MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdscmulr Structured version   Visualization version   GIF version

Theorem dvdscmulr 15992
Description: Cancellation law for the divides relation. Theorem 1.1(e) in [ApostolNT] p. 14. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
dvdscmulr ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) → ((𝐾 · 𝑀) ∥ (𝐾 · 𝑁) ↔ 𝑀𝑁))

Proof of Theorem dvdscmulr
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 zmulcl 12369 . . . . . . 7 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝐾 · 𝑀) ∈ ℤ)
213adant3 1131 . . . . . 6 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 · 𝑀) ∈ ℤ)
3 zmulcl 12369 . . . . . . 7 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 · 𝑁) ∈ ℤ)
433adant2 1130 . . . . . 6 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 · 𝑁) ∈ ℤ)
52, 4jca 512 . . . . 5 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) ∈ ℤ ∧ (𝐾 · 𝑁) ∈ ℤ))
653coml 1126 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝐾 · 𝑀) ∈ ℤ ∧ (𝐾 · 𝑁) ∈ ℤ))
763adant3r 1180 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) → ((𝐾 · 𝑀) ∈ ℤ ∧ (𝐾 · 𝑁) ∈ ℤ))
8 3simpa 1147 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
9 simpr 485 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) ∧ 𝑥 ∈ ℤ) → 𝑥 ∈ ℤ)
10 zcn 12324 . . . . . . . . . . . 12 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
11 zcn 12324 . . . . . . . . . . . 12 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
1210, 11anim12i 613 . . . . . . . . . . 11 ((𝑥 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑥 ∈ ℂ ∧ 𝑀 ∈ ℂ))
13 zcn 12324 . . . . . . . . . . 11 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
14 zcn 12324 . . . . . . . . . . . 12 (𝐾 ∈ ℤ → 𝐾 ∈ ℂ)
1514anim1i 615 . . . . . . . . . . 11 ((𝐾 ∈ ℤ ∧ 𝐾 ≠ 0) → (𝐾 ∈ ℂ ∧ 𝐾 ≠ 0))
16 mul12 11140 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ 𝑀 ∈ ℂ) → (𝐾 · (𝑥 · 𝑀)) = (𝑥 · (𝐾 · 𝑀)))
17163adant1r 1176 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ ℂ ∧ 𝐾 ≠ 0) ∧ 𝑥 ∈ ℂ ∧ 𝑀 ∈ ℂ) → (𝐾 · (𝑥 · 𝑀)) = (𝑥 · (𝐾 · 𝑀)))
18173expb 1119 . . . . . . . . . . . . . . 15 (((𝐾 ∈ ℂ ∧ 𝐾 ≠ 0) ∧ (𝑥 ∈ ℂ ∧ 𝑀 ∈ ℂ)) → (𝐾 · (𝑥 · 𝑀)) = (𝑥 · (𝐾 · 𝑀)))
1918ancoms 459 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℂ ∧ 𝑀 ∈ ℂ) ∧ (𝐾 ∈ ℂ ∧ 𝐾 ≠ 0)) → (𝐾 · (𝑥 · 𝑀)) = (𝑥 · (𝐾 · 𝑀)))
20193adant2 1130 . . . . . . . . . . . . 13 (((𝑥 ∈ ℂ ∧ 𝑀 ∈ ℂ) ∧ 𝑁 ∈ ℂ ∧ (𝐾 ∈ ℂ ∧ 𝐾 ≠ 0)) → (𝐾 · (𝑥 · 𝑀)) = (𝑥 · (𝐾 · 𝑀)))
2120eqeq1d 2742 . . . . . . . . . . . 12 (((𝑥 ∈ ℂ ∧ 𝑀 ∈ ℂ) ∧ 𝑁 ∈ ℂ ∧ (𝐾 ∈ ℂ ∧ 𝐾 ≠ 0)) → ((𝐾 · (𝑥 · 𝑀)) = (𝐾 · 𝑁) ↔ (𝑥 · (𝐾 · 𝑀)) = (𝐾 · 𝑁)))
22 mulcl 10956 . . . . . . . . . . . . 13 ((𝑥 ∈ ℂ ∧ 𝑀 ∈ ℂ) → (𝑥 · 𝑀) ∈ ℂ)
23 mulcan 11612 . . . . . . . . . . . . 13 (((𝑥 · 𝑀) ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ (𝐾 ∈ ℂ ∧ 𝐾 ≠ 0)) → ((𝐾 · (𝑥 · 𝑀)) = (𝐾 · 𝑁) ↔ (𝑥 · 𝑀) = 𝑁))
2422, 23syl3an1 1162 . . . . . . . . . . . 12 (((𝑥 ∈ ℂ ∧ 𝑀 ∈ ℂ) ∧ 𝑁 ∈ ℂ ∧ (𝐾 ∈ ℂ ∧ 𝐾 ≠ 0)) → ((𝐾 · (𝑥 · 𝑀)) = (𝐾 · 𝑁) ↔ (𝑥 · 𝑀) = 𝑁))
2521, 24bitr3d 280 . . . . . . . . . . 11 (((𝑥 ∈ ℂ ∧ 𝑀 ∈ ℂ) ∧ 𝑁 ∈ ℂ ∧ (𝐾 ∈ ℂ ∧ 𝐾 ≠ 0)) → ((𝑥 · (𝐾 · 𝑀)) = (𝐾 · 𝑁) ↔ (𝑥 · 𝑀) = 𝑁))
