![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > abrexdom | Structured version Visualization version GIF version |
Description: An indexed set is dominated by the indexing set. (Contributed by Jeff Madsen, 2-Sep-2009.) |
Ref | Expression |
---|---|
abrexdom.1 | ⊢ (𝑦 ∈ 𝐴 → ∃*𝑥𝜑) |
Ref | Expression |
---|---|
abrexdom | ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∣ ∃𝑦 ∈ 𝐴 𝜑} ≼ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rex 3065 | . . . 4 ⊢ (∃𝑦 ∈ 𝐴 𝜑 ↔ ∃𝑦(𝑦 ∈ 𝐴 ∧ 𝜑)) | |
2 | 1 | abbii 2796 | . . 3 ⊢ {𝑥 ∣ ∃𝑦 ∈ 𝐴 𝜑} = {𝑥 ∣ ∃𝑦(𝑦 ∈ 𝐴 ∧ 𝜑)} |
3 | rnopab 5946 | . . 3 ⊢ ran {⟨𝑦, 𝑥⟩ ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} = {𝑥 ∣ ∃𝑦(𝑦 ∈ 𝐴 ∧ 𝜑)} | |
4 | 2, 3 | eqtr4i 2757 | . 2 ⊢ {𝑥 ∣ ∃𝑦 ∈ 𝐴 𝜑} = ran {⟨𝑦, 𝑥⟩ ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} |
5 | dmopabss 5911 | . . . . 5 ⊢ dom {⟨𝑦, 𝑥⟩ ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} ⊆ 𝐴 | |
6 | ssexg 5316 | . . . . 5 ⊢ ((dom {⟨𝑦, 𝑥⟩ ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} ⊆ 𝐴 ∧ 𝐴 ∈ 𝑉) → dom {⟨𝑦, 𝑥⟩ ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} ∈ V) | |
7 | 5, 6 | mpan 687 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → dom {⟨𝑦, 𝑥⟩ ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} ∈ V) |
8 | funopab 6576 | . . . . . . 7 ⊢ (Fun {⟨𝑦, 𝑥⟩ ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} ↔ ∀𝑦∃*𝑥(𝑦 ∈ 𝐴 ∧ 𝜑)) | |
9 | abrexdom.1 | . . . . . . . 8 ⊢ (𝑦 ∈ 𝐴 → ∃*𝑥𝜑) | |
10 | moanimv 2609 | . . . . . . . 8 ⊢ (∃*𝑥(𝑦 ∈ 𝐴 ∧ 𝜑) ↔ (𝑦 ∈ 𝐴 → ∃*𝑥𝜑)) | |
11 | 9, 10 | mpbir 230 | . . . . . . 7 ⊢ ∃*𝑥(𝑦 ∈ 𝐴 ∧ 𝜑) |
12 | 8, 11 | mpgbir 1793 | . . . . . 6 ⊢ Fun {⟨𝑦, 𝑥⟩ ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} |
13 | 12 | a1i 11 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → Fun {⟨𝑦, 𝑥⟩ ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)}) |
14 | funfn 6571 | . . . . 5 ⊢ (Fun {⟨𝑦, 𝑥⟩ ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} ↔ {⟨𝑦, 𝑥⟩ ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} Fn dom {⟨𝑦, 𝑥⟩ ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)}) | |
15 | 13, 14 | sylib 217 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → {⟨𝑦, 𝑥⟩ ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} Fn dom {⟨𝑦, 𝑥⟩ ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)}) |
16 | fnrndomg 10530 | . . . 4 ⊢ (dom {⟨𝑦, 𝑥⟩ ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} ∈ V → ({⟨𝑦, 𝑥⟩ ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} Fn dom {⟨𝑦, 𝑥⟩ ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} → ran {⟨𝑦, 𝑥⟩ ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} ≼ dom {⟨𝑦, 𝑥⟩ ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)})) | |
17 | 7, 15, 16 | sylc 65 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ran {⟨𝑦, 𝑥⟩ ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} ≼ dom {⟨𝑦, 𝑥⟩ ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)}) |
18 | ssdomg 8995 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (dom {⟨𝑦, 𝑥⟩ ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} ⊆ 𝐴 → dom {⟨𝑦, 𝑥⟩ ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} ≼ 𝐴)) | |
19 | 5, 18 | mpi 20 | . . 3 ⊢ (𝐴 ∈ 𝑉 → dom {⟨𝑦, 𝑥⟩ ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} ≼ 𝐴) |
20 | domtr 9002 | . . 3 ⊢ ((ran {⟨𝑦, 𝑥⟩ ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} ≼ dom {⟨𝑦, 𝑥⟩ ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} ∧ dom {⟨𝑦, 𝑥⟩ ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} ≼ 𝐴) → ran {⟨𝑦, 𝑥⟩ ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} ≼ 𝐴) | |
21 | 17, 19, 20 | syl2anc 583 | . 2 ⊢ (𝐴 ∈ 𝑉 → ran {⟨𝑦, 𝑥⟩ ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} ≼ 𝐴) |
22 | 4, 21 | eqbrtrid 5176 | 1 ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∣ ∃𝑦 ∈ 𝐴 𝜑} ≼ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∃wex 1773 ∈ wcel 2098 ∃*wmo 2526 {cab 2703 ∃wrex 3064 Vcvv 3468 ⊆ wss 3943 class class class wbr 5141 {copab 5203 dom cdm 5669 ran crn 5670 Fun wfun 6530 Fn wfn 6531 ≼ cdom 8936 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 ax-ac2 10457 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-int 4944 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-se 5625 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6293 df-ord 6360 df-on 6361 df-suc 6363 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-isom 6545 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-1st 7971 df-2nd 7972 df-frecs 8264 df-wrecs 8295 df-recs 8369 df-er 8702 df-map 8821 df-en 8939 df-dom 8940 df-card 9933 df-acn 9936 df-ac 10110 |
This theorem is referenced by: abrexdom2 37111 |
Copyright terms: Public domain | W3C validator |