MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  muldvds2 Structured version   Visualization version   GIF version

Theorem muldvds2 15489
Description: If a product divides an integer, so does one of its factors. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
muldvds2 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) ∥ 𝑁𝑀𝑁))

Proof of Theorem muldvds2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 zmulcl 11838 . . . 4 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝐾 · 𝑀) ∈ ℤ)
21anim1i 605 . . 3 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) ∈ ℤ ∧ 𝑁 ∈ ℤ))
323impa 1090 . 2 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) ∈ ℤ ∧ 𝑁 ∈ ℤ))
4 3simpc 1130 . 2 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
5 zmulcl 11838 . . . 4 ((𝑥 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑥 · 𝐾) ∈ ℤ)
65ancoms 451 . . 3 ((𝐾 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑥 · 𝐾) ∈ ℤ)
763ad2antl1 1165 . 2 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑥 ∈ ℤ) → (𝑥 · 𝐾) ∈ ℤ)
8 zcn 11792 . . . . . . . 8 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
9 zcn 11792 . . . . . . . 8 (𝐾 ∈ ℤ → 𝐾 ∈ ℂ)
10 zcn 11792 . . . . . . . 8 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
11 mulass 10417 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ 𝐾 ∈ ℂ ∧ 𝑀 ∈ ℂ) → ((𝑥 · 𝐾) · 𝑀) = (𝑥 · (𝐾 · 𝑀)))
128, 9, 10, 11syl3an 1140 . . . . . . 7 ((𝑥 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝑥 · 𝐾) · 𝑀) = (𝑥 · (𝐾 · 𝑀)))
13123coml 1107 . . . . . 6 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ) → ((𝑥 · 𝐾) · 𝑀) = (𝑥 · (𝐾 · 𝑀)))
14133expa 1098 . . . . 5 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ 𝑥 ∈ ℤ) → ((𝑥 · 𝐾) · 𝑀) = (𝑥 · (𝐾 · 𝑀)))
15143adantl3 1148 . . . 4 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑥 ∈ ℤ) → ((𝑥 · 𝐾) · 𝑀) = (𝑥 · (𝐾 · 𝑀)))
1615eqeq1d 2774 . . 3 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑥 ∈ ℤ) → (((𝑥 · 𝐾) · 𝑀) = 𝑁 ↔ (𝑥 · (𝐾 · 𝑀)) = 𝑁))
1716biimprd 240 . 2 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑥 ∈ ℤ) → ((𝑥 · (𝐾 · 𝑀)) = 𝑁 → ((𝑥 · 𝐾) · 𝑀) = 𝑁))
183, 4, 7, 17dvds1lem 15475 1 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) ∥ 𝑁𝑀𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 387  w3a 1068   = wceq 1507  wcel 2050   class class class wbr 4923  (class class class)co 6970  cc 10327   · cmul 10334  cz 11787  cdvds 15461
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2744  ax-sep 5054  ax-nul 5061  ax-pow 5113  ax-pr 5180  ax-un 7273  ax-resscn 10386  ax-1cn 10387  ax-icn 10388  ax-addcl 10389  ax-addrcl 10390  ax-mulcl 10391  ax-mulrcl 10392  ax-mulcom 10393  ax-addass 10394  ax-mulass 10395  ax-distr 10396  ax-i2m1 10397  ax-1ne0 10398  ax-1rid 10399  ax-rnegex 10400  ax-rrecex 10401  ax-cnre 10402  ax-pre-lttri 10403  ax-pre-lttrn 10404  ax-pre-ltadd 10405
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2753  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-nel 3068  df-ral 3087  df-rex 3088  df-reu 3089  df-rab 3091  df-v 3411  df-sbc 3676  df-csb 3781  df-dif 3826  df-un 3828  df-in 3830  df-ss 3837  df-pss 3839  df-nul 4173  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-uni 4707  df-iun 4788  df-br 4924  df-opab 4986  df-mpt 5003  df-tr 5025  df-id 5306  df-eprel 5311  df-po 5320  df-so 5321  df-fr 5360  df-we 5362  df-xp 5407  df-rel 5408  df-cnv 5409  df-co 5410  df-dm 5411  df-rn 5412  df-res 5413  df-ima 5414  df-pred 5980  df-ord 6026  df-on 6027  df-lim 6028  df-suc 6029  df-iota 6146  df-fun 6184  df-fn 6185  df-f 6186  df-f1 6187  df-fo 6188  df-f1o 6189  df-fv 6190  df-riota 6931  df-ov 6973  df-oprab 6974  df-mpo 6975  df-om 7391  df-wrecs 7744  df-recs 7806  df-rdg 7844  df-er 8083  df-en 8301  df-dom 8302  df-sdom 8303  df-pnf 10470  df-mnf 10471  df-ltxr 10473  df-sub 10666  df-neg 10667  df-nn 11434  df-n0 11702  df-z 11788  df-dvds 15462
This theorem is referenced by:  jm2.27a  38998  fmtnofac2lem  43098
  Copyright terms: Public domain W3C validator