MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opabex Structured version   Visualization version   GIF version

Theorem opabex 7154
Description: Existence of a function expressed as class of ordered pairs. (Contributed by NM, 21-Jul-1996.)
Hypotheses
Ref Expression
opabex.1 𝐴 ∈ V
opabex.2 (𝑥𝐴 → ∃*𝑦𝜑)
Assertion
Ref Expression
opabex {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} ∈ V
Distinct variable group:   𝑥,𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem opabex
StepHypRef Expression
1 funopab 6516 . . 3 (Fun {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} ↔ ∀𝑥∃*𝑦(𝑥𝐴𝜑))
2 opabex.2 . . . 4 (𝑥𝐴 → ∃*𝑦𝜑)
3 moanimv 2614 . . . 4 (∃*𝑦(𝑥𝐴𝜑) ↔ (𝑥𝐴 → ∃*𝑦𝜑))
42, 3mpbir 231 . . 3 ∃*𝑦(𝑥𝐴𝜑)
51, 4mpgbir 1800 . 2 Fun {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)}
6 opabex.1 . . 3 𝐴 ∈ V
7 dmopabss 5857 . . 3 dom {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} ⊆ 𝐴
86, 7ssexi 5258 . 2 dom {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} ∈ V
9 funex 7153 . 2 ((Fun {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} ∧ dom {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} ∈ V) → {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} ∈ V)
105, 8, 9mp2an 692 1 {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} ∈ V
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2111  ∃*wmo 2533  Vcvv 3436  {copab 5151  dom cdm 5614  Fun wfun 6475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator