| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > abrexdom | Structured version Visualization version GIF version | ||
| Description: An indexed set is dominated by the indexing set. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| Ref | Expression |
|---|---|
| abrexdom.1 | ⊢ (𝑦 ∈ 𝐴 → ∃*𝑥𝜑) |
| Ref | Expression |
|---|---|
| abrexdom | ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∣ ∃𝑦 ∈ 𝐴 𝜑} ≼ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rex 3057 | . . . 4 ⊢ (∃𝑦 ∈ 𝐴 𝜑 ↔ ∃𝑦(𝑦 ∈ 𝐴 ∧ 𝜑)) | |
| 2 | 1 | abbii 2798 | . . 3 ⊢ {𝑥 ∣ ∃𝑦 ∈ 𝐴 𝜑} = {𝑥 ∣ ∃𝑦(𝑦 ∈ 𝐴 ∧ 𝜑)} |
| 3 | rnopab 5893 | . . 3 ⊢ ran {〈𝑦, 𝑥〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} = {𝑥 ∣ ∃𝑦(𝑦 ∈ 𝐴 ∧ 𝜑)} | |
| 4 | 2, 3 | eqtr4i 2757 | . 2 ⊢ {𝑥 ∣ ∃𝑦 ∈ 𝐴 𝜑} = ran {〈𝑦, 𝑥〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} |
| 5 | dmopabss 5857 | . . . . 5 ⊢ dom {〈𝑦, 𝑥〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} ⊆ 𝐴 | |
| 6 | ssexg 5259 | . . . . 5 ⊢ ((dom {〈𝑦, 𝑥〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} ⊆ 𝐴 ∧ 𝐴 ∈ 𝑉) → dom {〈𝑦, 𝑥〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} ∈ V) | |
| 7 | 5, 6 | mpan 690 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → dom {〈𝑦, 𝑥〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} ∈ V) |
| 8 | funopab 6516 | . . . . . . 7 ⊢ (Fun {〈𝑦, 𝑥〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} ↔ ∀𝑦∃*𝑥(𝑦 ∈ 𝐴 ∧ 𝜑)) | |
| 9 | abrexdom.1 | . . . . . . . 8 ⊢ (𝑦 ∈ 𝐴 → ∃*𝑥𝜑) | |
| 10 | moanimv 2614 | . . . . . . . 8 ⊢ (∃*𝑥(𝑦 ∈ 𝐴 ∧ 𝜑) ↔ (𝑦 ∈ 𝐴 → ∃*𝑥𝜑)) | |
| 11 | 9, 10 | mpbir 231 | . . . . . . 7 ⊢ ∃*𝑥(𝑦 ∈ 𝐴 ∧ 𝜑) |
| 12 | 8, 11 | mpgbir 1800 | . . . . . 6 ⊢ Fun {〈𝑦, 𝑥〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} |
| 13 | 12 | a1i 11 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → Fun {〈𝑦, 𝑥〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)}) |
| 14 | funfn 6511 | . . . . 5 ⊢ (Fun {〈𝑦, 𝑥〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} ↔ {〈𝑦, 𝑥〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} Fn dom {〈𝑦, 𝑥〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)}) | |
| 15 | 13, 14 | sylib 218 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → {〈𝑦, 𝑥〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} Fn dom {〈𝑦, 𝑥〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)}) |
| 16 | fnrndomg 10427 | . . . 4 ⊢ (dom {〈𝑦, 𝑥〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} ∈ V → ({〈𝑦, 𝑥〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} Fn dom {〈𝑦, 𝑥〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} → ran {〈𝑦, 𝑥〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} ≼ dom {〈𝑦, 𝑥〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)})) | |
| 17 | 7, 15, 16 | sylc 65 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ran {〈𝑦, 𝑥〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} ≼ dom {〈𝑦, 𝑥〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)}) |
| 18 | ssdomg 8922 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (dom {〈𝑦, 𝑥〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} ⊆ 𝐴 → dom {〈𝑦, 𝑥〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} ≼ 𝐴)) | |
| 19 | 5, 18 | mpi 20 | . . 3 ⊢ (𝐴 ∈ 𝑉 → dom {〈𝑦, 𝑥〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} ≼ 𝐴) |
| 20 | domtr 8929 | . . 3 ⊢ ((ran {〈𝑦, 𝑥〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} ≼ dom {〈𝑦, 𝑥〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} ∧ dom {〈𝑦, 𝑥〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} ≼ 𝐴) → ran {〈𝑦, 𝑥〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} ≼ 𝐴) | |
| 21 | 17, 19, 20 | syl2anc 584 | . 2 ⊢ (𝐴 ∈ 𝑉 → ran {〈𝑦, 𝑥〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} ≼ 𝐴) |
| 22 | 4, 21 | eqbrtrid 5124 | 1 ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∣ ∃𝑦 ∈ 𝐴 𝜑} ≼ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∃wex 1780 ∈ wcel 2111 ∃*wmo 2533 {cab 2709 ∃wrex 3056 Vcvv 3436 ⊆ wss 3897 class class class wbr 5089 {copab 5151 dom cdm 5614 ran crn 5615 Fun wfun 6475 Fn wfn 6476 ≼ cdom 8867 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-ac2 10354 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-card 9832 df-acn 9835 df-ac 10007 |
| This theorem is referenced by: abrexdom2 37779 |
| Copyright terms: Public domain | W3C validator |