MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  negdvdsb Structured version   Visualization version   GIF version

Theorem negdvdsb 15382
Description: An integer divides another iff its negation does. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
negdvdsb ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ -𝑀𝑁))

Proof of Theorem negdvdsb
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 id 22 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
2 znegcl 11747 . . . 4 (𝑀 ∈ ℤ → -𝑀 ∈ ℤ)
32anim1i 608 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (-𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
4 znegcl 11747 . . . 4 (𝑥 ∈ ℤ → -𝑥 ∈ ℤ)
54adantl 475 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑥 ∈ ℤ) → -𝑥 ∈ ℤ)
6 zcn 11716 . . . . . . 7 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
7 zcn 11716 . . . . . . 7 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
8 mul2neg 10800 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑀 ∈ ℂ) → (-𝑥 · -𝑀) = (𝑥 · 𝑀))
96, 7, 8syl2anr 590 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (-𝑥 · -𝑀) = (𝑥 · 𝑀))
109adantlr 706 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑥 ∈ ℤ) → (-𝑥 · -𝑀) = (𝑥 · 𝑀))
1110eqeq1d 2827 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑥 ∈ ℤ) → ((-𝑥 · -𝑀) = 𝑁 ↔ (𝑥 · 𝑀) = 𝑁))
1211biimprd 240 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑥 ∈ ℤ) → ((𝑥 · 𝑀) = 𝑁 → (-𝑥 · -𝑀) = 𝑁))
131, 3, 5, 12dvds1lem 15377 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 → -𝑀𝑁))
14 mulneg12 10799 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑀 ∈ ℂ) → (-𝑥 · 𝑀) = (𝑥 · -𝑀))
156, 7, 14syl2anr 590 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (-𝑥 · 𝑀) = (𝑥 · -𝑀))
1615adantlr 706 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑥 ∈ ℤ) → (-𝑥 · 𝑀) = (𝑥 · -𝑀))
1716eqeq1d 2827 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑥 ∈ ℤ) → ((-𝑥 · 𝑀) = 𝑁 ↔ (𝑥 · -𝑀) = 𝑁))
1817biimprd 240 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑥 ∈ ℤ) → ((𝑥 · -𝑀) = 𝑁 → (-𝑥 · 𝑀) = 𝑁))
193, 1, 5, 18dvds1lem 15377 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (-𝑀𝑁𝑀𝑁))
2013, 19impbid 204 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ -𝑀𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386   = wceq 1656  wcel 2164   class class class wbr 4875  (class class class)co 6910  cc 10257   · cmul 10264  -cneg 10593  cz 11711  cdvds 15364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214  ax-resscn 10316  ax-1cn 10317  ax-icn 10318  ax-addcl 10319  ax-addrcl 10320  ax-mulcl 10321  ax-mulrcl 10322  ax-mulcom 10323  ax-addass 10324  ax-mulass 10325  ax-distr 10326  ax-i2m1 10327  ax-1ne0 10328  ax-1rid 10329  ax-rnegex 10330  ax-rrecex 10331  ax-cnre 10332  ax-pre-lttri 10333  ax-pre-lttrn 10334  ax-pre-ltadd 10335
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-tp 4404  df-op 4406  df-uni 4661  df-iun 4744  df-br 4876  df-opab 4938  df-mpt 4955  df-tr 4978  df-id 5252  df-eprel 5257  df-po 5265  df-so 5266  df-fr 5305  df-we 5307  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-pred 5924  df-ord 5970  df-on 5971  df-lim 5972  df-suc 5973  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-riota 6871  df-ov 6913  df-oprab 6914  df-mpt2 6915  df-om 7332  df-wrecs 7677  df-recs 7739  df-rdg 7777  df-er 8014  df-en 8229  df-dom 8230  df-sdom 8231  df-pnf 10400  df-mnf 10401  df-ltxr 10403  df-sub 10594  df-neg 10595  df-nn 11358  df-z 11712  df-dvds 15365
This theorem is referenced by:  absdvdsb  15384  3dvds  15436  lcmneg  15696
  Copyright terms: Public domain W3C validator