MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdsmulcr Structured version   Visualization version   GIF version

Theorem dvdsmulcr 15631
Description: Cancellation law for the divides relation. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
dvdsmulcr ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) → ((𝑀 · 𝐾) ∥ (𝑁 · 𝐾) ↔ 𝑀𝑁))

Proof of Theorem dvdsmulcr
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 zmulcl 12019 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀 · 𝐾) ∈ ℤ)
213adant2 1128 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀 · 𝐾) ∈ ℤ)
3 zmulcl 12019 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑁 · 𝐾) ∈ ℤ)
433adant1 1127 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑁 · 𝐾) ∈ ℤ)
52, 4jca 515 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑀 · 𝐾) ∈ ℤ ∧ (𝑁 · 𝐾) ∈ ℤ))
653adant3r 1178 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) → ((𝑀 · 𝐾) ∈ ℤ ∧ (𝑁 · 𝐾) ∈ ℤ))
7 3simpa 1145 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
8 simpr 488 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) ∧ 𝑥 ∈ ℤ) → 𝑥 ∈ ℤ)
9 zcn 11974 . . . . . . . . . . . 12 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
10 zcn 11974 . . . . . . . . . . . 12 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
119, 10anim12i 615 . . . . . . . . . . 11 ((𝑥 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑥 ∈ ℂ ∧ 𝑀 ∈ ℂ))
12 zcn 11974 . . . . . . . . . . 11 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
13 zcn 11974 . . . . . . . . . . . 12 (𝐾 ∈ ℤ → 𝐾 ∈ ℂ)
1413anim1i 617 . . . . . . . . . . 11 ((𝐾 ∈ ℤ ∧ 𝐾 ≠ 0) → (𝐾 ∈ ℂ ∧ 𝐾 ≠ 0))
15 mulass 10614 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝐾 ∈ ℂ) → ((𝑥 · 𝑀) · 𝐾) = (𝑥 · (𝑀 · 𝐾)))
16153expa 1115 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℂ ∧ 𝑀 ∈ ℂ) ∧ 𝐾 ∈ ℂ) → ((𝑥 · 𝑀) · 𝐾) = (𝑥 · (𝑀 · 𝐾)))
1716adantrr 716 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℂ ∧ 𝑀 ∈ ℂ) ∧ (𝐾 ∈ ℂ ∧ 𝐾 ≠ 0)) → ((𝑥 · 𝑀) · 𝐾) = (𝑥 · (𝑀 · 𝐾)))
18173adant2 1128 . . . . . . . . . . . . 13 (((𝑥 ∈ ℂ ∧ 𝑀 ∈ ℂ) ∧ 𝑁 ∈ ℂ ∧ (𝐾 ∈ ℂ ∧ 𝐾 ≠ 0)) → ((𝑥 · 𝑀) · 𝐾) = (𝑥 · (𝑀 · 𝐾)))
1918eqeq1d 2800 . . . . . . . . . . . 12 (((𝑥 ∈ ℂ ∧ 𝑀 ∈ ℂ) ∧ 𝑁 ∈ ℂ ∧ (𝐾 ∈ ℂ ∧ 𝐾 ≠ 0)) → (((𝑥 · 𝑀) · 𝐾) = (𝑁 · 𝐾) ↔ (𝑥 · (𝑀 · 𝐾)) = (𝑁 · 𝐾)))
20 mulcl 10610 . . . . . . . . . . . . 13 ((𝑥 ∈ ℂ ∧ 𝑀 ∈ ℂ) → (𝑥 · 𝑀) ∈ ℂ)
21 mulcan2 11267 . . . . . . . . . . . . 13 (((𝑥 · 𝑀) ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ (𝐾 ∈ ℂ ∧ 𝐾 ≠ 0)) → (((𝑥 · 𝑀) · 𝐾) = (𝑁 · 𝐾) ↔ (𝑥 · 𝑀) = 𝑁))
