MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opabex Structured version   Visualization version   GIF version

Theorem opabex 6982
Description: Existence of a function expressed as class of ordered pairs. (Contributed by NM, 21-Jul-1996.)
Hypotheses
Ref Expression
opabex.1 𝐴 ∈ V
opabex.2 (𝑥𝐴 → ∃*𝑦𝜑)
Assertion
Ref Expression
opabex {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} ∈ V
Distinct variable group:   𝑥,𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem opabex
StepHypRef Expression
1 funopab 6389 . . 3 (Fun {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} ↔ ∀𝑥∃*𝑦(𝑥𝐴𝜑))
2 opabex.2 . . . 4 (𝑥𝐴 → ∃*𝑦𝜑)
3 moanimv 2700 . . . 4 (∃*𝑦(𝑥𝐴𝜑) ↔ (𝑥𝐴 → ∃*𝑦𝜑))
42, 3mpbir 233 . . 3 ∃*𝑦(𝑥𝐴𝜑)
51, 4mpgbir 1796 . 2 Fun {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)}
6 opabex.1 . . 3 𝐴 ∈ V
7 dmopabss 5786 . . 3 dom {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} ⊆ 𝐴
86, 7ssexi 5225 . 2 dom {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} ∈ V
9 funex 6981 . 2 ((Fun {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} ∧ dom {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} ∈ V) → {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} ∈ V)
105, 8, 9mp2an 690 1 {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} ∈ V
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  wcel 2110  ∃*wmo 2616  Vcvv 3494  {copab 5127  dom cdm 5554  Fun wfun 6348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pr 5329
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4838  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-id 5459  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator