MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdsnegb Structured version   Visualization version   GIF version

Theorem dvdsnegb 15222
Description: An integer divides another iff it divides its negation. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
dvdsnegb ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁𝑀 ∥ -𝑁))

Proof of Theorem dvdsnegb
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 id 22 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
2 znegcl 11678 . . . 4 (𝑁 ∈ ℤ → -𝑁 ∈ ℤ)
32anim2i 605 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∈ ℤ ∧ -𝑁 ∈ ℤ))
4 znegcl 11678 . . . 4 (𝑥 ∈ ℤ → -𝑥 ∈ ℤ)
54adantl 469 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑥 ∈ ℤ) → -𝑥 ∈ ℤ)
6 zcn 11648 . . . . 5 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
7 zcn 11648 . . . . 5 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
8 mulneg1 10751 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑀 ∈ ℂ) → (-𝑥 · 𝑀) = -(𝑥 · 𝑀))
9 negeq 10558 . . . . . . 7 ((𝑥 · 𝑀) = 𝑁 → -(𝑥 · 𝑀) = -𝑁)
109eqeq2d 2816 . . . . . 6 ((𝑥 · 𝑀) = 𝑁 → ((-𝑥 · 𝑀) = -(𝑥 · 𝑀) ↔ (-𝑥 · 𝑀) = -𝑁))
118, 10syl5ibcom 236 . . . . 5 ((𝑥 ∈ ℂ ∧ 𝑀 ∈ ℂ) → ((𝑥 · 𝑀) = 𝑁 → (-𝑥 · 𝑀) = -𝑁))
126, 7, 11syl2anr 586 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ) → ((𝑥 · 𝑀) = 𝑁 → (-𝑥 · 𝑀) = -𝑁))
1312adantlr 697 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑥 ∈ ℤ) → ((𝑥 · 𝑀) = 𝑁 → (-𝑥 · 𝑀) = -𝑁))
141, 3, 5, 13dvds1lem 15216 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁𝑀 ∥ -𝑁))
15 zcn 11648 . . . . . 6 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
16 negeq 10558 . . . . . . . . . 10 ((𝑥 · 𝑀) = -𝑁 → -(𝑥 · 𝑀) = --𝑁)
17 negneg 10616 . . . . . . . . . 10 (𝑁 ∈ ℂ → --𝑁 = 𝑁)
1816, 17sylan9eqr 2862 . . . . . . . . 9 ((𝑁 ∈ ℂ ∧ (𝑥 · 𝑀) = -𝑁) → -(𝑥 · 𝑀) = 𝑁)
198, 18sylan9eq 2860 . . . . . . . 8 (((𝑥 ∈ ℂ ∧ 𝑀 ∈ ℂ) ∧ (𝑁 ∈ ℂ ∧ (𝑥 · 𝑀) = -𝑁)) → (-𝑥 · 𝑀) = 𝑁)
2019expr 446 . . . . . . 7 (((𝑥 ∈ ℂ ∧ 𝑀 ∈ ℂ) ∧ 𝑁 ∈ ℂ) → ((𝑥 · 𝑀) = -𝑁 → (-𝑥 · 𝑀) = 𝑁))
21203impa 1129 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → ((𝑥 · 𝑀) = -𝑁 → (-𝑥 · 𝑀) = 𝑁))
226, 7, 15, 21syl3an 1192 . . . . 5 ((𝑥 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑥 · 𝑀) = -𝑁 → (-𝑥 · 𝑀) = 𝑁))
23223coml 1150 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑥 ∈ ℤ) → ((𝑥 · 𝑀) = -𝑁 → (-𝑥 · 𝑀) = 𝑁))
24233expa 1140 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑥 ∈ ℤ) → ((𝑥 · 𝑀) = -𝑁 → (-𝑥 · 𝑀) = 𝑁))
253, 1, 5, 24dvds1lem 15216 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ -𝑁𝑀𝑁))
2614, 25impbid 203 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁𝑀 ∥ -𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384   = wceq 1637  wcel 2156   class class class wbr 4844  (class class class)co 6874  cc 10219   · cmul 10226  -cneg 10552  cz 11643  cdvds 15203
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2068  ax-7 2104  ax-8 2158  ax-9 2165  ax-10 2185  ax-11 2201  ax-12 2214  ax-13 2420  ax-ext 2784  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5096  ax-un 7179  ax-resscn 10278  ax-1cn 10279  ax-icn 10280  ax-addcl 10281  ax-addrcl 10282  ax-mulcl 10283  ax-mulrcl 10284  ax-mulcom 10285  ax-addass 10286  ax-mulass 10287  ax-distr 10288  ax-i2m1 10289  ax-1ne0 10290  ax-1rid 10291  ax-rnegex 10292  ax-rrecex 10293  ax-cnre 10294  ax-pre-lttri 10295  ax-pre-lttrn 10296  ax-pre-ltadd 10297  ax-pre-mulgt0 10298
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2061  df-eu 2634  df-mo 2635  df-clab 2793  df-cleq 2799  df-clel 2802  df-nfc 2937  df-ne 2979  df-nel 3082  df-ral 3101  df-rex 3102  df-reu 3103  df-rab 3105  df-v 3393  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4117  df-if 4280  df-pw 4353  df-sn 4371  df-pr 4373  df-tp 4375  df-op 4377  df-uni 4631  df-iun 4714  df-br 4845  df-opab 4907  df-mpt 4924  df-tr 4947  df-id 5219  df-eprel 5224  df-po 5232  df-so 5233  df-fr 5270  df-we 5272  df-xp 5317  df-rel 5318  df-cnv 5319  df-co 5320  df-dm 5321  df-rn 5322  df-res 5323  df-ima 5324  df-pred 5893  df-ord 5939  df-on 5940  df-lim 5941  df-suc 5942  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-riota 6835  df-ov 6877  df-oprab 6878  df-mpt2 6879  df-om 7296  df-wrecs 7642  df-recs 7704  df-rdg 7742  df-er 7979  df-en 8193  df-dom 8194  df-sdom 8195  df-pnf 10361  df-mnf 10362  df-xr 10363  df-ltxr 10364  df-le 10365  df-sub 10553  df-neg 10554  df-nn 11306  df-z 11644  df-dvds 15204
This theorem is referenced by:  dvdsabsb  15224  dvdssub  15249  dvdsadd2b  15251  3dvds  15275  bitsfzo  15376  bitscmp  15379  gcdneg  15462  prmdiv  15707  pcneg  15795  znunit  20119  2sqblem  25370  ex-mod  27637  congsym  38036  etransclem9  40939
  Copyright terms: Public domain W3C validator