MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opabex Structured version   Visualization version   GIF version

Theorem opabex 7078
Description: Existence of a function expressed as class of ordered pairs. (Contributed by NM, 21-Jul-1996.)
Hypotheses
Ref Expression
opabex.1 𝐴 ∈ V
opabex.2 (𝑥𝐴 → ∃*𝑦𝜑)
Assertion
Ref Expression
opabex {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} ∈ V
Distinct variable group:   𝑥,𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem opabex
StepHypRef Expression
1 funopab 6453 . . 3 (Fun {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} ↔ ∀𝑥∃*𝑦(𝑥𝐴𝜑))
2 opabex.2 . . . 4 (𝑥𝐴 → ∃*𝑦𝜑)
3 moanimv 2621 . . . 4 (∃*𝑦(𝑥𝐴𝜑) ↔ (𝑥𝐴 → ∃*𝑦𝜑))
42, 3mpbir 230 . . 3 ∃*𝑦(𝑥𝐴𝜑)
51, 4mpgbir 1803 . 2 Fun {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)}
6 opabex.1 . . 3 𝐴 ∈ V
7 dmopabss 5816 . . 3 dom {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} ⊆ 𝐴
86, 7ssexi 5241 . 2 dom {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} ∈ V
9 funex 7077 . 2 ((Fun {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} ∧ dom {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} ∈ V) → {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} ∈ V)
105, 8, 9mp2an 688 1 {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} ∈ V
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  ∃*wmo 2538  Vcvv 3422  {copab 5132  dom cdm 5580  Fun wfun 6412
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator