| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opabex | Structured version Visualization version GIF version | ||
| Description: Existence of a function expressed as class of ordered pairs. (Contributed by NM, 21-Jul-1996.) |
| Ref | Expression |
|---|---|
| opabex.1 | ⊢ 𝐴 ∈ V |
| opabex.2 | ⊢ (𝑥 ∈ 𝐴 → ∃*𝑦𝜑) |
| Ref | Expression |
|---|---|
| opabex | ⊢ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funopab 6551 | . . 3 ⊢ (Fun {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ↔ ∀𝑥∃*𝑦(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 2 | opabex.2 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → ∃*𝑦𝜑) | |
| 3 | moanimv 2612 | . . . 4 ⊢ (∃*𝑦(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑥 ∈ 𝐴 → ∃*𝑦𝜑)) | |
| 4 | 2, 3 | mpbir 231 | . . 3 ⊢ ∃*𝑦(𝑥 ∈ 𝐴 ∧ 𝜑) |
| 5 | 1, 4 | mpgbir 1799 | . 2 ⊢ Fun {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} |
| 6 | opabex.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 7 | dmopabss 5882 | . . 3 ⊢ dom {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ⊆ 𝐴 | |
| 8 | 6, 7 | ssexi 5277 | . 2 ⊢ dom {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ∈ V |
| 9 | funex 7193 | . 2 ⊢ ((Fun {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ∧ dom {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ∈ V) → {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ∈ V) | |
| 10 | 5, 8, 9 | mp2an 692 | 1 ⊢ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∃*wmo 2531 Vcvv 3447 {copab 5169 dom cdm 5638 Fun wfun 6505 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |