![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > abrexdom | Structured version Visualization version GIF version |
Description: An indexed set is dominated by the indexing set. (Contributed by Jeff Madsen, 2-Sep-2009.) |
Ref | Expression |
---|---|
abrexdom.1 | ⊢ (𝑦 ∈ 𝐴 → ∃*𝑥𝜑) |
Ref | Expression |
---|---|
abrexdom | ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∣ ∃𝑦 ∈ 𝐴 𝜑} ≼ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rex 3071 | . . . 4 ⊢ (∃𝑦 ∈ 𝐴 𝜑 ↔ ∃𝑦(𝑦 ∈ 𝐴 ∧ 𝜑)) | |
2 | 1 | abbii 2803 | . . 3 ⊢ {𝑥 ∣ ∃𝑦 ∈ 𝐴 𝜑} = {𝑥 ∣ ∃𝑦(𝑦 ∈ 𝐴 ∧ 𝜑)} |
3 | rnopab 5913 | . . 3 ⊢ ran {⟨𝑦, 𝑥⟩ ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} = {𝑥 ∣ ∃𝑦(𝑦 ∈ 𝐴 ∧ 𝜑)} | |
4 | 2, 3 | eqtr4i 2764 | . 2 ⊢ {𝑥 ∣ ∃𝑦 ∈ 𝐴 𝜑} = ran {⟨𝑦, 𝑥⟩ ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} |
5 | dmopabss 5878 | . . . . 5 ⊢ dom {⟨𝑦, 𝑥⟩ ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} ⊆ 𝐴 | |
6 | ssexg 5284 | . . . . 5 ⊢ ((dom {⟨𝑦, 𝑥⟩ ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} ⊆ 𝐴 ∧ 𝐴 ∈ 𝑉) → dom {⟨𝑦, 𝑥⟩ ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} ∈ V) | |
7 | 5, 6 | mpan 689 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → dom {⟨𝑦, 𝑥⟩ ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} ∈ V) |
8 | funopab 6540 | . . . . . . 7 ⊢ (Fun {⟨𝑦, 𝑥⟩ ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} ↔ ∀𝑦∃*𝑥(𝑦 ∈ 𝐴 ∧ 𝜑)) | |
9 | abrexdom.1 | . . . . . . . 8 ⊢ (𝑦 ∈ 𝐴 → ∃*𝑥𝜑) | |
10 | moanimv 2616 | . . . . . . . 8 ⊢ (∃*𝑥(𝑦 ∈ 𝐴 ∧ 𝜑) ↔ (𝑦 ∈ 𝐴 → ∃*𝑥𝜑)) | |
11 | 9, 10 | mpbir 230 | . . . . . . 7 ⊢ ∃*𝑥(𝑦 ∈ 𝐴 ∧ 𝜑) |
12 | 8, 11 | mpgbir 1802 | . . . . . 6 ⊢ Fun {⟨𝑦, 𝑥⟩ ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} |
13 | 12 | a1i 11 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → Fun {⟨𝑦, 𝑥⟩ ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)}) |
14 | funfn 6535 | . . . . 5 ⊢ (Fun {⟨𝑦, 𝑥⟩ ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} ↔ {⟨𝑦, 𝑥⟩ ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} Fn dom {⟨𝑦, 𝑥⟩ ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)}) | |
15 | 13, 14 | sylib 217 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → {⟨𝑦, 𝑥⟩ ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} Fn dom {⟨𝑦, 𝑥⟩ ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)}) |
16 | fnrndomg 10480 | . . . 4 ⊢ (dom {⟨𝑦, 𝑥⟩ ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} ∈ V → ({⟨𝑦, 𝑥⟩ ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} Fn dom {⟨𝑦, 𝑥⟩ ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} → ran {⟨𝑦, 𝑥⟩ ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} ≼ dom {⟨𝑦, 𝑥⟩ ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)})) | |
17 | 7, 15, 16 | sylc 65 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ran {⟨𝑦, 𝑥⟩ ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} ≼ dom {⟨𝑦, 𝑥⟩ ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)}) |
18 | ssdomg 8946 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (dom {⟨𝑦, 𝑥⟩ ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} ⊆ 𝐴 → dom {⟨𝑦, 𝑥⟩ ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} ≼ 𝐴)) | |
19 | 5, 18 | mpi 20 | . . 3 ⊢ (𝐴 ∈ 𝑉 → dom {⟨𝑦, 𝑥⟩ ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} ≼ 𝐴) |
20 | domtr 8953 | . . 3 ⊢ ((ran {⟨𝑦, 𝑥⟩ ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} ≼ dom {⟨𝑦, 𝑥⟩ ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} ∧ dom {⟨𝑦, 𝑥⟩ ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} ≼ 𝐴) → ran {⟨𝑦, 𝑥⟩ ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} ≼ 𝐴) | |
21 | 17, 19, 20 | syl2anc 585 | . 2 ⊢ (𝐴 ∈ 𝑉 → ran {⟨𝑦, 𝑥⟩ ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} ≼ 𝐴) |
22 | 4, 21 | eqbrtrid 5144 | 1 ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∣ ∃𝑦 ∈ 𝐴 𝜑} ≼ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∃wex 1782 ∈ wcel 2107 ∃*wmo 2533 {cab 2710 ∃wrex 3070 Vcvv 3447 ⊆ wss 3914 class class class wbr 5109 {copab 5171 dom cdm 5637 ran crn 5638 Fun wfun 6494 Fn wfn 6495 ≼ cdom 8887 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5246 ax-sep 5260 ax-nul 5267 ax-pow 5324 ax-pr 5388 ax-un 7676 ax-ac2 10407 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3352 df-reu 3353 df-rab 3407 df-v 3449 df-sbc 3744 df-csb 3860 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3933 df-nul 4287 df-if 4491 df-pw 4566 df-sn 4591 df-pr 4593 df-op 4597 df-uni 4870 df-int 4912 df-iun 4960 df-br 5110 df-opab 5172 df-mpt 5193 df-tr 5227 df-id 5535 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5592 df-se 5593 df-we 5594 df-xp 5643 df-rel 5644 df-cnv 5645 df-co 5646 df-dm 5647 df-rn 5648 df-res 5649 df-ima 5650 df-pred 6257 df-ord 6324 df-on 6325 df-suc 6327 df-iota 6452 df-fun 6502 df-fn 6503 df-f 6504 df-f1 6505 df-fo 6506 df-f1o 6507 df-fv 6508 df-isom 6509 df-riota 7317 df-ov 7364 df-oprab 7365 df-mpo 7366 df-1st 7925 df-2nd 7926 df-frecs 8216 df-wrecs 8247 df-recs 8321 df-er 8654 df-map 8773 df-en 8890 df-dom 8891 df-card 9883 df-acn 9886 df-ac 10060 |
This theorem is referenced by: abrexdom2 36240 |
Copyright terms: Public domain | W3C validator |