Step | Hyp | Ref
| Expression |
1 | | ssun2 4111 |
. . . 4
⊢ 𝑌 ⊆ ({𝐵} ∪ 𝑌) |
2 | | reldom 8713 |
. . . . . 6
⊢ Rel
≼ |
3 | 2 | brrelex2i 5643 |
. . . . 5
⊢ (({𝐴} ∪ 𝑋) ≼ ({𝐵} ∪ 𝑌) → ({𝐵} ∪ 𝑌) ∈ V) |
4 | 3 | adantl 481 |
. . . 4
⊢ (((¬
𝐴 ∈ 𝑋 ∧ ¬ 𝐵 ∈ 𝑌) ∧ ({𝐴} ∪ 𝑋) ≼ ({𝐵} ∪ 𝑌)) → ({𝐵} ∪ 𝑌) ∈ V) |
5 | | ssexg 5250 |
. . . 4
⊢ ((𝑌 ⊆ ({𝐵} ∪ 𝑌) ∧ ({𝐵} ∪ 𝑌) ∈ V) → 𝑌 ∈ V) |
6 | 1, 4, 5 | sylancr 586 |
. . 3
⊢ (((¬
𝐴 ∈ 𝑋 ∧ ¬ 𝐵 ∈ 𝑌) ∧ ({𝐴} ∪ 𝑋) ≼ ({𝐵} ∪ 𝑌)) → 𝑌 ∈ V) |
7 | | brdomi 8720 |
. . . . 5
⊢ (({𝐴} ∪ 𝑋) ≼ ({𝐵} ∪ 𝑌) → ∃𝑓 𝑓:({𝐴} ∪ 𝑋)–1-1→({𝐵} ∪ 𝑌)) |
8 | | vex 3434 |
. . . . . . . . . . 11
⊢ 𝑓 ∈ V |
9 | 8 | resex 5936 |
. . . . . . . . . 10
⊢ (𝑓 ↾ (({𝐴} ∪ 𝑋) ∖ {𝐴})) ∈ V |
10 | | simprr 769 |
. . . . . . . . . . 11
⊢ (((¬
𝐴 ∈ 𝑋 ∧ ¬ 𝐵 ∈ 𝑌) ∧ (𝑌 ∈ V ∧ 𝑓:({𝐴} ∪ 𝑋)–1-1→({𝐵} ∪ 𝑌))) → 𝑓:({𝐴} ∪ 𝑋)–1-1→({𝐵} ∪ 𝑌)) |
11 | | difss 4070 |
. . . . . . . . . . 11
⊢ (({𝐴} ∪ 𝑋) ∖ {𝐴}) ⊆ ({𝐴} ∪ 𝑋) |
12 | | f1ores 6726 |
. . . . . . . . . . 11
⊢ ((𝑓:({𝐴} ∪ 𝑋)–1-1→({𝐵} ∪ 𝑌) ∧ (({𝐴} ∪ 𝑋) ∖ {𝐴}) ⊆ ({𝐴} ∪ 𝑋)) → (𝑓 ↾ (({𝐴} ∪ 𝑋) ∖ {𝐴})):(({𝐴} ∪ 𝑋) ∖ {𝐴})–1-1-onto→(𝑓 “ (({𝐴} ∪ 𝑋) ∖ {𝐴}))) |
13 | 10, 11, 12 | sylancl 585 |
. . . . . . . . . 10
⊢ (((¬
𝐴 ∈ 𝑋 ∧ ¬ 𝐵 ∈ 𝑌) ∧ (𝑌 ∈ V ∧ 𝑓:({𝐴} ∪ 𝑋)–1-1→({𝐵} ∪ 𝑌))) → (𝑓 ↾ (({𝐴} ∪ 𝑋) ∖ {𝐴})):(({𝐴} ∪ 𝑋) ∖ {𝐴})–1-1-onto→(𝑓 “ (({𝐴} ∪ 𝑋) ∖ {𝐴}))) |
14 | | f1oen3g 8725 |
. . . . . . . . . 10
⊢ (((𝑓 ↾ (({𝐴} ∪ 𝑋) ∖ {𝐴})) ∈ V ∧ (𝑓 ↾ (({𝐴} ∪ 𝑋) ∖ {𝐴})):(({𝐴} ∪ 𝑋) ∖ {𝐴})–1-1-onto→(𝑓 “ (({𝐴} ∪ 𝑋) ∖ {𝐴}))) → (({𝐴} ∪ 𝑋) ∖ {𝐴}) ≈ (𝑓 “ (({𝐴} ∪ 𝑋) ∖ {𝐴}))) |
15 | 9, 13, 14 | sylancr 586 |
. . . . . . . . 9
⊢ (((¬
𝐴 ∈ 𝑋 ∧ ¬ 𝐵 ∈ 𝑌) ∧ (𝑌 ∈ V ∧ 𝑓:({𝐴} ∪ 𝑋)–1-1→({𝐵} ∪ 𝑌))) → (({𝐴} ∪ 𝑋) ∖ {𝐴}) ≈ (𝑓 “ (({𝐴} ∪ 𝑋) ∖ {𝐴}))) |
16 | | df-f1 6435 |
. . . . . . . . . . . 12
⊢ (𝑓:({𝐴} ∪ 𝑋)–1-1→({𝐵} ∪ 𝑌) ↔ (𝑓:({𝐴} ∪ 𝑋)⟶({𝐵} ∪ 𝑌) ∧ Fun ◡𝑓)) |
17 | | imadif 6514 |
. . . . . . . . . . . 12
⊢ (Fun
◡𝑓 → (𝑓 “ (({𝐴} ∪ 𝑋) ∖ {𝐴})) = ((𝑓 “ ({𝐴} ∪ 𝑋)) ∖ (𝑓 “ {𝐴}))) |
18 | 16, 17 | simplbiim 504 |
. . . . . . . . . . 11
⊢ (𝑓:({𝐴} ∪ 𝑋)–1-1→({𝐵} ∪ 𝑌) → (𝑓 “ (({𝐴} ∪ 𝑋) ∖ {𝐴})) = ((𝑓 “ ({𝐴} ∪ 𝑋)) ∖ (𝑓 “ {𝐴}))) |
19 | 18 | ad2antll 725 |
. . . . . . . . . 10
⊢ (((¬
𝐴 ∈ 𝑋 ∧ ¬ 𝐵 ∈ 𝑌) ∧ (𝑌 ∈ V ∧ 𝑓:({𝐴} ∪ 𝑋)–1-1→({𝐵} ∪ 𝑌))) → (𝑓 “ (({𝐴} ∪ 𝑋) ∖ {𝐴})) = ((𝑓 “ ({𝐴} ∪ 𝑋)) ∖ (𝑓 “ {𝐴}))) |
20 | | snex 5357 |
. . . . . . . . . . . . . 14
⊢ {𝐵} ∈ V |
21 | | simprl 767 |
. . . . . . . . . . . . . 14
⊢ (((¬
𝐴 ∈ 𝑋 ∧ ¬ 𝐵 ∈ 𝑌) ∧ (𝑌 ∈ V ∧ 𝑓:({𝐴} ∪ 𝑋)–1-1→({𝐵} ∪ 𝑌))) → 𝑌 ∈ V) |
22 | | unexg 7590 |
. . . . . . . . . . . . . 14
⊢ (({𝐵} ∈ V ∧ 𝑌 ∈ V) → ({𝐵} ∪ 𝑌) ∈ V) |
23 | 20, 21, 22 | sylancr 586 |
. . . . . . . . . . . . 13
⊢ (((¬
𝐴 ∈ 𝑋 ∧ ¬ 𝐵 ∈ 𝑌) ∧ (𝑌 ∈ V ∧ 𝑓:({𝐴} ∪ 𝑋)–1-1→({𝐵} ∪ 𝑌))) → ({𝐵} ∪ 𝑌) ∈ V) |
24 | 23 | difexd 5256 |
. . . . . . . . . . . 12
⊢ (((¬
𝐴 ∈ 𝑋 ∧ ¬ 𝐵 ∈ 𝑌) ∧ (𝑌 ∈ V ∧ 𝑓:({𝐴} ∪ 𝑋)–1-1→({𝐵} ∪ 𝑌))) → (({𝐵} ∪ 𝑌) ∖ {(𝑓‘𝐴)}) ∈ V) |
