MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvds0lem Structured version   Visualization version   GIF version

Theorem dvds0lem 16187
Description: A lemma to assist theorems of with no antecedents. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
dvds0lem (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 · 𝑀) = 𝑁) → 𝑀𝑁)

Proof of Theorem dvds0lem
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 oveq1 7362 . . . . . . . . 9 (𝑥 = 𝐾 → (𝑥 · 𝑀) = (𝐾 · 𝑀))
21eqeq1d 2735 . . . . . . . 8 (𝑥 = 𝐾 → ((𝑥 · 𝑀) = 𝑁 ↔ (𝐾 · 𝑀) = 𝑁))
32rspcev 3574 . . . . . . 7 ((𝐾 ∈ ℤ ∧ (𝐾 · 𝑀) = 𝑁) → ∃𝑥 ∈ ℤ (𝑥 · 𝑀) = 𝑁)
43adantl 481 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ (𝐾 · 𝑀) = 𝑁)) → ∃𝑥 ∈ ℤ (𝑥 · 𝑀) = 𝑁)
5 divides 16175 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ ∃𝑥 ∈ ℤ (𝑥 · 𝑀) = 𝑁))
65adantr 480 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ (𝐾 · 𝑀) = 𝑁)) → (𝑀𝑁 ↔ ∃𝑥 ∈ ℤ (𝑥 · 𝑀) = 𝑁))
74, 6mpbird 257 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ (𝐾 · 𝑀) = 𝑁)) → 𝑀𝑁)
87expr 456 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ) → ((𝐾 · 𝑀) = 𝑁𝑀𝑁))
983impa 1109 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝐾 · 𝑀) = 𝑁𝑀𝑁))
1093comr 1125 . 2 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) = 𝑁𝑀𝑁))
1110imp 406 1 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 · 𝑀) = 𝑁) → 𝑀𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  wrex 3058   class class class wbr 5095  (class class class)co 7355   · cmul 11021  cz 12478  cdvds 16173
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ral 3050  df-rex 3059  df-rab 3398  df-v 3440  df-dif 3902  df-un 3904  df-ss 3916  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-iota 6445  df-fv 6497  df-ov 7358  df-dvds 16174
This theorem is referenced by:  iddvds  16190  1dvds  16191  dvds0  16192  dvdsmul1  16198  dvdsmul2  16199  divalgmod  16327  isprm5  16628  ex-dvds  30447  fldextrspundgdvds  33705  constrext2chnlem  33774  oddpwdc  34378  inductionexd  44262
  Copyright terms: Public domain W3C validator