HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  dmadjss Structured version   Visualization version   GIF version

Theorem dmadjss 29460
Description: The domain of the adjoint function is a subset of the maps from to . (Contributed by NM, 15-Feb-2006.) (New usage is discouraged.)
Assertion
Ref Expression
dmadjss dom adj ⊆ ( ℋ ↑𝑚 ℋ)

Proof of Theorem dmadjss
Dummy variables 𝑢 𝑡 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfadj2 29458 . . . 4 adj = {⟨𝑡, 𝑢⟩ ∣ (𝑡: ℋ⟶ ℋ ∧ 𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑡𝑦)) = ((𝑢𝑥) ·ih 𝑦))}
2 3anass 1077 . . . . . 6 ((𝑡: ℋ⟶ ℋ ∧ 𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑡𝑦)) = ((𝑢𝑥) ·ih 𝑦)) ↔ (𝑡: ℋ⟶ ℋ ∧ (𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑡𝑦)) = ((𝑢𝑥) ·ih 𝑦))))
3 ax-hilex 28570 . . . . . . . 8 ℋ ∈ V
43, 3elmap 8233 . . . . . . 7 (𝑡 ∈ ( ℋ ↑𝑚 ℋ) ↔ 𝑡: ℋ⟶ ℋ)
54anbi1i 615 . . . . . 6 ((𝑡 ∈ ( ℋ ↑𝑚 ℋ) ∧ (𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑡𝑦)) = ((𝑢𝑥) ·ih 𝑦))) ↔ (𝑡: ℋ⟶ ℋ ∧ (𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑡𝑦)) = ((𝑢𝑥) ·ih 𝑦))))
62, 5bitr4i 270 . . . . 5 ((𝑡: ℋ⟶ ℋ ∧ 𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑡𝑦)) = ((𝑢𝑥) ·ih 𝑦)) ↔ (𝑡 ∈ ( ℋ ↑𝑚 ℋ) ∧ (𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑡𝑦)) = ((𝑢𝑥) ·ih 𝑦))))
76opabbii 4992 . . . 4 {⟨𝑡, 𝑢⟩ ∣ (𝑡: ℋ⟶ ℋ ∧ 𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑡𝑦)) = ((𝑢𝑥) ·ih 𝑦))} = {⟨𝑡, 𝑢⟩ ∣ (𝑡 ∈ ( ℋ ↑𝑚 ℋ) ∧ (𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑡𝑦)) = ((𝑢𝑥) ·ih 𝑦)))}
81, 7eqtri 2795 . . 3 adj = {⟨𝑡, 𝑢⟩ ∣ (𝑡 ∈ ( ℋ ↑𝑚 ℋ) ∧ (𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑡𝑦)) = ((𝑢𝑥) ·ih 𝑦)))}
98dmeqi 5619 . 2 dom adj = dom {⟨𝑡, 𝑢⟩ ∣ (𝑡 ∈ ( ℋ ↑𝑚 ℋ) ∧ (𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑡𝑦)) = ((𝑢𝑥) ·ih 𝑦)))}
10 dmopabss 5631 . 2 dom {⟨𝑡, 𝑢⟩ ∣ (𝑡 ∈ ( ℋ ↑𝑚 ℋ) ∧ (𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑡𝑦)) = ((𝑢𝑥) ·ih 𝑦)))} ⊆ ( ℋ ↑𝑚 ℋ)
119, 10eqsstri 3884 1 dom adj ⊆ ( ℋ ↑𝑚 ℋ)
Colors of variables: wff setvar class
Syntax hints:  wa 387  w3a 1069   = wceq 1508  wcel 2051  wral 3081  wss 3822  {copab 4987  dom cdm 5403  wf 6181  cfv 6185  (class class class)co 6974  𝑚 cmap 8204  chba 28490   ·ih csp 28493  adjcado 28526
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2743  ax-sep 5056  ax-nul 5063  ax-pow 5115  ax-pr 5182  ax-un 7277  ax-resscn 10390  ax-1cn 10391  ax-icn 10392  ax-addcl 10393  ax-addrcl 10394  ax-mulcl 10395  ax-mulrcl 10396  ax-mulcom 10397  ax-addass 10398  ax-mulass 10399  ax-distr 10400  ax-i2m1 10401  ax-1ne0 10402  ax-1rid 10403  ax-rnegex 10404  ax-rrecex 10405  ax-cnre 10406  ax-pre-lttri 10407  ax-pre-lttrn 10408  ax-pre-ltadd 10409  ax-pre-mulgt0 10410  ax-hilex 28570  ax-hfi 28650  ax-his1 28653
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3or 1070  df-3an 1071  df-tru 1511  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2548  df-eu 2585  df-clab 2752  df-cleq 2764  df-clel 2839  df-nfc 2911  df-ne 2961  df-nel 3067  df-ral 3086  df-rex 3087  df-reu 3088  df-rmo 3089  df-rab 3090  df-v 3410  df-sbc 3675  df-csb 3780  df-dif 3825  df-un 3827  df-in 3829  df-ss 3836  df-nul 4173  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-op 4442  df-uni 4709  df-iun 4790  df-br 4926  df-opab 4988  df-mpt 5005  df-id 5308  df-po 5322  df-so 5323  df-xp 5409  df-rel 5410  df-cnv 5411  df-co 5412  df-dm 5413  df-rn 5414  df-res 5415  df-ima 5416  df-iota 6149  df-fun 6187  df-fn 6188  df-f 6189  df-f1 6190  df-fo 6191  df-f1o 6192  df-fv 6193  df-riota 6935  df-ov 6977  df-oprab 6978  df-mpo 6979  df-er 8087  df-map 8206  df-en 8305  df-dom 8306  df-sdom 8307  df-pnf 10474  df-mnf 10475  df-xr 10476  df-ltxr 10477  df-le 10478  df-sub 10670  df-neg 10671  df-div 11097  df-2 11501  df-cj 14317  df-re 14318  df-im 14319  df-adjh 29422
This theorem is referenced by:  dmadjop  29461
  Copyright terms: Public domain W3C validator