Step | Hyp | Ref
| Expression |
1 | | zmulcl 12369 |
. . . . . 6
⊢ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀 · 𝐾) ∈ ℤ) |
2 | 1 | 3adant2 1130 |
. . . . 5
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀 · 𝐾) ∈ ℤ) |
3 | | zmulcl 12369 |
. . . . . 6
⊢ ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑁 · 𝐾) ∈ ℤ) |
4 | 3 | 3adant1 1129 |
. . . . 5
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑁 · 𝐾) ∈ ℤ) |
5 | 2, 4 | jca 512 |
. . . 4
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑀 · 𝐾) ∈ ℤ ∧ (𝑁 · 𝐾) ∈ ℤ)) |
6 | 5 | 3adant3r 1180 |
. . 3
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) → ((𝑀 · 𝐾) ∈ ℤ ∧ (𝑁 · 𝐾) ∈ ℤ)) |
7 | | 3simpa 1147 |
. . 3
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) → (𝑀 ∈ ℤ ∧ 𝑁 ∈
ℤ)) |
8 | | simpr 485 |
. . 3
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) ∧ 𝑥 ∈ ℤ) → 𝑥 ∈
ℤ) |
9 | | zcn 12324 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ℤ → 𝑥 ∈
ℂ) |
10 | | zcn 12324 |
. . . . . . . . . . . 12
⊢ (𝑀 ∈ ℤ → 𝑀 ∈
ℂ) |
11 | 9, 10 | anim12i 613 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑥 ∈ ℂ ∧ 𝑀 ∈
ℂ)) |
12 | | zcn 12324 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ ℤ → 𝑁 ∈
ℂ) |
13 | | zcn 12324 |
. . . . . . . . . . . 12
⊢ (𝐾 ∈ ℤ → 𝐾 ∈
ℂ) |
14 | 13 | anim1i 615 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ ℤ ∧ 𝐾 ≠ 0) → (𝐾 ∈ ℂ ∧ 𝐾 ≠ 0)) |
15 | | mulass 10960 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝐾 ∈ ℂ) → ((𝑥 · 𝑀) · 𝐾) = (𝑥 · (𝑀 · 𝐾))) |
16 | 15 | 3expa 1117 |
. . . . . . . . . . . . . . 15
⊢ (((𝑥 ∈ ℂ ∧ 𝑀 ∈ ℂ) ∧ 𝐾 ∈ ℂ) → ((𝑥 · 𝑀) · 𝐾) = (𝑥 · (𝑀 · 𝐾))) |
17 | 16 | adantrr 714 |
. . . . . . . . . . . . . 14
⊢ (((𝑥 ∈ ℂ ∧ 𝑀 ∈ ℂ) ∧ (𝐾 ∈ ℂ ∧ 𝐾 ≠ 0)) → ((𝑥 · 𝑀) · 𝐾) = (𝑥 · (𝑀 · 𝐾))) |
18 | 17 | 3adant2 1130 |
. . . . . . . . . . . . 13
⊢ (((𝑥 ∈ ℂ ∧ 𝑀 ∈ ℂ) ∧ 𝑁 ∈ ℂ ∧ (𝐾 ∈ ℂ ∧ 𝐾 ≠ 0)) → ((𝑥 · 𝑀) · 𝐾) = (𝑥 · (𝑀 · 𝐾))) |
19 | 18 | eqeq1d 2742 |
. . . . . . . . . . . 12
⊢ (((𝑥 ∈ ℂ ∧ 𝑀 ∈ ℂ) ∧ 𝑁 ∈ ℂ ∧ (𝐾 ∈ ℂ ∧ 𝐾 ≠ 0)) → (((𝑥 · 𝑀) · 𝐾) = (𝑁 · 𝐾) ↔ (𝑥 · (𝑀 · 𝐾)) = (𝑁 · 𝐾))) |
20 | | mulcl 10956 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ ℂ ∧ 𝑀 ∈ ℂ) → (𝑥 · 𝑀) ∈ ℂ) |
21 | | mulcan2 11613 |
. . . . . . . . . . . . 13