25 | | f1f 6666 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓:({𝐴} ∪ 𝑋)–1-1→({𝐵} ∪ 𝑌) → 𝑓:({𝐴} ∪ 𝑋)⟶({𝐵} ∪ 𝑌)) |
26 | | fimass 6617 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓:({𝐴} ∪ 𝑋)⟶({𝐵} ∪ 𝑌) → (𝑓 “ ({𝐴} ∪ 𝑋)) ⊆ ({𝐵} ∪ 𝑌)) |
27 | 25, 26 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝑓:({𝐴} ∪ 𝑋)–1-1→({𝐵} ∪ 𝑌) → (𝑓 “ ({𝐴} ∪ 𝑋)) ⊆ ({𝐵} ∪ 𝑌)) |
28 | 27 | ad2antll 725 |
. . . . . . . . . . . . . 14
⊢ (((¬
𝐴 ∈ 𝑋 ∧ ¬ 𝐵 ∈ 𝑌) ∧ (𝑌 ∈ V ∧ 𝑓:({𝐴} ∪ 𝑋)–1-1→({𝐵} ∪ 𝑌))) → (𝑓 “ ({𝐴} ∪ 𝑋)) ⊆ ({𝐵} ∪ 𝑌)) |
29 | 28 | ssdifd 4079 |
. . . . . . . . . . . . 13
⊢ (((¬
𝐴 ∈ 𝑋 ∧ ¬ 𝐵 ∈ 𝑌) ∧ (𝑌 ∈ V ∧ 𝑓:({𝐴} ∪ 𝑋)–1-1→({𝐵} ∪ 𝑌))) → ((𝑓 “ ({𝐴} ∪ 𝑋)) ∖ (𝑓 “ {𝐴})) ⊆ (({𝐵} ∪ 𝑌) ∖ (𝑓 “ {𝐴}))) |
30 | | f1fn 6667 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓:({𝐴} ∪ 𝑋)–1-1→({𝐵} ∪ 𝑌) → 𝑓 Fn ({𝐴} ∪ 𝑋)) |
31 | 30 | ad2antll 725 |
. . . . . . . . . . . . . . 15
⊢ (((¬
𝐴 ∈ 𝑋 ∧ ¬ 𝐵 ∈ 𝑌) ∧ (𝑌 ∈ V ∧ 𝑓:({𝐴} ∪ 𝑋)–1-1→({𝐵} ∪ 𝑌))) → 𝑓 Fn ({𝐴} ∪ 𝑋)) |
32 | | domunsncan.a |
. . . . . . . . . . . . . . . . 17
⊢ 𝐴 ∈ V |
33 | 32 | snid 4602 |
. . . . . . . . . . . . . . . 16
⊢ 𝐴 ∈ {𝐴} |
34 | | elun1 4114 |
. . . . . . . . . . . . . . . 16
⊢ (𝐴 ∈ {𝐴} → 𝐴 ∈ ({𝐴} ∪ 𝑋)) |
35 | 33, 34 | ax-mp 5 |
. . . . . . . . . . . . . . 15
⊢ 𝐴 ∈ ({𝐴} ∪ 𝑋) |
36 | | fnsnfv 6841 |
. . . . . . . . . . . . . . 15
⊢ ((𝑓 Fn ({𝐴} ∪ 𝑋) ∧ 𝐴 ∈ ({𝐴} ∪ 𝑋)) → {(𝑓‘𝐴)} = (𝑓 “ {𝐴})) |
37 | 31, 35, 36 | sylancl 585 |