2612, 13, 15, 25syl3an 1159 . . . . . . . . . 10 (((𝑥 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ 𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) → ((𝑥 · (𝐾 · 𝑀)) = (𝐾 · 𝑁) ↔ (𝑥 · 𝑀) = 𝑁))
27263expb 1119 . . . . . . . . 9 (((𝑥 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ (𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0))) → ((𝑥 · (𝐾 · 𝑀)) = (𝐾 · 𝑁) ↔ (𝑥 · 𝑀) = 𝑁))
28273impa 1109 . . . . . . . 8 ((𝑥 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ (𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0))) → ((𝑥 · (𝐾 · 𝑀)) = (𝐾 · 𝑁) ↔ (𝑥 · 𝑀) = 𝑁))
29283coml 1126 . . . . . . 7 ((𝑀 ∈ ℤ ∧ (𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) ∧ 𝑥 ∈ ℤ) → ((𝑥 · (𝐾 · 𝑀)) = (𝐾 · 𝑁) ↔ (𝑥 · 𝑀) = 𝑁))
30293expia 1120 . . . . . 6 ((𝑀 ∈ ℤ ∧ (𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0))) → (𝑥 ∈ ℤ → ((𝑥 · (𝐾 · 𝑀)) = (𝐾 · 𝑁) ↔ (𝑥 · 𝑀) = 𝑁)))
31303impb 1114 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) → (𝑥 ∈ ℤ → ((𝑥 · (𝐾 · 𝑀)) = (𝐾 · 𝑁) ↔ (𝑥 · 𝑀) = 𝑁)))
3231imp 407 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) ∧ 𝑥 ∈ ℤ) → ((𝑥 · (𝐾 · 𝑀)) = (𝐾 · 𝑁) ↔ (𝑥 · 𝑀) = 𝑁))
3332biimpd 228 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) ∧ 𝑥 ∈ ℤ) → ((𝑥 · (𝐾 · 𝑀)) = (𝐾 · 𝑁) → (𝑥 · 𝑀) = 𝑁))
347, 8, 9, 33dvds1lem 15975 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) → ((𝐾 · 𝑀) ∥ (𝐾 · 𝑁) → 𝑀𝑁))
35 dvdscmul 15990 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀𝑁 → (𝐾 · 𝑀) ∥ (𝐾 · 𝑁)))
36353adant3r 1180 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) → (𝑀𝑁 → (𝐾 · 𝑀) ∥ (𝐾 · 𝑁)))
3734, 36impbid 211 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝐾 ∈ ℤ ∧ 𝐾 ≠ 0)) → ((𝐾 · 𝑀) ∥ (𝐾 · 𝑁) ↔ 𝑀𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1542  wcel 2110  wne 2945   class class class wbr 5079  (class class class)co 7271  cc 10870  0cc0 10872   · cmul 10877  cz 12319  cdvds 15961
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582  ax-resscn 10929  ax-1cn 10930  ax-icn 10931  ax-addcl 10932  ax-addrcl 10933  ax-mulcl 10934  ax-mulrcl 10935  ax-mulcom 10936  ax-addass 10937  ax-mulass 10938  ax-distr 10939  ax-i2m1 10940  ax-1ne0 10941  ax-1rid 10942  ax-rnegex 10943  ax-rrecex 10944  ax-cnre 10945  ax-pre-lttri 10946  ax-pre-lttrn 10947  ax-pre-ltadd 10948  ax-pre-mulgt0 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-riota 7228  df-ov 7274  df-oprab 7275  df-mpo 7276  df-om 7707  df-2nd 7825  df-frecs 8088  df-wrecs 8119  df-recs 8193  df-rdg 8232  df-er 8481  df-en 8717  df-dom 8718  df-sdom 8719  df-pnf 11012  df-mnf 11013  df-xr 11014  df-ltxr 11015  df-le 11016  df-sub 11207  df-neg 11208  df-nn 11974  df-n0 12234  df-z 12320  df-dvds 15962
This theorem is referenced by:  modmulconst  15995  bitsmod  16141  mulgcd  16254  pcpremul  16542  4sqlem17  16660  odmulg  19161  ablfacrp2  19668  ablfac1b  19671  pgpfac1lem3a  19677  znrrg  20771  fsumdvdsdiaglem  26330  oddpwdc  32317  jm2.20nn  40816
  Copyright terms: Public domain W3C validator