⊢ (((𝑥 · 𝑀) ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ (𝐾 ∈ ℂ ∧ 𝐾 ≠ 0)) → (((𝑥 · 𝑀) · 𝐾) = (𝑁 · 𝐾) ↔ (𝑥 · 𝑀) = 𝑁)) |
22 | 20, 21 | syl3an1 1162 |
. . . . . . . . . . . 12
⊢ (((𝑥 ∈ ℂ ∧ 𝑀 ∈ ℂ) ∧ 𝑁 ∈ ℂ ∧ (𝐾 ∈ ℂ ∧ 𝐾 ≠ 0)) → (((𝑥 · 𝑀) · 𝐾) = (𝑁 · 𝐾) ↔ (𝑥 · 𝑀) = 𝑁)) |
23 | 19, 22 | bitr3d 280 |
. . . . . . . . . . 11
⊢ (((𝑥 ∈ ℂ ∧ 𝑀 ∈ ℂ) ∧ 𝑁 ∈ ℂ ∧ (𝐾 ∈ ℂ ∧ 𝐾 ≠ 0)) → ((𝑥 · (𝑀 · 𝐾)) = (𝑁 · 𝐾) ↔ (𝑥 · 𝑀) = 𝑁)) |
24 | 11, 12, 14, 23 | syl3an 1159 |
. . . . . . . . . 10
⊢ (((𝑥 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ 𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) → ((𝑥 · (𝑀 · 𝐾)) = (𝑁 · 𝐾) ↔ (𝑥 · 𝑀) = 𝑁)) |
25 | 24 | 3expb 1119 |
. . . . . . . . 9
⊢ (((𝑥 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ (𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0))) → ((𝑥 · (𝑀 · 𝐾)) = (𝑁 · 𝐾) ↔ (𝑥 · 𝑀) = 𝑁)) |
26 | 25 | 3impa 1109 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ (𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0))) → ((𝑥 · (𝑀 · 𝐾)) = (𝑁 · 𝐾) ↔ (𝑥 · 𝑀) = 𝑁)) |
27 | 26 | 3coml 1126 |
. . . . . . 7
⊢ ((𝑀 ∈ ℤ ∧ (𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) ∧ 𝑥 ∈ ℤ) → ((𝑥 · (𝑀 · 𝐾)) = (𝑁 · 𝐾) ↔ (𝑥 · 𝑀) = 𝑁)) |
28 | 27 | 3expia 1120 |
. . . . . 6
⊢ ((𝑀 ∈ ℤ ∧ (𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0))) → (𝑥 ∈ ℤ → ((𝑥 · (𝑀 · 𝐾)) = (𝑁 · 𝐾) ↔ (𝑥 · 𝑀) = 𝑁))) |
29 | 28 | 3impb 1114 |
. . . . 5
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) → (𝑥 ∈ ℤ → ((𝑥 · (𝑀 · 𝐾)) = (𝑁 · 𝐾) ↔ (𝑥 · 𝑀) = 𝑁))) |
30 | 29 | imp 407 |
. . . 4
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) ∧ 𝑥 ∈ ℤ) → ((𝑥 · (𝑀 · 𝐾)) = (𝑁 · 𝐾) ↔ (𝑥 · 𝑀) = 𝑁)) |
31 | 30 | biimpd 228 |
. . 3
⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) ∧ 𝑥 ∈ ℤ) → ((𝑥 · (𝑀 · 𝐾)) = (𝑁 · 𝐾) → (𝑥 · 𝑀) = 𝑁)) |
32 | 6, 7, 8, 31 | dvds1lem 15975 |
. 2
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) → ((𝑀 · 𝐾) ∥ (𝑁 · 𝐾) → 𝑀 ∥ 𝑁)) |
33 | | dvdsmulc 15991 |
. . 3
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀 ∥ 𝑁 → (𝑀 · 𝐾) ∥ (𝑁 · 𝐾))) |
34 | 33 | 3adant3r 1180 |
. 2
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) → (𝑀 ∥ 𝑁 → (𝑀 · 𝐾) ∥ (𝑁 · 𝐾))) |
35 | 32, 34 | impbid 211 |
1
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) → ((𝑀 · 𝐾) ∥ (𝑁 · 𝐾) ↔ 𝑀 ∥ 𝑁)) |