. . . . . . . . . . . . . 14
⊢ (((¬
𝐴 ∈ 𝑋 ∧ ¬ 𝐵 ∈ 𝑌) ∧ (𝑌 ∈ V ∧ 𝑓:({𝐴} ∪ 𝑋)–1-1→({𝐵} ∪ 𝑌))) → {(𝑓‘𝐴)} = (𝑓 “ {𝐴})) |
38 | 37 | difeq2d 4061 |
. . . . . . . . . . . . 13
⊢ (((¬
𝐴 ∈ 𝑋 ∧ ¬ 𝐵 ∈ 𝑌) ∧ (𝑌 ∈ V ∧ 𝑓:({𝐴} ∪ 𝑋)–1-1→({𝐵} ∪ 𝑌))) → (({𝐵} ∪ 𝑌) ∖ {(𝑓‘𝐴)}) = (({𝐵} ∪ 𝑌) ∖ (𝑓 “ {𝐴}))) |
39 | 29, 38 | sseqtrrd 3966 |
. . . . . . . . . . . 12
⊢ (((¬
𝐴 ∈ 𝑋 ∧ ¬ 𝐵 ∈ 𝑌) ∧ (𝑌 ∈ V ∧ 𝑓:({𝐴} ∪ 𝑋)–1-1→({𝐵} ∪ 𝑌))) → ((𝑓 “ ({𝐴} ∪ 𝑋)) ∖ (𝑓 “ {𝐴})) ⊆ (({𝐵} ∪ 𝑌) ∖ {(𝑓‘𝐴)})) |
40 | | ssdomg 8757 |
. . . . . . . . . . . 12
⊢ ((({𝐵} ∪ 𝑌) ∖ {(𝑓‘𝐴)}) ∈ V → (((𝑓 “ ({𝐴} ∪ 𝑋)) ∖ (𝑓 “ {𝐴})) ⊆ (({𝐵} ∪ 𝑌) ∖ {(𝑓‘𝐴)}) → ((𝑓 “ ({𝐴} ∪ 𝑋)) ∖ (𝑓 “ {𝐴})) ≼ (({𝐵} ∪ 𝑌) ∖ {(𝑓‘𝐴)}))) |
41 | 24, 39, 40 | sylc 65 |
. . . . . . . . . . 11
⊢ (((¬
𝐴 ∈ 𝑋 ∧ ¬ 𝐵 ∈ 𝑌) ∧ (𝑌 ∈ V ∧ 𝑓:({𝐴} ∪ 𝑋)–1-1→({𝐵} ∪ 𝑌))) → ((𝑓 “ ({𝐴} ∪ 𝑋)) ∖ (𝑓 “ {𝐴})) ≼ (({𝐵} ∪ 𝑌) ∖ {(𝑓‘𝐴)})) |
42 | | ffvelrn 6953 |
. . . . . . . . . . . . . 14
⊢ ((𝑓:({𝐴} ∪ 𝑋)⟶({𝐵} ∪ 𝑌) ∧ 𝐴 ∈ ({𝐴} ∪ 𝑋)) → (𝑓‘𝐴) ∈ ({𝐵} ∪ 𝑌)) |
43 | 25, 35, 42 | sylancl 585 |
. . . . . . . . . . . . 13
⊢ (𝑓:({𝐴} ∪ 𝑋)–1-1→({𝐵} ∪ 𝑌) → (𝑓‘𝐴) ∈ ({𝐵} ∪ 𝑌)) |
44 | 43 | ad2antll 725 |
. . . . . . . . . . . 12
⊢ (((¬
𝐴 ∈ 𝑋 ∧ ¬ 𝐵 ∈ 𝑌) ∧ (𝑌 ∈ V ∧ 𝑓:({𝐴} ∪ 𝑋)–1-1→({𝐵} ∪ 𝑌))) → (𝑓‘𝐴) ∈ ({𝐵} ∪ 𝑌)) |
45 | | domunsncan.b |
. . . . . . . . . . . . . 14
⊢ 𝐵 ∈ V |
46 | 45 | snid 4602 |
. . . . . . . . . . . . 13
⊢ 𝐵 ∈ {𝐵} |
47 | | elun1 4114 |
. . . . . . . . . . . . 13
⊢ (𝐵 ∈ {𝐵} → 𝐵 ∈ ({𝐵} ∪ 𝑌)) |
