MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvds0lem Structured version   Visualization version   GIF version

Theorem dvds0lem 16141
Description: A lemma to assist theorems of with no antecedents. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
dvds0lem (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 · 𝑀) = 𝑁) → 𝑀𝑁)

Proof of Theorem dvds0lem
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 oveq1 7360 . . . . . . . . 9 (𝑥 = 𝐾 → (𝑥 · 𝑀) = (𝐾 · 𝑀))
21eqeq1d 2738 . . . . . . . 8 (𝑥 = 𝐾 → ((𝑥 · 𝑀) = 𝑁 ↔ (𝐾 · 𝑀) = 𝑁))
32rspcev 3579 . . . . . . 7 ((𝐾 ∈ ℤ ∧ (𝐾 · 𝑀) = 𝑁) → ∃𝑥 ∈ ℤ (𝑥 · 𝑀) = 𝑁)
43adantl 482 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ (𝐾 · 𝑀) = 𝑁)) → ∃𝑥 ∈ ℤ (𝑥 · 𝑀) = 𝑁)
5 divides 16130 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ ∃𝑥 ∈ ℤ (𝑥 · 𝑀) = 𝑁))
65adantr 481 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ (𝐾 · 𝑀) = 𝑁)) → (𝑀𝑁 ↔ ∃𝑥 ∈ ℤ (𝑥 · 𝑀) = 𝑁))
74, 6mpbird 256 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ (𝐾 · 𝑀) = 𝑁)) → 𝑀𝑁)
87expr 457 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ) → ((𝐾 · 𝑀) = 𝑁𝑀𝑁))
983impa 1110 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝐾 · 𝑀) = 𝑁𝑀𝑁))
1093comr 1125 . 2 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) = 𝑁𝑀𝑁))
1110imp 407 1 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 · 𝑀) = 𝑁) → 𝑀𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wrex 3071   class class class wbr 5103  (class class class)co 7353   · cmul 11052  cz 12495  cdvds 16128
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2707  ax-sep 5254  ax-nul 5261  ax-pr 5382
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2714  df-cleq 2728  df-clel 2814  df-ral 3063  df-rex 3072  df-rab 3406  df-v 3445  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-nul 4281  df-if 4485  df-sn 4585  df-pr 4587  df-op 4591  df-uni 4864  df-br 5104  df-opab 5166  df-iota 6445  df-fv 6501  df-ov 7356  df-dvds 16129
This theorem is referenced by:  iddvds  16144  1dvds  16145  dvds0  16146  dvdsmul1  16152  dvdsmul2  16153  divalgmod  16280  isprm5  16575  ex-dvds  29286  oddpwdc  32823  inductionexd  42369
  Copyright terms: Public domain W3C validator