MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdsmulcr Structured version   Visualization version   GIF version

Theorem dvdsmulcr 16225
Description: Cancellation law for the divides relation. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
dvdsmulcr ((๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค โˆง (๐พ โˆˆ โ„ค โˆง ๐พ โ‰  0)) โ†’ ((๐‘€ ยท ๐พ) โˆฅ (๐‘ ยท ๐พ) โ†” ๐‘€ โˆฅ ๐‘))

Proof of Theorem dvdsmulcr
Dummy variable ๐‘ฅ is distinct from all other variables.
StepHypRef Expression
1 zmulcl 12607 . . . . . 6 ((๐‘€ โˆˆ โ„ค โˆง ๐พ โˆˆ โ„ค) โ†’ (๐‘€ ยท ๐พ) โˆˆ โ„ค)
213adant2 1128 . . . . 5 ((๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค โˆง ๐พ โˆˆ โ„ค) โ†’ (๐‘€ ยท ๐พ) โˆˆ โ„ค)
3 zmulcl 12607 . . . . . 6 ((๐‘ โˆˆ โ„ค โˆง ๐พ โˆˆ โ„ค) โ†’ (๐‘ ยท ๐พ) โˆˆ โ„ค)
433adant1 1127 . . . . 5 ((๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค โˆง ๐พ โˆˆ โ„ค) โ†’ (๐‘ ยท ๐พ) โˆˆ โ„ค)
52, 4jca 511 . . . 4 ((๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค โˆง ๐พ โˆˆ โ„ค) โ†’ ((๐‘€ ยท ๐พ) โˆˆ โ„ค โˆง (๐‘ ยท ๐พ) โˆˆ โ„ค))
653adant3r 1178 . . 3 ((๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค โˆง (๐พ โˆˆ โ„ค โˆง ๐พ โ‰  0)) โ†’ ((๐‘€ ยท ๐พ) โˆˆ โ„ค โˆง (๐‘ ยท ๐พ) โˆˆ โ„ค))
7 3simpa 1145 . . 3 ((๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค โˆง (๐พ โˆˆ โ„ค โˆง ๐พ โ‰  0)) โ†’ (๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค))
8 simpr 484 . . 3 (((๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค โˆง (๐พ โˆˆ โ„ค โˆง ๐พ โ‰  0)) โˆง ๐‘ฅ โˆˆ โ„ค) โ†’ ๐‘ฅ โˆˆ โ„ค)
9 zcn 12559 . . . . . . . . . . . 12 (๐‘ฅ โˆˆ โ„ค โ†’ ๐‘ฅ โˆˆ โ„‚)
10 zcn 12559 . . . . . . . . . . . 12 (๐‘€ โˆˆ โ„ค โ†’ ๐‘€ โˆˆ โ„‚)
119, 10anim12i 612 . . . . . . . . . . 11 ((๐‘ฅ โˆˆ โ„ค โˆง ๐‘€ โˆˆ โ„ค) โ†’ (๐‘ฅ โˆˆ โ„‚ โˆง ๐‘€ โˆˆ โ„‚))
12 zcn 12559 . . . . . . . . . . 11 (๐‘ โˆˆ โ„ค โ†’ ๐‘ โˆˆ โ„‚)
13 zcn 12559 . . . . . . . . . . . 12 (๐พ โˆˆ โ„ค โ†’ ๐พ โˆˆ โ„‚)
1413anim1i 614 . . . . . . . . . . 11 ((๐พ โˆˆ โ„ค โˆง ๐พ โ‰  0) โ†’ (๐พ โˆˆ โ„‚ โˆง ๐พ โ‰  0))
15 mulass 11193 . . . . . . . . . . . . . . . 16 ((๐‘ฅ โˆˆ โ„‚ โˆง ๐‘€ โˆˆ โ„‚ โˆง ๐พ โˆˆ โ„‚) โ†’ ((๐‘ฅ ยท ๐‘€) ยท ๐พ) = (๐‘ฅ ยท (๐‘€ ยท ๐พ)))
16153expa 1115 . . . . . . . . . . . . . . 15 (((๐‘ฅ โˆˆ โ„‚ โˆง ๐‘€ โˆˆ โ„‚) โˆง ๐พ โˆˆ โ„‚) โ†’ ((๐‘ฅ ยท ๐‘€) ยท ๐พ) = (๐‘ฅ ยท (๐‘€ ยท ๐พ)))