2220, 21syl3an1 1160 . . . . . . . . . . . 12 (((𝑥 ∈ ℂ ∧ 𝑀 ∈ ℂ) ∧ 𝑁 ∈ ℂ ∧ (𝐾 ∈ ℂ ∧ 𝐾 ≠ 0)) → (((𝑥 · 𝑀) · 𝐾) = (𝑁 · 𝐾) ↔ (𝑥 · 𝑀) = 𝑁))
2319, 22bitr3d 284 . . . . . . . . . . 11 (((𝑥 ∈ ℂ ∧ 𝑀 ∈ ℂ) ∧ 𝑁 ∈ ℂ ∧ (𝐾 ∈ ℂ ∧ 𝐾 ≠ 0)) → ((𝑥 · (𝑀 · 𝐾)) = (𝑁 · 𝐾) ↔ (𝑥 · 𝑀) = 𝑁))
2411, 12, 14, 23syl3an 1157 . . . . . . . . . 10 (((𝑥 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ 𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) → ((𝑥 · (𝑀 · 𝐾)) = (𝑁 · 𝐾) ↔ (𝑥 · 𝑀) = 𝑁))
25243expb 1117 . . . . . . . . 9 (((𝑥 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ (𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0))) → ((𝑥 · (𝑀 · 𝐾)) = (𝑁 · 𝐾) ↔ (𝑥 · 𝑀) = 𝑁))
26253impa 1107 . . . . . . . 8 ((𝑥 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ (𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0))) → ((𝑥 · (𝑀 · 𝐾)) = (𝑁 · 𝐾) ↔ (𝑥 · 𝑀) = 𝑁))
27263coml 1124 . . . . . . 7 ((𝑀 ∈ ℤ ∧ (𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) ∧ 𝑥 ∈ ℤ) → ((𝑥 · (𝑀 · 𝐾)) = (𝑁 · 𝐾) ↔ (𝑥 · 𝑀) = 𝑁))
28273expia 1118 . . . . . 6 ((𝑀 ∈ ℤ ∧ (𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0))) → (𝑥 ∈ ℤ → ((𝑥 · (𝑀 · 𝐾)) = (𝑁 · 𝐾) ↔ (𝑥 · 𝑀) = 𝑁)))
29283impb 1112 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) → (𝑥 ∈ ℤ → ((𝑥 · (𝑀 · 𝐾)) = (𝑁 · 𝐾) ↔ (𝑥 · 𝑀) = 𝑁)))
3029imp 410 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) ∧ 𝑥 ∈ ℤ) → ((𝑥 · (𝑀 · 𝐾)) = (𝑁 · 𝐾) ↔ (𝑥 · 𝑀) = 𝑁))
3130biimpd 232 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) ∧ 𝑥 ∈ ℤ) → ((𝑥 · (𝑀 · 𝐾)) = (𝑁 · 𝐾) → (𝑥 · 𝑀) = 𝑁))
326, 7, 8, 31dvds1lem 15613 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) → ((𝑀 · 𝐾) ∥ (𝑁 · 𝐾) → 𝑀𝑁))
33 dvdsmulc 15629 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀𝑁 → (𝑀 · 𝐾) ∥ (𝑁 · 𝐾)))
34333adant3r 1178 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) → (𝑀𝑁 → (𝑀 · 𝐾) ∥ (𝑁 · 𝐾)))
3532, 34impbid 215 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) → ((𝑀 · 𝐾) ∥ (𝑁 · 𝐾) ↔ 𝑀𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2987   class class class wbr 5030  (class class class)co 7135  cc 10524  0cc0 10526   · cmul 10531  cz 11969  cdvds 15599
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-n0 11886  df-z 11970  df-dvds 15600
This theorem is referenced by:  mulgcddvds  15989  prmpwdvds  16230  4sqlem10  16273  sylow3lem4  18747  odadd1  18961  odadd2  18962  ablfacrp2  19182  ablfac1eu  19188  fsumdvdsdiaglem  25768  nn0prpwlem  33783  jm2.20nn  39936  etransclem38  42912
  Copyright terms: Public domain W3C validator