑌) ↔ 𝑋𝑌))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1531  wex 1774  wcel 2108  Vcvv 3493  cdif 3931  cun 3932  cin 3933  wss 3934  c0 4289  {csn 4559   class class class wbr 5057  ccnv 5547  cres 5550  cima 5551  Fun wfun 6342   Fn wfn 6343  wf 6344  1-1wf1 6345  1-1-ontowf1o 6347  cfv 6348  cen 8498  cdom 8499
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-ral 3141  df-rex 3142  df-rab 3145  df-v 3495  df-sbc 3771  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4831  df-br 5058  df-opab 5120  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-1o 8094  df-er 8281  df-en 8502  df-dom 8503
This theorem is referenced by:  domunfican  8783
  Copyright terms: Public domain W3C validator