1716adantrr 714 . . . . . . . . . . . . . 14 (((๐‘ฅ โˆˆ โ„‚ โˆง ๐‘€ โˆˆ โ„‚) โˆง (๐พ โˆˆ โ„‚ โˆง ๐พ โ‰  0)) โ†’ ((๐‘ฅ ยท ๐‘€) ยท ๐พ) = (๐‘ฅ ยท (๐‘€ ยท ๐พ)))
18173adant2 1128 . . . . . . . . . . . . 13 (((๐‘ฅ โˆˆ โ„‚ โˆง ๐‘€ โˆˆ โ„‚) โˆง ๐‘ โˆˆ โ„‚ โˆง (๐พ โˆˆ โ„‚ โˆง ๐พ โ‰  0)) โ†’ ((๐‘ฅ ยท ๐‘€) ยท ๐พ) = (๐‘ฅ ยท (๐‘€ ยท ๐พ)))
1918eqeq1d 2726 . . . . . . . . . . . 12 (((๐‘ฅ โˆˆ โ„‚ โˆง ๐‘€ โˆˆ โ„‚) โˆง ๐‘ โˆˆ โ„‚ โˆง (๐พ โˆˆ โ„‚ โˆง ๐พ โ‰  0)) โ†’ (((๐‘ฅ ยท ๐‘€) ยท ๐พ) = (๐‘ ยท ๐พ) โ†” (๐‘ฅ ยท (๐‘€ ยท ๐พ)) = (๐‘ ยท ๐พ)))
20 mulcl 11189 . . . . . . . . . . . . 13 ((๐‘ฅ โˆˆ โ„‚ โˆง ๐‘€ โˆˆ โ„‚) โ†’ (๐‘ฅ ยท ๐‘€) โˆˆ โ„‚)
21 mulcan2 11848 . . . . . . . . . . . . 13 (((๐‘ฅ ยท ๐‘€) โˆˆ โ„‚ โˆง ๐‘ โˆˆ โ„‚ โˆง (๐พ โˆˆ โ„‚ โˆง ๐พ โ‰  0)) โ†’ (((๐‘ฅ ยท ๐‘€) ยท ๐พ) = (๐‘ ยท ๐พ) โ†” (๐‘ฅ ยท ๐‘€) = ๐‘))
2220, 21syl3an1 1160 . . . . . . . . . . . 12 (((๐‘ฅ โˆˆ โ„‚ โˆง ๐‘€ โˆˆ โ„‚) โˆง ๐‘ โˆˆ โ„‚ โˆง (๐พ โˆˆ โ„‚ โˆง ๐พ โ‰  0)) โ†’ (((๐‘ฅ ยท ๐‘€) ยท ๐พ) = (๐‘ ยท ๐พ) โ†” (๐‘ฅ ยท ๐‘€) = ๐‘))
2319, 22bitr3d 281 . . . . . . . . . . 11 (((๐‘ฅ โˆˆ โ„‚ โˆง ๐‘€ โˆˆ โ„‚) โˆง ๐‘ โˆˆ โ„‚ โˆง (๐พ โˆˆ โ„‚ โˆง ๐พ โ‰  0)) โ†’ ((๐‘ฅ ยท (๐‘€ ยท ๐พ)) = (๐‘ ยท ๐พ) โ†” (๐‘ฅ ยท ๐‘€) = ๐‘))
2411, 12, 14, 23syl3an 1157 . . . . . . . . . 10 (((๐‘ฅ โˆˆ โ„ค โˆง ๐‘€ โˆˆ โ„ค) โˆง ๐‘ โˆˆ โ„ค โˆง (๐พ โˆˆ โ„ค โˆง ๐พ โ‰  0)) โ†’ ((๐‘ฅ ยท (๐‘€ ยท ๐พ)) = (๐‘ ยท ๐พ) โ†” (๐‘ฅ ยท ๐‘€) = ๐‘))
25243expb 1117 . . . . . . . . 9 (((๐‘ฅ โˆˆ โ„ค โˆง ๐‘€ โˆˆ โ„ค) โˆง (๐‘ โˆˆ โ„ค โˆง (๐พ โˆˆ โ„ค โˆง ๐พ โ‰  0))) โ†’ ((๐‘ฅ ยท (๐‘€ ยท ๐พ)) = (๐‘ ยท ๐พ) โ†” (๐‘ฅ ยท ๐‘€) = ๐‘))
26253impa 1107 . . . . . . . 8 ((๐‘ฅ โˆˆ โ„ค โˆง ๐‘€ โˆˆ โ„ค โˆง (๐‘ โˆˆ โ„ค โˆง (๐พ โˆˆ โ„ค โˆง ๐พ โ‰  0))) โ†’ ((๐‘ฅ ยท (๐‘€ ยท ๐พ)) = (๐‘ ยท ๐พ) โ†” (๐‘ฅ ยท ๐‘€) = ๐‘))
27263coml 1124 . . . . . . 7 ((๐‘€ โˆˆ โ„ค โˆง (๐‘ โˆˆ โ„ค โˆง (๐พ โˆˆ โ„ค โˆง ๐พ โ‰  0)) โˆง ๐‘ฅ โˆˆ โ„ค) โ†’ ((๐‘ฅ ยท (๐‘€ ยท ๐พ)) = (๐‘ ยท ๐พ) โ†” (๐‘ฅ ยท ๐‘€) = ๐‘))
28273expia 1118 . . . . . 6 ((๐‘€ โˆˆ โ„ค โˆง (๐‘ โˆˆ โ„ค โˆง (๐พ โˆˆ โ„ค โˆง ๐พ โ‰  0))) โ†’ (๐‘ฅ โˆˆ โ„ค โ†’ ((๐‘ฅ ยท (๐‘€ ยท ๐พ)) = (๐‘ ยท ๐พ) โ†” (๐‘ฅ ยท ๐‘€) = ๐‘)))
29283impb 1112 . . . . 5 ((๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค โˆง (๐พ โˆˆ โ„ค โˆง ๐พ โ‰  0)) โ†’ (๐‘ฅ โˆˆ โ„ค โ†’ ((๐‘ฅ ยท (๐‘€ ยท ๐พ)) = (๐‘ ยท ๐พ) โ†” (๐‘ฅ ยท ๐‘€) = ๐‘)))
