![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > abrexdom | Structured version Visualization version GIF version |
Description: An indexed set is dominated by the indexing set. (Contributed by Jeff Madsen, 2-Sep-2009.) |
Ref | Expression |
---|---|
abrexdom.1 | ⊢ (𝑦 ∈ 𝐴 → ∃*𝑥𝜑) |
Ref | Expression |
---|---|
abrexdom | ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∣ ∃𝑦 ∈ 𝐴 𝜑} ≼ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rex 3071 | . . . 4 ⊢ (∃𝑦 ∈ 𝐴 𝜑 ↔ ∃𝑦(𝑦 ∈ 𝐴 ∧ 𝜑)) | |
2 | 1 | abbii 2802 | . . 3 ⊢ {𝑥 ∣ ∃𝑦 ∈ 𝐴 𝜑} = {𝑥 ∣ ∃𝑦(𝑦 ∈ 𝐴 ∧ 𝜑)} |
3 | rnopab 5953 | . . 3 ⊢ ran {⟨𝑦, 𝑥⟩ ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} = {𝑥 ∣ ∃𝑦(𝑦 ∈ 𝐴 ∧ 𝜑)} | |
4 | 2, 3 | eqtr4i 2763 | . 2 ⊢ {𝑥 ∣ ∃𝑦 ∈ 𝐴 𝜑} = ran {⟨𝑦, 𝑥⟩ ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} |
5 | dmopabss 5918 | . . . . 5 ⊢ dom {⟨𝑦, 𝑥⟩ ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} ⊆ 𝐴 | |
6 | ssexg 5323 | . . . . 5 ⊢ ((dom {⟨𝑦, 𝑥⟩ ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} ⊆ 𝐴 ∧ 𝐴 ∈ 𝑉) → dom {⟨𝑦, 𝑥⟩ ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} ∈ V) | |
7 | 5, 6 | mpan 688 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → dom {⟨𝑦, 𝑥⟩ ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} ∈ V) |
8 | funopab 6583 | . . . . . . 7 ⊢ (Fun {⟨𝑦, 𝑥⟩ ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} ↔ ∀𝑦∃*𝑥(𝑦 ∈ 𝐴 ∧ 𝜑)) | |
9 | abrexdom.1 | . . . . . . . 8 ⊢ (𝑦 ∈ 𝐴 → ∃*𝑥𝜑) | |
10 | moanimv 2615 | . . . . . . . 8 ⊢ (∃*𝑥(𝑦 ∈ 𝐴 ∧ 𝜑) ↔ (𝑦 ∈ 𝐴 → ∃*𝑥𝜑)) | |
11 | 9, 10 | mpbir 230 | . . . . . . 7 ⊢ ∃*𝑥(𝑦 ∈ 𝐴 ∧ 𝜑) |
12 | 8, 11 | mpgbir 1801 | . . . . . 6 ⊢ Fun {⟨𝑦, 𝑥⟩ ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} |
13 | 12 | a1i 11 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → Fun {⟨𝑦, 𝑥⟩ ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)}) |
14 | funfn 6578 | . . . . 5 ⊢ (Fun {⟨𝑦, 𝑥⟩ ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} ↔ {⟨𝑦, 𝑥⟩ ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} Fn dom {⟨𝑦, 𝑥⟩ ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)}) | |
15 | 13, 14 | sylib 217 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → {⟨𝑦, 𝑥⟩ ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} Fn dom {⟨𝑦, 𝑥⟩ ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)}) |
16 | fnrndomg 10530 | . . . 4 ⊢ (dom {⟨𝑦, 𝑥⟩ ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} ∈ V → ({⟨𝑦, 𝑥⟩ ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} Fn dom {⟨𝑦, 𝑥⟩ ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} → ran {⟨𝑦, 𝑥⟩ ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} ≼ dom {⟨𝑦, 𝑥⟩ ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)})) | |
17 | 7, 15, 16 | sylc 65 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ran {⟨𝑦, 𝑥⟩ ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} ≼ dom {⟨𝑦, 𝑥⟩ ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)}) |
18 | ssdomg 8995 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (dom {⟨𝑦, 𝑥⟩ ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} ⊆ 𝐴 → dom {⟨𝑦, 𝑥⟩ ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} ≼ 𝐴)) | |
19 | 5, 18 | mpi 20 | . . 3 ⊢ (𝐴 ∈ 𝑉 → dom {⟨𝑦, 𝑥⟩ ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} ≼ 𝐴) |
20 | domtr 9002 | . . 3 ⊢ ((ran {⟨𝑦, 𝑥⟩ ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} ≼ dom {⟨𝑦, 𝑥⟩ ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} ∧ dom {⟨𝑦, 𝑥⟩ ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} ≼ 𝐴) → ran {⟨𝑦, 𝑥⟩ ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} ≼ 𝐴) | |
21 | 17, 19, 20 | syl2anc 584 | . 2 ⊢ (𝐴 ∈ 𝑉 → ran {⟨𝑦, 𝑥⟩ ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} ≼ 𝐴) |
22 | 4, 21 | eqbrtrid 5183 | 1 ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∣ ∃𝑦 ∈ 𝐴 𝜑} ≼ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∃wex 1781 ∈ wcel 2106 ∃*wmo 2532 {cab 2709 ∃wrex 3070 Vcvv 3474 ⊆ wss 3948 class class class wbr 5148 {copab 5210 dom cdm 5676 ran crn 5677 Fun wfun 6537 Fn wfn 6538 ≼ cdom 8936 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-ac2 10457 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-1st 7974 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-er 8702 df-map 8821 df-en 8939 df-dom 8940 df-card 9933 df-acn 9936 df-ac 10110 |
This theorem is referenced by: abrexdom2 36594 |
Copyright terms: Public domain | W3C validator |