| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > muldvds2 | Structured version Visualization version GIF version | ||
| Description: If a product divides an integer, so does one of its factors. (Contributed by Paul Chapman, 21-Mar-2011.) |
| Ref | Expression |
|---|---|
| muldvds2 | ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) ∥ 𝑁 → 𝑀 ∥ 𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zmulcl 12527 | . . . 4 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝐾 · 𝑀) ∈ ℤ) | |
| 2 | 1 | anim1i 615 | . . 3 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) ∈ ℤ ∧ 𝑁 ∈ ℤ)) |
| 3 | 2 | 3impa 1109 | . 2 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) ∈ ℤ ∧ 𝑁 ∈ ℤ)) |
| 4 | 3simpc 1150 | . 2 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) | |
| 5 | zmulcl 12527 | . . . 4 ⊢ ((𝑥 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑥 · 𝐾) ∈ ℤ) | |
| 6 | 5 | ancoms 458 | . . 3 ⊢ ((𝐾 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑥 · 𝐾) ∈ ℤ) |
| 7 | 6 | 3ad2antl1 1186 | . 2 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑥 ∈ ℤ) → (𝑥 · 𝐾) ∈ ℤ) |
| 8 | zcn 12480 | . . . . . . . 8 ⊢ (𝑥 ∈ ℤ → 𝑥 ∈ ℂ) | |
| 9 | zcn 12480 | . . . . . . . 8 ⊢ (𝐾 ∈ ℤ → 𝐾 ∈ ℂ) | |
| 10 | zcn 12480 | . . . . . . . 8 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℂ) | |
| 11 | mulass 11101 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℂ ∧ 𝐾 ∈ ℂ ∧ 𝑀 ∈ ℂ) → ((𝑥 · 𝐾) · 𝑀) = (𝑥 · (𝐾 · 𝑀))) | |
| 12 | 8, 9, 10, 11 | syl3an 1160 | . . . . . . 7 ⊢ ((𝑥 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝑥 · 𝐾) · 𝑀) = (𝑥 · (𝐾 · 𝑀))) |
| 13 | 12 | 3coml 1127 | . . . . . 6 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ) → ((𝑥 · 𝐾) · 𝑀) = (𝑥 · (𝐾 · 𝑀))) |
| 14 | 13 | 3expa 1118 | . . . . 5 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ 𝑥 ∈ ℤ) → ((𝑥 · 𝐾) · 𝑀) = (𝑥 · (𝐾 · 𝑀))) |
| 15 | 14 | 3adantl3 1169 | . . . 4 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑥 ∈ ℤ) → ((𝑥 · 𝐾) · 𝑀) = (𝑥 · (𝐾 · 𝑀))) |
| 16 | 15 | eqeq1d 2735 | . . 3 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑥 ∈ ℤ) → (((𝑥 · 𝐾) · 𝑀) = 𝑁 ↔ (𝑥 · (𝐾 · 𝑀)) = 𝑁)) |
| 17 | 16 | biimprd 248 | . 2 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑥 ∈ ℤ) → ((𝑥 · (𝐾 · 𝑀)) = 𝑁 → ((𝑥 · 𝐾) · 𝑀) = 𝑁)) |
| 18 | 3, 4, 7, 17 | dvds1lem 16180 | 1 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) ∥ 𝑁 → 𝑀 ∥ 𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 class class class wbr 5093 (class class class)co 7352 ℂcc 11011 · cmul 11018 ℤcz 12475 ∥ cdvds 16165 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-pnf 11155 df-mnf 11156 df-ltxr 11158 df-sub 11353 df-neg 11354 df-nn 12133 df-n0 12389 df-z 12476 df-dvds 16166 |
| This theorem is referenced by: muldvds2d 42111 nnproddivdvdsd 42113 jm2.27a 43122 fmtnofac2lem 47692 |
| Copyright terms: Public domain | W3C validator |