48 | 46, 47 | mp1i 13 |
. . . . . . . . . . . 12
⊢ (((¬
𝐴 ∈ 𝑋 ∧ ¬ 𝐵 ∈ 𝑌) ∧ (𝑌 ∈ V ∧ 𝑓:({𝐴} ∪ 𝑋)–1-1→({𝐵} ∪ 𝑌))) → 𝐵 ∈ ({𝐵} ∪ 𝑌)) |
49 | | difsnen 8810 |
. . . . . . . . . . . 12
⊢ ((({𝐵} ∪ 𝑌) ∈ V ∧ (𝑓‘𝐴) ∈ ({𝐵} ∪ 𝑌) ∧ 𝐵 ∈ ({𝐵} ∪ 𝑌)) → (({𝐵} ∪ 𝑌) ∖ {(𝑓‘𝐴)}) ≈ (({𝐵} ∪ 𝑌) ∖ {𝐵})) |
50 | 23, 44, 48, 49 | syl3anc 1369 |
. . . . . . . . . . 11
⊢ (((¬
𝐴 ∈ 𝑋 ∧ ¬ 𝐵 ∈ 𝑌) ∧ (𝑌 ∈ V ∧ 𝑓:({𝐴} ∪ 𝑋)–1-1→({𝐵} ∪ 𝑌))) → (({𝐵} ∪ 𝑌) ∖ {(𝑓‘𝐴)}) ≈ (({𝐵} ∪ 𝑌) ∖ {𝐵})) |
51 | | domentr 8770 |
. . . . . . . . . . 11
⊢ ((((𝑓 “ ({𝐴} ∪ 𝑋)) ∖ (𝑓 “ {𝐴})) ≼ (({𝐵} ∪ 𝑌) ∖ {(𝑓‘𝐴)}) ∧ (({𝐵} ∪ 𝑌) ∖ {(𝑓‘𝐴)}) ≈ (({𝐵} ∪ 𝑌) ∖ {𝐵})) → ((𝑓 “ ({𝐴} ∪ 𝑋)) ∖ (𝑓 “ {𝐴})) ≼ (({𝐵} ∪ 𝑌) ∖ {𝐵})) |
52 | 41, 50, 51 | syl2anc 583 |
. . . . . . . . . 10
⊢ (((¬
𝐴 ∈ 𝑋 ∧ ¬ 𝐵 ∈ 𝑌) ∧ (𝑌 ∈ V ∧ 𝑓:({𝐴} ∪ 𝑋)–1-1→({𝐵} ∪ 𝑌))) → ((𝑓 “ ({𝐴} ∪ 𝑋)) ∖ (𝑓 “ {𝐴})) ≼ (({𝐵} ∪ 𝑌) ∖ {𝐵})) |
53 | 19, 52 | eqbrtrd 5100 |
. . . . . . . . 9
⊢ (((¬
𝐴 ∈ 𝑋 ∧ ¬ 𝐵 ∈ 𝑌) ∧ (𝑌 ∈ V ∧ 𝑓:({𝐴} ∪ 𝑋)–1-1→({𝐵} ∪ 𝑌))) → (𝑓 “ (({𝐴} ∪ 𝑋) ∖ {𝐴})) ≼ (({𝐵} ∪ 𝑌) ∖ {𝐵})) |
54 | | endomtr 8769 |
. . . . . . . . 9
⊢
(((({𝐴} ∪ 𝑋) ∖ {𝐴}) ≈ (𝑓 “ (({𝐴} ∪ 𝑋) ∖ {𝐴})) ∧ (𝑓 “ (({𝐴} ∪ 𝑋) ∖ {𝐴})) ≼ (({𝐵} ∪ 𝑌) ∖ {𝐵})) → (({𝐴} ∪ 𝑋) ∖ {𝐴}) ≼ (({𝐵} ∪ 𝑌) ∖ {𝐵})) |
55 | 15, 53, 54 | syl2anc 583 |
. . . . . . . 8
⊢ (((¬
𝐴 ∈ 𝑋 ∧ ¬ 𝐵 ∈ 𝑌) ∧ (𝑌 ∈ V ∧ 𝑓:({𝐴} ∪ 𝑋)–1-1→({𝐵} ∪ 𝑌))) → (({𝐴} ∪ 𝑋) ∖ {𝐴}) ≼ (({𝐵} ∪ 𝑌) ∖ {𝐵})) |
56 | | uncom 4091 |
. . . . . . . . . . . 12
⊢ ({𝐴} ∪ 𝑋) = (𝑋 ∪ {𝐴}) |
57 | 56 | difeq1i 4057 |
. . . . . . . . . . 11
⊢ (({𝐴} ∪ 𝑋) ∖ {𝐴}) = ((𝑋 ∪ {𝐴}) ∖ {𝐴}) |
58 | | difun2 4419 |
. . . . . . . . . . 11
⊢ ((𝑋 ∪ {𝐴}) ∖ {𝐴}) = (𝑋 ∖ {𝐴}) |
59 | 57, 58 | eqtri 2767 |
. . . . . . . . . 10
⊢ (({𝐴} ∪ 𝑋) ∖ {𝐴}) = (𝑋 ∖ {𝐴}) |
60 | | difsn 4736 |
. . . . . . . . . 10
⊢ (¬
𝐴 ∈ 𝑋 → (𝑋 ∖ {𝐴}) = 𝑋) |
61 | 59, 60 | eqtrid 2791 |
. . . . . . . . 9
⊢ (¬
𝐴 ∈ 𝑋 → (({𝐴} ∪ 𝑋) ∖ {𝐴}) = 𝑋) |
62 | 61 | ad2antrr 722 |
. . . . . . . 8
⊢ (((¬
𝐴 ∈ 𝑋 ∧ ¬ 𝐵 ∈ 𝑌) ∧ (𝑌 ∈ V ∧ 𝑓:({𝐴} ∪ 𝑋)–1-1→({𝐵} ∪ 𝑌))) → (({𝐴} ∪ 𝑋) ∖ {𝐴}) = 𝑋) |
63 | | uncom 4091 |
. . . . . . . . . . . 12
⊢ ({𝐵} ∪ 𝑌) = (𝑌 ∪ {𝐵}) |
64 | 63 | difeq1i 4057 |
. . . . . . . . . . 11
⊢ (({𝐵} ∪ 𝑌) ∖ {𝐵}) = ((𝑌 ∪ {𝐵}) ∖ {𝐵}) |
65 | | difun2 4419 |
. . . . . . . . . . 11
⊢ ((𝑌 ∪ {𝐵}) ∖ {𝐵}) = (𝑌 ∖ {𝐵}) |
66 | 64, 65 | eqtri 2767 |
. . . . . . . . . 10
⊢ (({𝐵} ∪ 𝑌) ∖ {𝐵}) = (𝑌 ∖ {𝐵}) |
67 | | difsn 4736 |
. . . . . . . . . 10
⊢ (¬
𝐵 ∈ 𝑌 → (𝑌 ∖ {𝐵}) = 𝑌) |
68 | 66, 67 | eqtrid 2791 |
. . . . . . . . 9
⊢ (¬
𝐵 ∈ 𝑌 → (({𝐵} ∪ 𝑌) ∖ {𝐵}) = 𝑌) |
69 | 68 | ad2antlr 723 |
. . . . . . . 8
⊢ (((¬
𝐴 ∈ 𝑋 ∧ ¬ 𝐵 ∈ 𝑌) ∧ (𝑌 ∈ V ∧ 𝑓:({𝐴} ∪ 𝑋)–1-1→({𝐵} ∪ 𝑌))) → (({𝐵} ∪ 𝑌) ∖ {𝐵}) = 𝑌) |
70 | 55, 62, 69 | 3brtr3d 5109 |
. . . . . . 7
⊢ (((¬
𝐴 ∈ 𝑋 ∧ ¬ 𝐵 ∈ 𝑌) ∧ (𝑌 ∈ V ∧ 𝑓:({𝐴} ∪ 𝑋)–1-1→({𝐵} ∪ 𝑌))) → 𝑋 ≼ 𝑌) |
71 | 70 | expr 456 |
. . . . . 6
⊢ (((¬
𝐴 ∈ 𝑋 ∧ ¬ 𝐵 ∈ 𝑌) ∧ 𝑌 ∈ V) → (𝑓:({𝐴} ∪ 𝑋)–1-1→({𝐵} ∪ 𝑌) → 𝑋 ≼ 𝑌)) |
72 | 71 | exlimdv 1939 |
. . . . 5
⊢ (((¬
𝐴 ∈ 𝑋 ∧ ¬ 𝐵 ∈ 𝑌) ∧ 𝑌 ∈ V) → (∃𝑓 𝑓:({𝐴} ∪ 𝑋)–1-1→({𝐵} ∪ 𝑌) → 𝑋 ≼ 𝑌)) |
73 | 7, 72 | syl5 34 |
. . . 4
⊢ (((¬
𝐴 ∈ 𝑋 ∧ ¬ 𝐵 ∈ 𝑌) ∧ 𝑌 ∈ V) → (({𝐴} ∪ 𝑋) ≼ ({𝐵} ∪ 𝑌) → 𝑋 ≼ 𝑌)) |
74 | 73 | impancom 451 |
. . 3
⊢ (((¬
𝐴 ∈ 𝑋 ∧ ¬ 𝐵 ∈ 𝑌) ∧ ({𝐴} ∪ 𝑋) ≼ ({𝐵} ∪ 𝑌)) → (𝑌 ∈ V → 𝑋 ≼ 𝑌)) |
75 | 6, 74 | mpd 15 |
. 2
⊢ (((¬
𝐴 ∈ 𝑋 ∧ ¬ 𝐵 ∈ 𝑌) ∧ ({𝐴} ∪ 𝑋) ≼ ({𝐵} ∪ 𝑌)) → 𝑋 ≼ 𝑌) |
76 | | en2sn 8801 |
. . . . 5
⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → {𝐴} ≈ {𝐵}) |
77 | 32, 45, 76 | mp2an 688 |
. . . 4
⊢ {𝐴} ≈ {𝐵} |
78 | | endom 8738 |
. . . 4
⊢ ({𝐴} ≈ {𝐵} → {𝐴} ≼ {𝐵}) |
79 | 77, 78 | mp1i 13 |
. . 3
⊢ (((¬
𝐴 ∈ 𝑋 ∧ ¬ 𝐵 ∈ 𝑌) ∧ 𝑋 ≼ 𝑌) → {𝐴} ≼ {𝐵}) |
80 | | simpr 484 |
. . 3
⊢ (((¬
𝐴 ∈ 𝑋 ∧ ¬ 𝐵 ∈ 𝑌) ∧ 𝑋 ≼ 𝑌) → 𝑋 ≼ 𝑌) |
81 | | incom 4139 |
. . . . 5
⊢ ({𝐵} ∩ 𝑌) = (𝑌 ∩ {𝐵}) |
82 | | disjsn 4652 |
. . . . . 6
⊢ ((𝑌 ∩ {𝐵}) = ∅ ↔ ¬ 𝐵 ∈ 𝑌) |
83 | 82 | biimpri 227 |
. . . . 5
⊢ (¬
𝐵 ∈ 𝑌 → (𝑌 ∩ {𝐵}) = ∅) |
84 | 81, 83 | eqtrid 2791 |
. . . 4
⊢ (¬
𝐵 ∈ 𝑌 → ({𝐵} ∩ 𝑌) = ∅) |
85 | 84 | ad2antlr 723 |
. . 3
⊢ (((¬
𝐴 ∈ 𝑋 ∧ ¬ 𝐵 ∈ 𝑌) ∧ 𝑋 ≼ 𝑌) → ({𝐵} ∩ 𝑌) = ∅) |
86 | | undom 8816 |
. . 3
⊢ ((({𝐴} ≼ {𝐵} ∧ 𝑋 ≼ 𝑌) ∧ ({𝐵} ∩ 𝑌) = ∅) → ({𝐴} ∪ 𝑋) ≼ ({𝐵} ∪ 𝑌)) |
87 | 79, 80, 85, 86 | syl21anc 834 |
. 2
⊢ (((¬
𝐴 ∈ 𝑋 ∧ ¬ 𝐵 ∈ 𝑌) ∧ 𝑋 ≼ 𝑌) → ({𝐴} ∪ 𝑋) ≼ ({𝐵} ∪ 𝑌)) |
88 | 75, 87 | impbida 797 |
1
⊢ ((¬
𝐴 ∈ 𝑋 ∧ ¬ 𝐵 ∈ 𝑌) → (({𝐴} ∪ 𝑋) ≼ ({𝐵} ∪ 𝑌) ↔ 𝑋 ≼ 𝑌)) |