MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opabex Structured version   Visualization version   GIF version

Theorem opabex 7218
Description: Existence of a function expressed as class of ordered pairs. (Contributed by NM, 21-Jul-1996.)
Hypotheses
Ref Expression
opabex.1 𝐴 ∈ V
opabex.2 (𝑥𝐴 → ∃*𝑦𝜑)
Assertion
Ref Expression
opabex {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} ∈ V
Distinct variable group:   𝑥,𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem opabex
StepHypRef Expression
1 funopab 6580 . . 3 (Fun {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} ↔ ∀𝑥∃*𝑦(𝑥𝐴𝜑))
2 opabex.2 . . . 4 (𝑥𝐴 → ∃*𝑦𝜑)
3 moanimv 2615 . . . 4 (∃*𝑦(𝑥𝐴𝜑) ↔ (𝑥𝐴 → ∃*𝑦𝜑))
42, 3mpbir 230 . . 3 ∃*𝑦(𝑥𝐴𝜑)
51, 4mpgbir 1801 . 2 Fun {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)}
6 opabex.1 . . 3 𝐴 ∈ V
7 dmopabss 5916 . . 3 dom {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} ⊆ 𝐴
86, 7ssexi 5321 . 2 dom {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} ∈ V
9 funex 7217 . 2 ((Fun {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} ∧ dom {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} ∈ V) → {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} ∈ V)
105, 8, 9mp2an 690 1 {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)} ∈ V
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wcel 2106  ∃*wmo 2532  Vcvv 3474  {copab 5209  dom cdm 5675  Fun wfun 6534
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator