![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > abrexdom | Structured version Visualization version GIF version |
Description: An indexed set is dominated by the indexing set. (Contributed by Jeff Madsen, 2-Sep-2009.) |
Ref | Expression |
---|---|
abrexdom.1 | ⊢ (𝑦 ∈ 𝐴 → ∃*𝑥𝜑) |
Ref | Expression |
---|---|
abrexdom | ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∣ ∃𝑦 ∈ 𝐴 𝜑} ≼ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rex 3093 | . . . 4 ⊢ (∃𝑦 ∈ 𝐴 𝜑 ↔ ∃𝑦(𝑦 ∈ 𝐴 ∧ 𝜑)) | |
2 | 1 | abbii 2914 | . . 3 ⊢ {𝑥 ∣ ∃𝑦 ∈ 𝐴 𝜑} = {𝑥 ∣ ∃𝑦(𝑦 ∈ 𝐴 ∧ 𝜑)} |
3 | rnopab 5572 | . . 3 ⊢ ran {〈𝑦, 𝑥〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} = {𝑥 ∣ ∃𝑦(𝑦 ∈ 𝐴 ∧ 𝜑)} | |
4 | 2, 3 | eqtr4i 2822 | . 2 ⊢ {𝑥 ∣ ∃𝑦 ∈ 𝐴 𝜑} = ran {〈𝑦, 𝑥〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} |
5 | dmopabss 5537 | . . . . 5 ⊢ dom {〈𝑦, 𝑥〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} ⊆ 𝐴 | |
6 | ssexg 4997 | . . . . 5 ⊢ ((dom {〈𝑦, 𝑥〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} ⊆ 𝐴 ∧ 𝐴 ∈ 𝑉) → dom {〈𝑦, 𝑥〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} ∈ V) | |
7 | 5, 6 | mpan 682 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → dom {〈𝑦, 𝑥〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} ∈ V) |
8 | funopab 6134 | . . . . . . 7 ⊢ (Fun {〈𝑦, 𝑥〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} ↔ ∀𝑦∃*𝑥(𝑦 ∈ 𝐴 ∧ 𝜑)) | |
9 | abrexdom.1 | . . . . . . . 8 ⊢ (𝑦 ∈ 𝐴 → ∃*𝑥𝜑) | |
10 | moanimv 2684 | . . . . . . . 8 ⊢ (∃*𝑥(𝑦 ∈ 𝐴 ∧ 𝜑) ↔ (𝑦 ∈ 𝐴 → ∃*𝑥𝜑)) | |
11 | 9, 10 | mpbir 223 | . . . . . . 7 ⊢ ∃*𝑥(𝑦 ∈ 𝐴 ∧ 𝜑) |
12 | 8, 11 | mpgbir 1895 | . . . . . 6 ⊢ Fun {〈𝑦, 𝑥〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} |
13 | 12 | a1i 11 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → Fun {〈𝑦, 𝑥〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)}) |
14 | funfn 6129 | . . . . 5 ⊢ (Fun {〈𝑦, 𝑥〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} ↔ {〈𝑦, 𝑥〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} Fn dom {〈𝑦, 𝑥〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)}) | |
15 | 13, 14 | sylib 210 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → {〈𝑦, 𝑥〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} Fn dom {〈𝑦, 𝑥〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)}) |
16 | fnrndomg 9644 | . . . 4 ⊢ (dom {〈𝑦, 𝑥〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} ∈ V → ({〈𝑦, 𝑥〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} Fn dom {〈𝑦, 𝑥〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} → ran {〈𝑦, 𝑥〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} ≼ dom {〈𝑦, 𝑥〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)})) | |
17 | 7, 15, 16 | sylc 65 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ran {〈𝑦, 𝑥〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} ≼ dom {〈𝑦, 𝑥〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)}) |
18 | ssdomg 8239 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (dom {〈𝑦, 𝑥〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} ⊆ 𝐴 → dom {〈𝑦, 𝑥〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} ≼ 𝐴)) | |
19 | 5, 18 | mpi 20 | . . 3 ⊢ (𝐴 ∈ 𝑉 → dom {〈𝑦, 𝑥〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} ≼ 𝐴) |
20 | domtr 8246 | . . 3 ⊢ ((ran {〈𝑦, 𝑥〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} ≼ dom {〈𝑦, 𝑥〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} ∧ dom {〈𝑦, 𝑥〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} ≼ 𝐴) → ran {〈𝑦, 𝑥〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} ≼ 𝐴) | |
21 | 17, 19, 20 | syl2anc 580 | . 2 ⊢ (𝐴 ∈ 𝑉 → ran {〈𝑦, 𝑥〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} ≼ 𝐴) |
22 | 4, 21 | syl5eqbr 4876 | 1 ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∣ ∃𝑦 ∈ 𝐴 𝜑} ≼ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 ∃wex 1875 ∈ wcel 2157 ∃*wmo 2588 {cab 2783 ∃wrex 3088 Vcvv 3383 ⊆ wss 3767 class class class wbr 4841 {copab 4903 dom cdm 5310 ran crn 5311 Fun wfun 6093 Fn wfn 6094 ≼ cdom 8191 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2375 ax-ext 2775 ax-rep 4962 ax-sep 4973 ax-nul 4981 ax-pow 5033 ax-pr 5095 ax-un 7181 ax-ac2 9571 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2590 df-eu 2607 df-clab 2784 df-cleq 2790 df-clel 2793 df-nfc 2928 df-ne 2970 df-ral 3092 df-rex 3093 df-reu 3094 df-rmo 3095 df-rab 3096 df-v 3385 df-sbc 3632 df-csb 3727 df-dif 3770 df-un 3772 df-in 3774 df-ss 3781 df-pss 3783 df-nul 4114 df-if 4276 df-pw 4349 df-sn 4367 df-pr 4369 df-tp 4371 df-op 4373 df-uni 4627 df-int 4666 df-iun 4710 df-br 4842 df-opab 4904 df-mpt 4921 df-tr 4944 df-id 5218 df-eprel 5223 df-po 5231 df-so 5232 df-fr 5269 df-se 5270 df-we 5271 df-xp 5316 df-rel 5317 df-cnv 5318 df-co 5319 df-dm 5320 df-rn 5321 df-res 5322 df-ima 5323 df-pred 5896 df-ord 5942 df-on 5943 df-suc 5945 df-iota 6062 df-fun 6101 df-fn 6102 df-f 6103 df-f1 6104 df-fo 6105 df-f1o 6106 df-fv 6107 df-isom 6108 df-riota 6837 df-ov 6879 df-oprab 6880 df-mpt2 6881 df-1st 7399 df-2nd 7400 df-wrecs 7643 df-recs 7705 df-er 7980 df-map 8095 df-en 8194 df-dom 8195 df-card 9049 df-acn 9052 df-ac 9223 |
This theorem is referenced by: abrexdom2 34005 |
Copyright terms: Public domain | W3C validator |