3029imp 406 . . . 4 (((๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค โˆง (๐พ โˆˆ โ„ค โˆง ๐พ โ‰  0)) โˆง ๐‘ฅ โˆˆ โ„ค) โ†’ ((๐‘ฅ ยท (๐‘€ ยท ๐พ)) = (๐‘ ยท ๐พ) โ†” (๐‘ฅ ยท ๐‘€) = ๐‘))
3130biimpd 228 . . 3 (((๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค โˆง (๐พ โˆˆ โ„ค โˆง ๐พ โ‰  0)) โˆง ๐‘ฅ โˆˆ โ„ค) โ†’ ((๐‘ฅ ยท (๐‘€ ยท ๐พ)) = (๐‘ ยท ๐พ) โ†’ (๐‘ฅ ยท ๐‘€) = ๐‘))
326, 7, 8, 31dvds1lem 16207 . 2 ((๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค โˆง (๐พ โˆˆ โ„ค โˆง ๐พ โ‰  0)) โ†’ ((๐‘€ ยท ๐พ) โˆฅ (๐‘ ยท ๐พ) โ†’ ๐‘€ โˆฅ ๐‘))
33 dvdsmulc 16223 . . 3 ((๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค โˆง ๐พ โˆˆ โ„ค) โ†’ (๐‘€ โˆฅ ๐‘ โ†’ (๐‘€ ยท ๐พ) โˆฅ (๐‘ ยท ๐พ)))
34333adant3r 1178 . 2 ((๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค โˆง (๐พ โˆˆ โ„ค โˆง ๐พ โ‰  0)) โ†’ (๐‘€ โˆฅ ๐‘ โ†’ (๐‘€ ยท ๐พ) โˆฅ (๐‘ ยท ๐พ)))
3532, 34impbid 211 1 ((๐‘€ โˆˆ โ„ค โˆง ๐‘ โˆˆ โ„ค โˆง (๐พ โˆˆ โ„ค โˆง ๐พ โ‰  0)) โ†’ ((๐‘€ ยท ๐พ) โˆฅ (๐‘ ยท ๐พ) โ†” ๐‘€ โˆฅ ๐‘))
Colors of variables: wff setvar class
Syntax hints:   โ†’ wi 4   โ†” wb 205   โˆง wa 395   โˆง w3a 1084   = wceq 1533   โˆˆ wcel 2098   โ‰  wne 2932   class class class wbr 5138  (class class class)co 7401  โ„‚cc 11103  0cc0 11105   ยท cmul 11110  โ„คcz 12554   โˆฅ cdvds 16193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-resscn 11162  ax-1cn 11163  ax-icn 11164  ax-addcl 11165  ax-addrcl 11166  ax-mulcl 11167  ax-mulrcl 11168  ax-mulcom 11169  ax-addass 11170  ax-mulass 11171  ax-distr 11172  ax-i2m1 11173  ax-1ne0 11174  ax-1rid 11175  ax-rnegex 11176  ax-rrecex 11177  ax-cnre 11178  ax-pre-lttri 11179  ax-pre-lttrn 11180  ax-pre-ltadd 11181  ax-pre-mulgt0 11182
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-om 7849  df-2nd 7969  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-er 8698  df-en 8935  df-dom 8936  df-sdom 8937  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-n0 12469  df-z 12555  df-dvds 16194
This theorem is referenced by:  mulgcddvds  16588  prmpwdvds  16835  4sqlem10  16878  sylow3lem4  19539  odadd1  19757  odadd2  19758  ablfacrp2  19978  ablfac1eu  19984  fsumdvdsdiaglem  27030  nn0prpwlem  35663  jm2.20nn  42191  etransclem38  45439
  Copyright terms: Public domain W3C validator