MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdsnegb Structured version   Visualization version   GIF version

Theorem dvdsnegb 16250
Description: An integer divides another iff it divides its negation. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
dvdsnegb ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁𝑀 ∥ -𝑁))

Proof of Theorem dvdsnegb
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 id 22 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
2 znegcl 12575 . . . 4 (𝑁 ∈ ℤ → -𝑁 ∈ ℤ)
32anim2i 617 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∈ ℤ ∧ -𝑁 ∈ ℤ))
4 znegcl 12575 . . . 4 (𝑥 ∈ ℤ → -𝑥 ∈ ℤ)
54adantl 481 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑥 ∈ ℤ) → -𝑥 ∈ ℤ)
6 zcn 12541 . . . . 5 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
7 zcn 12541 . . . . 5 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
8 mulneg1 11621 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑀 ∈ ℂ) → (-𝑥 · 𝑀) = -(𝑥 · 𝑀))
9 negeq 11420 . . . . . . 7 ((𝑥 · 𝑀) = 𝑁 → -(𝑥 · 𝑀) = -𝑁)
109eqeq2d 2741 . . . . . 6 ((𝑥 · 𝑀) = 𝑁 → ((-𝑥 · 𝑀) = -(𝑥 · 𝑀) ↔ (-𝑥 · 𝑀) = -𝑁))
118, 10syl5ibcom 245 . . . . 5 ((𝑥 ∈ ℂ ∧ 𝑀 ∈ ℂ) → ((𝑥 · 𝑀) = 𝑁 → (-𝑥 · 𝑀) = -𝑁))
126, 7, 11syl2anr 597 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ) → ((𝑥 · 𝑀) = 𝑁 → (-𝑥 · 𝑀) = -𝑁))
1312adantlr 715 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑥 ∈ ℤ) → ((𝑥 · 𝑀) = 𝑁 → (-𝑥 · 𝑀) = -𝑁))
141, 3, 5, 13dvds1lem 16244 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁𝑀 ∥ -𝑁))
15 zcn 12541 . . . . . 6 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
16 negeq 11420 . . . . . . . . . 10 ((𝑥 · 𝑀) = -𝑁 → -(𝑥 · 𝑀) = --𝑁)
17 negneg 11479 . . . . . . . . . 10 (𝑁 ∈ ℂ → --𝑁 = 𝑁)
1816, 17sylan9eqr 2787 . . . . . . . . 9 ((𝑁 ∈ ℂ ∧ (𝑥 · 𝑀) = -𝑁) → -(𝑥 · 𝑀) = 𝑁)
198, 18sylan9eq 2785 . . . . . . . 8 (((𝑥 ∈ ℂ ∧ 𝑀 ∈ ℂ) ∧ (𝑁 ∈ ℂ ∧ (𝑥 · 𝑀) = -𝑁)) → (-𝑥 · 𝑀) = 𝑁)
2019expr 456 . . . . . . 7 (((𝑥 ∈ ℂ ∧ 𝑀 ∈ ℂ) ∧ 𝑁 ∈ ℂ) → ((𝑥 · 𝑀) = -𝑁 → (-𝑥 · 𝑀) = 𝑁))
21203impa 1109 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → ((𝑥 · 𝑀) = -𝑁 → (-𝑥 · 𝑀) = 𝑁))
226, 7, 15, 21syl3an 1160 . . . . 5 ((𝑥 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑥 · 𝑀) = -𝑁 → (-𝑥 · 𝑀) = 𝑁))
23223coml 1127 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑥 ∈ ℤ) → ((𝑥 · 𝑀) = -𝑁 → (-𝑥 · 𝑀) = 𝑁))
24233expa 1118 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑥 ∈ ℤ) → ((𝑥 · 𝑀) = -𝑁 → (-𝑥 · 𝑀) = 𝑁))
253, 1, 5, 24dvds1lem 16244 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ -𝑁𝑀𝑁))
2614, 25impbid 212 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁𝑀 ∥ -𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109   class class class wbr 5110  (class class class)co 7390  cc 11073   · cmul 11080  -cneg 11413  cz 12536  cdvds 16229
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-ltxr 11220  df-sub 11414  df-neg 11415  df-nn 12194  df-z 12537  df-dvds 16230
This theorem is referenced by:  dvdsabsb  16252  dvdssub  16281  dvdsadd2b  16283  3dvds  16308  bitscmp  16415  gcdneg  16499  prmdiv  16762  pcneg  16852  znunit  21480  2sqblem  27349  ex-mod  30385  aks6d1c5lem1  42131  congsym  42964  etransclem9  46248
  Copyright terms: Public domain W3C validator