| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dvds0lem | Structured version Visualization version GIF version | ||
| Description: A lemma to assist theorems of ∥ with no antecedents. (Contributed by Paul Chapman, 21-Mar-2011.) |
| Ref | Expression |
|---|---|
| dvds0lem | ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 · 𝑀) = 𝑁) → 𝑀 ∥ 𝑁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 7348 | . . . . . . . . 9 ⊢ (𝑥 = 𝐾 → (𝑥 · 𝑀) = (𝐾 · 𝑀)) | |
| 2 | 1 | eqeq1d 2732 | . . . . . . . 8 ⊢ (𝑥 = 𝐾 → ((𝑥 · 𝑀) = 𝑁 ↔ (𝐾 · 𝑀) = 𝑁)) |
| 3 | 2 | rspcev 3575 | . . . . . . 7 ⊢ ((𝐾 ∈ ℤ ∧ (𝐾 · 𝑀) = 𝑁) → ∃𝑥 ∈ ℤ (𝑥 · 𝑀) = 𝑁) |
| 4 | 3 | adantl 481 | . . . . . 6 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ (𝐾 · 𝑀) = 𝑁)) → ∃𝑥 ∈ ℤ (𝑥 · 𝑀) = 𝑁) |
| 5 | divides 16157 | . . . . . . 7 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ 𝑁 ↔ ∃𝑥 ∈ ℤ (𝑥 · 𝑀) = 𝑁)) | |
| 6 | 5 | adantr 480 | . . . . . 6 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ (𝐾 · 𝑀) = 𝑁)) → (𝑀 ∥ 𝑁 ↔ ∃𝑥 ∈ ℤ (𝑥 · 𝑀) = 𝑁)) |
| 7 | 4, 6 | mpbird 257 | . . . . 5 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ (𝐾 · 𝑀) = 𝑁)) → 𝑀 ∥ 𝑁) |
| 8 | 7 | expr 456 | . . . 4 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ) → ((𝐾 · 𝑀) = 𝑁 → 𝑀 ∥ 𝑁)) |
| 9 | 8 | 3impa 1109 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝐾 · 𝑀) = 𝑁 → 𝑀 ∥ 𝑁)) |
| 10 | 9 | 3comr 1125 | . 2 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) = 𝑁 → 𝑀 ∥ 𝑁)) |
| 11 | 10 | imp 406 | 1 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 · 𝑀) = 𝑁) → 𝑀 ∥ 𝑁) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2110 ∃wrex 3054 class class class wbr 5089 (class class class)co 7341 · cmul 11003 ℤcz 12460 ∥ cdvds 16155 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3394 df-v 3436 df-dif 3903 df-un 3905 df-ss 3917 df-nul 4282 df-if 4474 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-br 5090 df-opab 5152 df-iota 6433 df-fv 6485 df-ov 7344 df-dvds 16156 |
| This theorem is referenced by: iddvds 16172 1dvds 16173 dvds0 16174 dvdsmul1 16180 dvdsmul2 16181 divalgmod 16309 isprm5 16610 ex-dvds 30426 fldextrspundgdvds 33684 constrext2chnlem 33753 oddpwdc 34357 inductionexd 44167 |
| Copyright terms: Public domain | W3C validator |