Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  abrexdom Structured version   Visualization version   GIF version

Theorem abrexdom 37236
Description: An indexed set is dominated by the indexing set. (Contributed by Jeff Madsen, 2-Sep-2009.)
Hypothesis
Ref Expression
abrexdom.1 (𝑦𝐴 → ∃*𝑥𝜑)
Assertion
Ref Expression
abrexdom (𝐴𝑉 → {𝑥 ∣ ∃𝑦𝐴 𝜑} ≼ 𝐴)
Distinct variable group:   𝑥,𝐴,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem abrexdom
StepHypRef Expression
1 df-rex 3068 . . . 4 (∃𝑦𝐴 𝜑 ↔ ∃𝑦(𝑦𝐴𝜑))
21abbii 2798 . . 3 {𝑥 ∣ ∃𝑦𝐴 𝜑} = {𝑥 ∣ ∃𝑦(𝑦𝐴𝜑)}
3 rnopab 5960 . . 3 ran {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐴𝜑)} = {𝑥 ∣ ∃𝑦(𝑦𝐴𝜑)}
42, 3eqtr4i 2759 . 2 {𝑥 ∣ ∃𝑦𝐴 𝜑} = ran {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐴𝜑)}
5 dmopabss 5925 . . . . 5 dom {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐴𝜑)} ⊆ 𝐴
6 ssexg 5327 . . . . 5 ((dom {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐴𝜑)} ⊆ 𝐴𝐴𝑉) → dom {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐴𝜑)} ∈ V)
75, 6mpan 688 . . . 4 (𝐴𝑉 → dom {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐴𝜑)} ∈ V)
8 funopab 6593 . . . . . . 7 (Fun {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐴𝜑)} ↔ ∀𝑦∃*𝑥(𝑦𝐴𝜑))
9 abrexdom.1 . . . . . . . 8 (𝑦𝐴 → ∃*𝑥𝜑)
10 moanimv 2610 . . . . . . . 8 (∃*𝑥(𝑦𝐴𝜑) ↔ (𝑦𝐴 → ∃*𝑥𝜑))
119, 10mpbir 230 . . . . . . 7 ∃*𝑥(𝑦𝐴𝜑)
128, 11mpgbir 1793 . . . . . 6 Fun {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐴𝜑)}
1312a1i 11 . . . . 5 (𝐴𝑉 → Fun {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐴𝜑)})
14 funfn 6588 . . . . 5 (Fun {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐴𝜑)} ↔ {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐴𝜑)} Fn dom {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐴𝜑)})
1513, 14sylib 217 . . . 4 (𝐴𝑉 → {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐴𝜑)} Fn dom {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐴𝜑)})
16 fnrndomg 10567 . . . 4 (dom {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐴𝜑)} ∈ V → ({⟨𝑦, 𝑥⟩ ∣ (𝑦𝐴𝜑)} Fn dom {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐴𝜑)} → ran {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐴𝜑)} ≼ dom {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐴𝜑)}))
177, 15, 16sylc 65 . . 3 (𝐴𝑉 → ran {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐴𝜑)} ≼ dom {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐴𝜑)})
18 ssdomg 9027 . . . 4 (𝐴𝑉 → (dom {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐴𝜑)} ⊆ 𝐴 → dom {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐴𝜑)} ≼ 𝐴))
195, 18mpi 20 . . 3 (𝐴𝑉 → dom {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐴𝜑)} ≼ 𝐴)
20 domtr 9034 . . 3 ((ran {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐴𝜑)} ≼ dom {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐴𝜑)} ∧ dom {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐴𝜑)} ≼ 𝐴) → ran {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐴𝜑)} ≼ 𝐴)
2117, 19, 20syl2anc 582 . 2 (𝐴𝑉 → ran {⟨𝑦, 𝑥⟩ ∣ (𝑦𝐴𝜑)} ≼ 𝐴)
224, 21eqbrtrid 5187 1 (𝐴𝑉 → {𝑥 ∣ ∃𝑦𝐴 𝜑} ≼ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  wex 1773  wcel 2098  ∃*wmo 2527  {cab 2705  wrex 3067  Vcvv 3473  wss 3949   class class class wbr 5152  {copab 5214  dom cdm 5682  ran crn 5683  Fun wfun 6547   Fn wfn 6548  cdom 8968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-ac2 10494
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-int 4954  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-se 5638  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-isom 6562  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-1st 7999  df-2nd 8000  df-frecs 8293  df-wrecs 8324  df-recs 8398  df-er 8731  df-map 8853  df-en 8971  df-dom 8972  df-card 9970  df-acn 9973  df-ac 10147
This theorem is referenced by:  abrexdom2  37237
  Copyright terms: Public domain W3C validator